$\boldsymbol{\beta} \mathbf{g}^{*}$ - Separation Axioms

C. Dhanapakyam ${ }^{1}$, K.Indirani ${ }^{2}$.
Department of Mathematics Rathnavel subramaniam College of Arts \& Science Coimbatore-, India
Nirmala College for women Red fields, Coimbatore-,India
Corresponding Author: C. Dhanapakyam

Abstract

In this paper, some new types of separation axioms in topological spaces by using βg^{*}-open sets are formulated. In particular the concept of $\beta g^{*}-R_{0}$ and $\beta g^{*}-R_{I}$ axioms are introduced. Several properties of these spaces are investigated using these axioms.

Keywords: βg^{*}-open set, $\beta g^{*}-R_{0}, \beta g^{*}-R_{l}, \beta g^{*}-T_{i}(i=0,1,2)$
Date of Submission: 04-01-2019
Date of acceptance: 21-01-2019

I. Introduction

In 1970, Levine[4] introduced the concept of generalized closed set in topological spaces. In 2000, Veeerakumar [6] introduced several generalized closed sets namely g* closed sets, \hat{g} closed set. Andrijevic[1] introduced β-open set in general topology. The aim of this paper is to introduce the some new type of separation axioms via $\beta \mathrm{g}^{*}$-open sets. Throughout this paper (X, τ) and (Y, σ) (or simply X and Y)represents the non-empty topological spaces on which no separation axioms are assumed, unless otherwise mentioned. For a subset A of $\mathrm{X}, \mathrm{cl}(\mathrm{A})$ and $\operatorname{int}(\mathrm{A})$ represents the closure of A and interior of A respectively.

II. Preliminaries

Definition 2.1: A subset A of (X, τ) is called

1) Generalized closed[4] (briefly g-closed) if $\operatorname{cl}(A) \subset U$ whenever $A \subset U$ and U is open.
2) $\beta \mathrm{g}^{*}$-closed [3]if $\mathrm{gcl}(\mathrm{A}) \subset \mathrm{U}$ whenever $\mathrm{A} \subset U$ and U is β-open in X .

Definition 2.2: A map $\mathrm{f}:(\mathrm{X}, \tau) \rightarrow(\mathrm{Y}, \sigma)$ is called

1) Continuous [2] if $f^{-1}(V)$ is closed subset in (X, τ) for every closed subset V in (Y, σ).
2). g continuous[5] if $\mathrm{f}^{-1}(\mathrm{~V})$ is g closed subset in (X, τ) for every closed subset V in (Y, σ).
2) $\beta \mathrm{g}^{*}$ - continuous if $\mathrm{f}^{-1}(\mathrm{~V})$ is $\beta \mathrm{g}^{*}$ - closed subset in (X, τ) for every closed subset V in (Y, σ).

Definition 2.3: A function $\mathrm{f}:(\mathrm{X}, \tau) \rightarrow(\mathrm{Y}, \sigma)$ from a topological space X into a topological space Y is called a $\beta \mathrm{g}^{*}$ irresolute if $\mathrm{f}^{-1}(\mathrm{~V})$ is $\beta \mathrm{g}^{*}$ closed set in X for every $\beta \mathrm{g}^{*}$ closed set V in Y .

III. $\boldsymbol{\beta g}{ }^{*}-\mathrm{T}_{\mathrm{k}}(\mathrm{k}=0,1,2)$ SPACES

In this section, a new type of separation axioms in topological spaces called $\beta \mathrm{g}^{*}-\mathrm{T}_{\mathrm{k}}$ spaces for $\mathrm{k}=0,1,2$ are defined and their properties are studied.

Definition 3.1: A topological space (X, τ) is said to be

1. $\beta \mathrm{g}^{*}-\mathrm{T}_{0}$ if for each pair of distinct points x, y in X , there exists a $\beta \mathrm{g}^{*}$-open set U such that either $\mathrm{x} \in \mathrm{U}$ and $\mathrm{y} \notin \mathrm{U}$ or $\mathrm{x} \notin \mathrm{U}$ and $\mathrm{y} \in \mathrm{U}$.
2. $\quad \beta \mathrm{g}^{*}-\mathrm{T}_{1}$ if for each pair of distinct points x , y in X , there exist two $\beta \mathrm{g}^{*}$-open sets U and V such that $\mathrm{x} \in \mathrm{U}$ and $y \notin U$ and $y \in V$ but $x \notin V$.
3. $\quad \beta \mathrm{g}^{*}-\mathrm{T}_{2}$ if for each pair of distinct points x , y in X , there exist two disjoint $\beta \mathrm{g}^{*}$-open sets U and V containing x and y respectively.

