Two simples proofs of Fermat 's last theorem and Beal conjecture

M. Sghiar
9 Allée capitaine Jean Bernard Bossu, 21240, Talant, France
Corresponding Author: M. Sghiar

Abstract

If after 374 years the famous theorem of Fermat-Wiles was demonstrated in 110 pages by A. Wiles [4], the puspose of this article is to give a simple demonstration and deduce a proof of the Beal conjecture. Résumé : Si après 374 ans le célèbre théorème de Fermat-Wiles a été démontré en 110 pages par A. Wiles [4], le but de cet article est de donner une simple démonstration et d'en déduire une preuve de la conjecture de Beal. Keywords : Fermat, Fermat-Wiles theorem, Fermat's great theorem.

The Subject Classification Codes : 11D41-11G05-11G07-26B15-26B20-28A10-28A75

I. Introduction

Set out by Pierre de Fermat [2], it was not until more than three centuries ago that Fermat's great theorem was published, validated and established by the British mathematician Andrew Wiles [4] in 1995.

In mathematics, and more precisely in number theory, the last theorem of Fermat [2], or Fermat's great theorem, or since his Fermat-Wiles theorem demonstration [4], is as follows: There are no non-zero integers a, b , and c such that: $a^{n}+b^{n}=c^{n}$, as soon as n is an integer strictly greater than 2 ".

The Beal conjecture is the following conjecture in number theory: If $a^{x}+b^{y}=c^{z} \quad$ where $\mathrm{a}, \mathrm{b}, \mathrm{c}, \mathrm{x}$, y and z are positive integers with $x, y, z>2$, then a, b, and c have a common prime factor. Equivalently, There are no solutions to the above equation in positive integers $\mathrm{a}, \mathrm{b}, \mathrm{c}, \mathrm{x}, \mathrm{y}, \mathrm{z}$ with a, b and c being pairwise coprime and all of $\mathrm{x}, \mathrm{y}, \mathrm{z}$ being greater than 2 .

If the famous Fermat-Wiles theorem has been demonstrated in $\mathbf{1 1 0}$ pages by A. Wiles [4], the purpose of this article is to give a simple proof and deduce a proof of the Beal conjecture.

II. The proof of Fermat's last theorem

Theorem :

There are no non-zero integers a, b, and c such that: $a^{n}+b^{n}=c^{n}$, with n an integer strictly greater than 2 .

Lemma 1 :

If $\mathrm{n}, \mathrm{a}, \mathrm{b}$ and c are a non-zero integers with and $a^{n}+b^{n}=c^{n}$ then:

$$
\int_{0}^{b} x^{n-1}-\left(\frac{c-a}{b} x+a\right)^{n-1} \frac{c-a}{b} d x=0
$$

Proof:

$$
a^{n}+b^{n}=c^{n} \Leftrightarrow \int_{0}^{a} n x^{n-1} d x+\int_{0}^{b} n x^{n-1} d x=\int_{0}^{c} n x^{n-1} d x
$$

But as :

$$
\int_{0}^{c} n x^{n-1} d x=\int_{0}^{a} n x^{n-1} d x+\int_{a}^{c} n x^{n-1} d x
$$

So :

$$
\int_{0}^{b} n x^{n-1} d x=\int_{a}^{c} n x^{n-1} d x
$$

And as by changing variables we have :

$$
\int_{a}^{c} n x^{n-1} d x=\int_{0}^{b} n\left(\frac{c-a}{b} y+a\right)^{n-1} \frac{c-a}{b} d y
$$

Then :

$$
\int_{0}^{b} x^{n-1} d x=\int_{0}^{b}\left(\frac{c-a}{b} y+a\right)^{n-1} \frac{c-a}{b} d y
$$

It results:

$$
\int_{0}^{b} x^{n-1}-\left(\frac{c-a}{b} x+a\right)^{n-1} \frac{c-a}{b} d x=0
$$

Corollary 1 : If $\mathrm{N}, \mathrm{n}, \mathrm{a}, \mathrm{b}$ and c are a non-zero integers with and $a^{n}+b^{n}=c^{n}$ then :
$\int_{0}^{\frac{b}{N}} x^{n-1}-\left(\frac{c-a}{b} x+\frac{a}{N}\right)^{n-1} \frac{c-a}{b} d x=0$
Proof : It results from the proof of lemma 1 by replacing a, b and c respectively by $\frac{a}{N}, \frac{b}{N}$ and $\frac{c}{N}$.