Example 3.2: (i) Let $\mathrm{X}=\{\mathrm{a}, \mathrm{b}, \mathrm{c}\}$ with the topology $\tau=\{\mathrm{X}, \phi,\{\mathrm{a}\}\}$. Here $\beta \mathrm{g}^{*}$-open sets are $\{\mathrm{X}, \phi,\{\mathrm{a}\},\{\mathrm{b}\}$, $\{c\},\{a, b\},\{b, c\},\{a, c\}\}$. Since for the distinct points a and b, there exist a βg^{*}-open set $U=\{a\}$ such that $a \in U$ and $b \notin U$ or $U=\{b\}$ such that $a \notin U$ and $b \in U$. In a similar manner other pairs of distinct points may also be discussed. Therefore X is $\beta \mathrm{g}^{*}-\mathrm{T}_{0}$ space.
(ii) Let $\mathrm{X}=\{\mathrm{a}, \mathrm{b}, \mathrm{c}\}$ with the topology $\tau=\{\mathrm{X}, \phi,\{\mathrm{a}\}\}$. Here $\beta \mathrm{g}^{*}$-open sets are $\{\mathrm{X}, \phi,\{\mathrm{a}\},\{\mathrm{b}\},\{\mathrm{c}\},\{\mathrm{a}, \mathrm{b}\},\{\mathrm{b}$, $c\},\{a, c\}\}$. Since for the distinct points a and b, there exist $\beta \mathrm{g}$-open sets $\mathrm{U}=\{\mathrm{a}\}$ and $\mathrm{V}=\{\mathrm{b}, \mathrm{c}\}$ such that $\mathrm{a} \in \mathrm{U}$
but $\mathrm{b} \notin \mathrm{U}$ and $\mathrm{a} \notin \mathrm{V}$ but $\mathrm{b} \in \mathrm{V}$. In a similar manner other pairs of distinct points may also be discussed. Therefore X is $\beta \mathrm{g}^{*}-\mathrm{T}_{1}$ space.
(iii) Let $\mathrm{X}=\{\mathrm{a}, \mathrm{b}, \mathrm{c}\}$ with the topology $\tau=\{\mathrm{X}, \phi,\{\mathrm{c}\},\{\mathrm{a}, \mathrm{b}\}\}$. Here $\beta \mathrm{g}^{*}$-open sets are $\{\mathrm{X}, \phi,\{\mathrm{a}\},\{\mathrm{b}\},\{\mathrm{c}\},\{\mathrm{a}$, $b\},\{b, c\},\{a, c\}\}$. Since for the distinct points a and c, there exist two disjoint $\beta \mathrm{g}^{*}$-open sets $\mathrm{U}=\{\mathrm{a}\}$ and $\mathrm{V}=\{\mathrm{c}\}$ containing a and c. In a similar manner other pairs of distinct points may also be discussed. Therefore X is $\beta \mathrm{g}^{*}$ T_{2} space.

Remark 3.3: Let (X, τ) be a topological space, then the following statements are true:

1. Every $\beta \mathrm{g}_{*}^{*}-\mathrm{T}_{2}$ space is $\beta \mathrm{g}_{*}^{*}-\mathrm{T}_{1}$.
2. Every $\beta \mathrm{g}^{*}-\mathrm{T}_{1}$ space is $\beta \mathrm{g}^{*}-\mathrm{T}_{0}$.

Theorem 3.4: Every T_{0} space is a $\beta \mathrm{g}^{*}-\mathrm{T}_{0}$ space.
Proof: Let X be a T_{0} space. Let x, y be two distinct points in X. Since X is T_{0} space, there exists an open set M in X such that $x \in M, y \notin M$. Since every open set is a βg^{*}-open set, M is a βg^{*}-open set in X. Thus, for any two distinct points x , y in X , there exists a $\beta \mathrm{g}^{*}$-open set M in X such that $\mathrm{x} \in \mathrm{M}, \mathrm{y} \notin \mathrm{M}$. Hence X is a $\beta \mathrm{g}^{*}-\mathrm{T}_{0}$ space.

Theorem 3.5: A topological space (X, τ) is $\beta \mathrm{g}^{*}-\mathrm{T}_{0}$ if and only if for each pair of distinct points x, y of $\mathrm{X}, \beta \mathrm{g}^{*}-$ $\operatorname{cl}(\{\mathrm{x}\}) \neq \beta \mathrm{g}^{*}-\mathrm{cl}(\{\mathrm{y}\})$.

Proof: Necessity: Let (X, τ) be a $\beta \mathrm{g}^{*}-\mathrm{T}_{0}$ space and x , y be any two distinct points of X . There exists $\beta \mathrm{g}{ }^{*}$-open set U containing x or y, say x but not y. Then $X-U$ is a βg^{*} - closed set which does not contain x but contains y. Since $\beta \mathrm{g}^{*}-\mathrm{cl}(\{\mathrm{y}\})$ is the smallest $\beta \mathrm{g}^{*}$-closed set containing $\mathrm{y}, \beta \mathrm{g}^{*}-\mathrm{cl}(\{\mathrm{y}\}) \subseteq \mathrm{X}-\mathrm{U}$ and therefore $\mathrm{x} \notin \beta \mathrm{g}^{*}$ $\operatorname{cl}(\{y\})$. Consequently $\beta \mathrm{g}^{*}-\operatorname{cl}(\{\mathrm{x}\}) \neq \beta \mathrm{g}^{*}-\operatorname{cl}(\{\mathrm{y}\})$.

Sufficiency: Suppose that $\mathrm{x}, \mathrm{y} \in \mathrm{X}, \mathrm{x} \neq \mathrm{y}$ and $\beta \mathrm{g}^{*}-\operatorname{cl}(\{\mathrm{x}\}) \neq \beta \mathrm{g}^{*}-\operatorname{cl}(\{\mathrm{y}\})$. Let z be a point of X such that z $\in \beta \mathrm{g}^{*}-\mathrm{cl}(\{\mathrm{x}\})$ but $\mathrm{z} \notin \beta \mathrm{g}^{*}-\operatorname{cl}(\{\mathrm{y}\})$. We claim that $\mathrm{x} \notin \beta \mathrm{g}^{*}-\operatorname{cl}(\{\mathrm{y}\})$. For if $\mathrm{x} \in \beta \mathrm{g}^{*}-\operatorname{cl}(\{\mathrm{y}\})$ then $\beta \mathrm{g}^{*}-\operatorname{cl}(\{\mathrm{x}\}) \subseteq$ $\beta \mathrm{g}^{*}-\mathrm{cl}(\{\mathrm{y}\})$. This contradicts the fact that $\mathrm{z} \notin \beta \mathrm{g}^{*}-\mathrm{cl}(\{\mathrm{y}\})$. Consequently x belongs to the $\beta \mathrm{g}^{*}$-open set $\mathrm{X}-\beta \mathrm{g}^{*}$ $\mathrm{cl}(\{\mathrm{y}\})$ to which y does not belong to. Hence (X, τ) is a $\beta \mathrm{g}^{*}-\mathrm{T}_{0}$ space.

Theorem 3.6: In a topological space (X, τ), if the singletons are $\beta \mathrm{g}^{*}$-closed then X is $\beta \mathrm{g}^{*}-\mathrm{T}_{1}$ space and the converse is true if $\beta \mathrm{G}^{*} \mathrm{O}(\mathrm{X}, \tau)$ is closed under arbitrary union.