Lemma 2 :

If $a^{n}+b^{n}=c^{n}$, where $\mathrm{n}, \mathrm{a}, \mathrm{b}$ and c are a non-zero integers with $n>2$ and $a \leq b \leq c$. Then for an integer N big enough we have : $x^{n-1}-\left(\frac{c-a}{b} x+\frac{a}{N}\right)^{n-1} \frac{c-a}{b} \leq 0 \quad \forall x \in\left[0, \frac{b}{N}\right]$.

Proof :

Let $f(x, a, b, c, y)=x^{n-1}-\left(\frac{c-a}{b} x+y\right)^{n-1} \frac{c-a}{b}$. with $x, y \in \mathbb{R}^{+}$.
We have : $\frac{\partial f}{\partial x}=(n-1) x^{n-2}-(n-1)\left(\frac{c-a}{b} x+y\right)^{n-2}\left(\frac{c-a}{b}\right)^{2}, f(0, a, b, c, y)<0 \quad$ and $\left.\frac{\partial f}{\partial x}\right|_{x=0}<0$.
So, by continuity, $\exists \epsilon>0$ such that $\forall u \in[0, \epsilon]$ we have $\left.\frac{\partial f}{\partial x}\right|_{x=u}<0$. So the function f is decreasing in $[0, \epsilon]$ and $\exists \epsilon^{\prime}>0, \epsilon \geq \epsilon^{\prime}>0$ such that we have : $f(x, a, b, c, y) \leq 0 \quad \forall x \in\left[0, \epsilon^{\prime}\right], \forall y \in\left[0, \epsilon^{\prime}\right]$.
As $\frac{b}{N} \in\left[0, \epsilon^{\prime}\right]$ for an integer N big enough, It follows that $\forall x \in\left[0, \frac{b}{N}\right]$ we have :
$f\left(x, a, b, c, \frac{a}{N}\right) \leq 0 \quad \forall x \in\left[0, \frac{b}{N}\right]$.

Proof of Theorem:

If $a^{n}+b^{n}=c^{n}$, where $\mathrm{n}, \mathrm{a}, \mathrm{b}$ and c are a non-zero integers with $n>2$ and $a \leq b \leq c$. Then for an integer N big enough, it results from the lemma 2 that we have:
$f\left(x, a, b, c, \frac{a}{N}\right)=x^{n-1}-\left(\frac{c-a}{b} x+\frac{a}{N}\right)^{n-1} \frac{c-a}{b} \leq 0 \quad \forall x \in\left[0, \frac{b}{N}\right]$
And by using the corollary 1, we have $\int_{0}^{\frac{b}{N}} x^{n-1}-\left(\frac{c-a}{b} x+\frac{a}{N}\right)^{n^{-1}} \frac{c-a}{b} d x=0$.
So : $x^{n-1}-\left(\frac{c-a}{b} x+\frac{a}{N}\right)^{n-1} \frac{c-a}{b}=0 \quad \forall x \in\left[0, \frac{b}{N}\right]$
And therefore $\frac{c-a}{b}=1$ because $f\left(x, a, b, c, \frac{a}{N}\right)$ is a null polynomial as it have more than n zeros. So $c=a+b$ and $a^{n}+b^{n} \neq c^{n} \quad$ which is absurde.

III. The proof of Beal conjecture :

Corollary : [Beal conjecture]

If $a^{x}+b^{y}=c^{z} \quad$ where $\mathrm{a}, \mathrm{b}, \mathrm{c}, \mathrm{x}, \mathrm{y}$ and z are positive integers with $\mathrm{x}, \mathrm{y}, \mathrm{z}>2$, then a, b, and c have a common prime factor.

Equivalently, there are no solutions to the above equation in positive integers $\mathrm{a}, \mathrm{b}, \mathrm{c}, \mathrm{x}, \mathrm{y}, \mathrm{z}$ with a, b and c being pairwise coprime and all of $\mathrm{x}, \mathrm{y}, \mathrm{z}$ being greater than 2 .