Proof: Let $\{\mathrm{z}\}$ is $\beta \mathrm{g}^{*}$-closed for every $\mathrm{z} \in \mathrm{X}$. Let $\mathrm{x}, \mathrm{y} \in \mathrm{X}$ with $\mathrm{x} \neq \mathrm{y}$. Now $\mathrm{x} \neq \mathrm{y}$ implies $\mathrm{y} \in \mathrm{X}-\{\mathrm{x}\}$. Hence $X-\{x\}$ is a βg^{*}-open set that contains y but not x. Similarly $X-\{y\}$ is a βg^{*}-open set containing x but not y. Therefore X is a $\beta \mathrm{g}^{*}-\mathrm{T}_{1}$ space.
Conversely, let (X, τ) be $\beta \mathrm{g}^{*}-\mathrm{T}_{1}$ and x be any point of X . Choose $\mathrm{y} \in \mathrm{X}-\{\mathrm{x}\}$, then $\mathrm{x} \neq \mathrm{y}$ and so there exists a $\beta \mathrm{g}^{*}$-open set U such that $\mathrm{y} \in \mathrm{U}$ but $\mathrm{x} \notin \mathrm{U}$. Consequently $\mathrm{y} \in \mathrm{U} \subseteq \mathrm{X}-\{\mathrm{x}\}$, that is $\mathrm{X}-\{\mathrm{x}\}=\mathrm{U}\left\{\mathrm{U}_{\mathrm{y}}: \mathrm{y} \in \mathrm{X}-\{\mathrm{x}\}\right\}$ which is $\beta \mathrm{g}^{*}$-open. Hence $\{\mathrm{x}\}$ is $\beta \mathrm{g}^{*}$-closed. That is every singleton set is $\beta \mathrm{g}^{*}$-closed.

Theorem 3.7: The following statements are equivalent for a topological space (X, τ)

1. X is $\beta \mathrm{g}^{*}-\mathrm{T}_{2}$.
2. Let $\mathrm{x} \in \mathrm{X}$. For each $\mathrm{y} \neq \mathrm{x}$, there exists a $\beta \mathrm{g}^{*}$-open set U containing x such that $\mathrm{y} \notin \beta \mathrm{g}^{*}$-cl($\left.\{\mathrm{U}\}\right)$.
3. For each $\mathrm{x} \in \mathrm{X}, \cap\left\{\beta \mathrm{g}^{*}-\mathrm{cl}(\{\mathrm{U}\}): \mathrm{U} \in \beta \mathrm{G}^{*} \mathrm{O}(\mathrm{X}, \tau)\right.$ and $\left.\mathrm{x} \in \mathrm{U}\right\}=\{\mathrm{x}\}$.

Proof: $(1) \Rightarrow$ (2): Let $x \in X$, and for any $y \in X$ such that $x \neq y$, there exist two disjoint $\beta \mathrm{g}^{*}$-open sets U and V containing x and y respectively, since X is $\beta \mathrm{g}^{*}-\mathrm{T}_{2}$. So $\mathrm{U} \subseteq \mathrm{X}-\mathrm{V}$. Therefore $\beta \mathrm{g}^{*}-\mathrm{cl}(\{\mathrm{U}\}) \subseteq \mathrm{X}-\mathrm{V}$. So y $\notin \beta \mathrm{g}^{*}-$ cl(\{U\}).
(2) \Rightarrow (3) If possible for some $\mathrm{y} \neq \mathrm{x}, \mathrm{y} \in \cap\left\{\beta \mathrm{g}^{*}-\operatorname{cl}(\{\mathrm{U}\}): \mathrm{U} \in \beta \mathrm{G}^{*} \mathrm{O}(\mathrm{X}, \tau)\right.$ and $\left.\mathrm{x} \in \mathrm{U}\right\}$. This implies $\mathrm{y} \in \beta \mathrm{g}^{*}-\mathrm{cl}(\{\mathrm{U}\})$ for every $\beta \mathrm{g}^{*}$-open set U containing x , which contradicts (2). Hence $\cap\left\{\beta \mathrm{g}^{*}-\mathrm{cl}(\{\mathrm{U}\}): \mathrm{U} \in \beta \mathrm{G}^{*} \mathrm{O}(\mathrm{X}, \tau)\right.$ and $x \in U\}=\{x\}$.
(3) \Rightarrow (1) Let $\mathrm{x}, \mathrm{y} \in \mathrm{X}$ and $\mathrm{x} \neq \mathrm{y}$. Then there exists at least one $\beta \mathrm{g}^{*}$-open set U containing x such that $\mathrm{y} \notin \beta \mathrm{g}^{*}$ $\operatorname{cl}(\{\mathrm{U}\})$. Let $\mathrm{V}=\mathrm{X}-\beta \mathrm{g}^{*}-\operatorname{cl}(\{\mathrm{U}\})$, then $\mathrm{y} \in \mathrm{V}$ and $\mathrm{x} \in \mathrm{U}$ and also $\mathrm{U} \cap \mathrm{V}=\phi$. Therefore X is $\beta \mathrm{g}^{*}-\mathrm{T}_{2}$.

Theorem 3.8: Let (X, τ) and (Y, σ) be two topological spaces and $\mathrm{f}:(\mathrm{X}, \tau) \rightarrow(\mathrm{Y}, \sigma)$ be an one to one function. Then if f is
(1) $\beta \mathrm{g}^{*}$-continuous and Y is a T_{0} space then X is a $\beta \mathrm{g}^{*}-\mathrm{T}_{0}$ space.
(2) $\beta \mathrm{g}^{*}$-irresolute and Y is a $\beta \mathrm{g}^{*}-\mathrm{T}_{0}$ space then X is a $\beta \mathrm{g}^{*}-\mathrm{T}_{0}$ space.
(3) Continuous and Y is a T_{0} space then X is a $\beta \mathrm{g}^{*}-\mathrm{T}_{0}$ space.
(4) Onto, $\beta \mathrm{g}^{*}$-irresolute and X is a $\beta \mathrm{g}^{*}-\mathrm{T}_{0}$ space then Y is a $\beta \mathrm{g}^{*}-\mathrm{T}_{0}$ space.

Proof: (1) Let x, y be two distinct points in X. Then $f(x)$ and $f(y)$ are distinct points in Y. Then there exists two open set U in Y such that $f(x) \in U$ and $f(y) \notin U$ or $f(y) \in U$ and $f(x) \notin U$. Then $f^{1}(U)$ is a βg^{*}-open set in X such that $x \in f^{-1}(U)$ and $y \notin f^{-1}(U)$ or $y \in f^{-1}(U)$ and $x \notin f^{-1}(U)$. Therefore X is a $\beta g^{*}-T_{0}$ space.
Proof of (2) to (4) are similar.
Remark 3.9: The property of being a $\beta \mathrm{g}^{*}-\mathrm{T}_{0}$ space is preserved under one to one, onto and $\beta \mathrm{g}^{*}$-irresolute mappings.

Theorem 3.10: Let (X, τ) and (Y, σ) be two topological spaces and $\mathrm{f}:(\mathrm{X}, \tau) \rightarrow(\mathrm{Y}, \sigma)$ be an one to one function. Then if f is
(1) $\beta \mathrm{g}_{*}^{*}$-continuous and Y is a T_{1} space, then X is a $\beta \mathrm{g}^{*}-\mathrm{T}_{1}$ space.
(2) $\beta \mathrm{g}^{*}$-irresolute and Y is a $\beta \mathrm{g}^{*}-\mathrm{T}_{1}$ space, then X is a $\beta \mathrm{g}^{*}-\mathrm{T}_{1}$ space.
(3) Continuous and Y is a T_{1} space, then X is a $\beta \mathrm{g}^{*}-\mathrm{T}_{1}$ space.
(4) Onto and $\beta \mathrm{g}^{*}$-irresolute and X is a $\beta \mathrm{g}^{*}-\mathrm{T}_{1}$ space then Y is a $\beta \mathrm{g}^{*}-\mathrm{T}_{1}$ space.

Proof: Let x, y be two distinct points in X. Then $f(x)$ and $f(y)$ are distinct points in Y. Then there exists two open sets U and V in Y such that $f(x) \in U$ but $f(y) \notin U$ and $f(y) \in V$ and $f(x) \notin V$. Then $f^{1}(U)$ and $f^{1}(V)$ are $\beta \mathrm{g}^{*}$-open sets in X such that $\mathrm{x} \in \mathrm{f}^{-1}(\mathrm{U})$ and
$\mathrm{y} \notin \mathrm{f}^{-1}(\mathrm{U})$ and $\mathrm{y} \in \mathrm{f}^{-1}(\mathrm{~V})$ and $\mathrm{x} \notin \mathrm{f}^{-1}(\mathrm{~V})$. Therefore X is a $\beta \mathrm{g}^{*}-\mathrm{T}_{1}$ space.
Proof of (2) to (4) are similar.
Remark 3.11: The property of being a $\beta \mathrm{g}^{*}-\mathrm{T}_{1}$ space is preserved under one to one, onto and $\beta \mathrm{g}^{*}$-irresolute mappings.