Proof :

Let $a^{x}+b^{y}=c^{z}$.
If a, b and c are not pairwise coprime, then by posing $a=k a^{\prime}, b=k b^{\prime}$, and $c=k c^{\prime}$.
Let $a^{\prime}=u^{\prime y z}, b^{\prime}=v^{\prime x z}, c^{\prime}=w^{\prime x y}$ and $k=u^{y z}, k=v^{x z}, k=w^{x y}$
As $a^{x}+b^{y}=c^{z}$, we deduce that $\left(u u^{\prime}\right)^{x y z}+\left(v v^{\prime}\right)^{x y z}=\left(w w^{\prime}\right)^{x y z}$.
So : $k^{x} u^{\prime x y z}+k^{y} v^{\prime x y z}=k^{z} w^{\prime x y z}$
This equation does not look like the one studied in the first theorem. But if a, b and c are pairwise coprime, we have $k=1$ and $u=v=w=1$ and we will have to solve the equation : $u^{\prime x y z}+v^{\prime x y z}=w^{\prime x y z}$
The equation $u^{\prime x y z}+v^{\prime x y z}=w^{\prime x y z}$ have a solution if at least one of the equations : $\left(u^{\prime x y}\right)^{z}+\left(v^{\prime x y}\right)^{z}=\left(w^{\prime x y}\right)^{z},\left(u^{\prime x z}\right)^{y}+\left(v^{\prime x z}\right)^{y}=\left(w^{\prime x z}\right)^{y},\left(u^{\prime y z}\right)^{x}+\left(v^{\prime y z}\right)^{x}=\left(w^{\prime y z}\right)^{x}$, have a solution .
So by the proof given in the proof of the first Theorem we must have: $x \leq 2$ or $y \leq 2$, or $z \leq 2$
We therefore conclude that if $a^{x}+b^{y}=c^{z} \quad$ where $\mathrm{a}, \mathrm{b}, \mathrm{c}, \mathrm{x}, \mathrm{y}$, and z are positive integers with $x, y, z>2$, then a, b, and c have a common prime factor.

IV. Important notes :

1- If a, b, and c are not pairwise coprime, someone, by applying the proof given in the corollary like this : $a=u^{y z}, b=v^{x z}, c=w^{x y}$ will have $u^{x y z}+v^{x y z}=w^{x y z}$, and could say that all the x, y and z are always smaller than 2 . What is false: $7^{3}+7^{4}=14^{3}$.
The reason is sipmle: it is the common factor k which could increase the power, for example if $k=c^{\prime r}$ in the proof, then $c^{z}=\left(k c^{\prime}\right)^{z}=c^{(r+1) z}$. You can take the example : $2^{r}+2^{r}=2^{r+1}$ where $k=2^{r}$.
2- These techniques do not say that the equation $a^{n}+b^{n}=c^{n}$ where $\left.a, b, c \in\right] 0,+\infty[$, has no solution since in the proof the equation $X^{2}+Y^{2}=Z^{2}$ can have a sloution. We take $a=X^{\frac{2}{n}}, b=Y^{\frac{2}{n}}$ and $C=Z^{\frac{2}{n}}$. 3 - In [3] I proved the abc conjecture which implies only that the equation $a^{x}+b^{y}=c^{z}$ has only a finite number of solution with $\mathrm{a}, \mathrm{b}, \mathrm{c}, \mathrm{x}, \mathrm{y}, \mathrm{z}$ a positive integers, a, b and c being pairwise coprime and all of $\mathrm{x}, \mathrm{y}, \mathrm{z}$ being greater than 2 .

V. Conclusion :

The techniques used in this article have allowed to prove both the Fermat' last theorem and the Beal' conjecture and have shown that the Beal conjecture is only a corollary of the Fermat' last theorem.

Bibliography :

[1]. https://en.wikipedia.org/wiki/Beal conjecture .
[2]. https://en.wikipedia.org/wiki/Fermat last theorem.
[3]. M. Mghiar, la preuve de la conjecture abc, iosr journal of mathematics (iosr-jm), e-issn: 2278-5728, p-issn: 2319-765x. volume 14, issue 4 ver. i (jul - aug 2018), pp 22-26.
[4]. Andrew Wiles, Modular elliptic curves and Fermat's last Theorem, Annal of mathematics, volume 10,142, pages 443-551, septemberdecember, 1995.
M. Sghiar. " Two simples proofs of Fermat 's last theorem and Beal conjecture." IOSR Journal of Mathematics (IOSR-JM) 14.6 (2018): 16-18.