Definition 3.12: Let A be a subset of a topological space (X, τ). The $\beta \mathrm{g}^{*}$-kernel of A is defined as the intersection of all $\beta \mathrm{g}^{*}$-open sets of (X, $\left.\tau\right)$ which contains A (briefly $\beta \mathrm{g}^{*}-\operatorname{ker}(\mathrm{A})$). That is $\beta \mathrm{g}^{*}-\operatorname{ker}(\mathrm{A})=\cap\{\mathrm{U} \in$ $\left.\beta \mathrm{G}^{*} \mathrm{O}(\mathrm{X}, \tau): \mathrm{A} \subseteq \mathrm{U}\right\}$.

Definition 3.13: Let x be a point of a topological space X. Then $\beta \mathrm{g}^{*}-\operatorname{ker}(\mathrm{x})=\cap\left\{\mathrm{M}: \mathrm{M} \in \beta \mathrm{G}^{*} \mathrm{O}(\mathrm{X}, \tau)\right.$ and $\left.\mathrm{x} \in \mathrm{M}\right\}$.
Theorem 3.14: Let (X, τ) be a topological space and $x \in X$. Then $y \in \beta g^{*}-\operatorname{ker}(\{x\})$ if and only if $x \in \beta g^{*}-$ $\mathrm{cl}(\{y\})$.

Proof: Suppose that $\mathrm{y} \notin \beta \mathrm{g}^{*}-\operatorname{ker}(\{\mathrm{x}\})$. Then there exists a $\beta \mathrm{g}^{*}$-open set U containing x such that $\mathrm{y} \notin \mathrm{U}$. Therefore, $\mathrm{x} \notin \beta \mathrm{g}^{*}-\mathrm{cl}(\{\mathrm{y}\})$. The proof of the converse case can be done similarly.

Theorem 3.15: Let (X, τ) be a topological space and A be a subset of X . Then $\beta \mathrm{g}^{*}-\operatorname{ker}(\{\mathrm{A}\})=\left\{\mathrm{x} \in \mathrm{X}: \beta \mathrm{g}^{*}-\right.$ $\operatorname{cl}(\{x\}) \cap A \neq \phi\}$.

Proof: $\mathrm{x} \in \beta \mathrm{g}^{*}-\operatorname{ker}(\{\mathrm{A}\})$ and suppose $\beta \mathrm{g}^{*}-\operatorname{cl}(\{\mathrm{x}\}) \cap \mathrm{A}=\phi$. Hence $\mathrm{x} \notin \mathrm{X}-\beta \mathrm{g}^{*}-\operatorname{cl}(\{\mathrm{x}\})$ which is a $\beta \mathrm{g}^{*}$-open set containing A. This is impossible, since $x \in \beta \mathrm{~g}^{*}-\operatorname{ker}(\{\mathrm{A}\})$. Consequently, $\beta \mathrm{g}^{*}-\mathrm{cl}(\{\mathrm{x}\}) \cap \mathrm{A} \neq \phi$. Next, let $\mathrm{x} \in \mathrm{X}$ such that $\beta \mathrm{g}^{*}-\mathrm{cl}(\{\mathrm{x}\}) \cap \mathrm{A} \neq \phi$ and suppose that $\mathrm{x} \notin \beta \mathrm{g}^{*}-\operatorname{ker}(\{\mathrm{A}\})$. Then there exists a $\beta \mathrm{g}^{*}$-open set U containing A and $\mathrm{x} \notin \mathrm{U}$. Let $\mathrm{y} \in{ }^{*} \beta \mathrm{~g}^{*}-\mathrm{cl}(\{\mathrm{x}\}) \cap \mathrm{A}$. Hence U is a $\beta \mathrm{g}^{*}$-neighbourhood of y which does not contain x . By this contradiction $\mathrm{x} \in \beta \mathrm{g}^{*}-\operatorname{ker}(\{\mathrm{A}\})$ and hence the claim.

Theorem 3.16: The following properties hold for any two subsets A, B of a topological space (X, τ)

1. $\mathrm{A} \subseteq \beta \mathrm{g}^{*}-\operatorname{ker}(\{\mathrm{A}\})$.
2. $\mathrm{A} \subseteq \mathrm{B}$ implies that $\beta \mathrm{g}^{*}-\operatorname{ker}(\{\mathrm{A}\}) \subseteq \beta \mathrm{g}^{*}-\operatorname{ker}(\{\mathrm{B}\})$.
3. If A is $\beta \mathrm{g}^{*}$-open in (X, τ), then $\mathrm{A}=\beta \mathrm{g}^{*}-\operatorname{ker}(\{\mathrm{A}\})$.
4. $\quad \beta \mathrm{g}^{*}-\operatorname{ker}\left(\beta \mathrm{g}^{*}-\operatorname{ker}(\{\mathrm{A}\})\right)=\beta \mathrm{g}^{*}-\operatorname{ker}(\{\mathrm{A}\})$.

Proof: The proof of (1), (2) and (3) are immediate consequences of Definition 3.12.
(4) $\operatorname{By}(1)$ and (2), we have $\beta \mathrm{g}^{*}-\operatorname{ker}(\{\mathrm{A}\}) \subseteq \beta \mathrm{g}^{*}-\operatorname{ker}\left(\beta \mathrm{g}^{*}-\operatorname{ker}(\{\mathrm{A}\})\right)$. If $\mathrm{x} \notin \beta \mathrm{g}^{*}-\operatorname{ker}(\{\mathrm{A}\})$, then there exists $\mathrm{U} \in$ $\beta \mathrm{G}^{*} \mathrm{O}(\mathrm{X}, \tau)$ such that $\mathrm{A} \subseteq \mathrm{U}$ and $\mathrm{x} \notin \mathrm{U}$. Hence $\beta \mathrm{g}^{*}-\operatorname{ker}(\{\mathrm{A}\}) \subseteq \mathrm{U}$, and so $\mathrm{x} \notin \beta \mathrm{g}^{*}-\operatorname{ker}\left(\beta \mathrm{g}^{*}-\operatorname{ker}(\{\mathrm{A}\})\right)$. Thus $\beta \mathrm{g}^{*}-$ $\operatorname{ker}\left(\beta \mathrm{g}^{*}-\operatorname{ker}(\{\mathrm{A}\})\right)=\beta \mathrm{g}^{*}-\operatorname{ker}(\{\mathrm{A}\})$.

Definition 3.17: A topological space (X, τ) is said to be $\beta \mathrm{g}^{*}$-symmetric if for any pair of distinct points x and y in $X, x \in \beta \mathrm{~g}^{*}-\operatorname{cl}(\{y\})$ implies $y \in \beta \mathrm{~g}^{*}-\operatorname{cl}(\{\mathrm{x}\})$.
Theorem 3.18: For a topological space (X, τ), the following are equivalent:

1. (X, τ) is a $\beta \mathrm{g}^{*}$-symmetric space.
2. $\{x\}$ is $\beta \mathrm{g}^{*}$-closed, for each $\mathrm{x} \in \mathrm{X}$.

Proof: $(1) \Rightarrow(2)$: Let (X, τ) be a $\beta \mathrm{g}^{*}$-symmetric space. Assume that $\{\mathrm{x}\} \subseteq \mathrm{U} \in \beta \mathrm{G}^{*} \mathrm{O}(\mathrm{X}, \tau)$, but $\beta \mathrm{g}^{*}$-cl($\left.\{\mathrm{x}\}\right) \notin \mathrm{U}$. Then $\beta \mathrm{g}^{*}-\operatorname{cl}(\{\mathrm{x}\}) \cap(\mathrm{X}-\mathrm{U}) \neq \phi$. Now, we take $\mathrm{y} \in \beta \mathrm{g}^{*}-\operatorname{cl}(\{\mathrm{x}\}) \cap(\mathrm{X}-\mathrm{U})$, then by hypothesis $\mathrm{x} \in \beta \mathrm{g}^{*}-\operatorname{cl}(\{\mathrm{y}\}) \subseteq$ $X-U$ that is, $x \notin U$, which is a contradiction. Therefore $\{x\}$ is $\beta \mathrm{g}^{*}$-closed, for each $\mathrm{x} \in \mathrm{X}$.
(2) $\Rightarrow(1)$: Assume that $\mathrm{x} \in \beta \mathrm{g}^{*}-\operatorname{cl}(\{\mathrm{y}\})$, but $\mathrm{y} \notin \beta \mathrm{g}^{*}-\operatorname{cl}(\{\mathrm{x}\})$. Then $\{\mathrm{y}\} \subseteq \mathrm{X}-\beta \mathrm{g}^{*}-\operatorname{cl}(\{\mathrm{x}\})$ and hence $\beta \mathrm{g}^{*}-$ $\operatorname{cl}(\{\mathrm{y}\}) \subseteq \mathrm{X}-\beta \mathrm{g}^{*}-\operatorname{cl}(\{\mathrm{x}\})$. Therefore $\mathrm{x} \in \mathrm{X}-\beta \mathrm{g}^{*}-\operatorname{cl}(\{\mathrm{x}\})$, which is contradiction and hence $\mathrm{y} \in \beta \mathrm{g}^{*}-\mathrm{cl}(\{\mathrm{x}\})$.

Corollary 3.19: Let $\beta \mathrm{G}^{*} \mathrm{O}(\mathrm{X}, \tau)$ be closed under arbitrary union. If the topological space (X, τ) is a $\beta \mathrm{g}^{*}-\mathrm{T}_{1}$ space, then it is $\beta \mathrm{g}^{*}$-symmetric.

Proof: In a $\beta \mathrm{g}^{*}-\mathrm{T}_{1}$ space, every singleton set is $\beta \mathrm{g}^{*}$-closed and therefore, by theorem $3.18,(\mathrm{X}, \tau)$ is $\beta \mathrm{g}^{*}-$ symmetric.

Corollary 3.20: If a topological space (X, τ) is $\beta \mathrm{g}^{*}$-symmetric and $\beta \mathrm{g}^{*}-\mathrm{T}_{0}$, then (X, τ) is a $\beta \mathrm{g}^{*}-\mathrm{T}_{1}$ space.
Proof: Let $\mathrm{x} \neq \mathrm{y}$ and as (X, τ) is $\beta \mathrm{g}^{*}-\mathrm{T}_{0}$, we may assume that $\mathrm{x} \in \mathrm{U} \subseteq \mathrm{X}-\{\mathrm{y}\}$ for some $\mathrm{U} \in \beta \mathrm{G}^{*} \mathrm{O}(\mathrm{X}, \tau)$. Then $\mathrm{x} \notin \beta \mathrm{g}^{*}-\mathrm{cl}(\{\mathrm{y}\})$ and hence $\mathrm{y} \notin \beta \mathrm{g}^{*}-\mathrm{cl}(\{\mathrm{x}\})$. There exists a $\beta \mathrm{g}^{*}$-open set V such that $\mathrm{y} \in \mathrm{V} \subseteq \mathrm{X}-\{\mathrm{x}\}$ and thus (X, $\tau)$ is a $\beta \mathrm{g}^{*}-\mathrm{T}_{1}$ space.

IV. $\boldsymbol{\beta g}^{*} \cdot \mathrm{R}_{\mathrm{k}}(\mathrm{k}=0,1)$ SPACES

In this section, a new class of topological spaces called $\beta \mathrm{g}^{*}-\mathrm{R}_{0}$ and $\beta \mathrm{g}^{*}-\mathrm{R}_{1}$ spaces are introduced and some of their properties are studied.

Definition 4.1: A topological space (X, τ) is said to be $\beta \mathrm{g}^{*}-\mathrm{R}_{0}$ if U is $\beta \mathrm{g}^{*}$-open set and $\mathrm{x} \in \mathrm{U}$ then $\beta \mathrm{g}^{*}$ $\operatorname{cl}(\{x\}) \subseteq U$.

Theorem 4.2: For a topological space (X, τ) the following properties are equivalent:
(1) (X, τ) is $\beta \mathrm{g}^{*}-\mathrm{R}_{0}$ space.
(2) For any $\mathrm{F} \in \beta \mathrm{G}^{*} \mathrm{C}(\mathrm{X}, \tau), \mathrm{x} \notin \mathrm{F}$ implies $\mathrm{F} \subseteq \mathrm{U}$ and $\mathrm{x} \notin \mathrm{U}$ for some $\mathrm{U} \in \beta \mathrm{G}^{*} \mathrm{O}(\mathrm{X}, \tau)$.
(3) For any $\mathrm{F} \in \beta \mathrm{G}^{*} \mathrm{C}(\mathrm{X}, \tau), \mathrm{x} \notin \mathrm{F}$ implies $\mathrm{F} \cap \beta \mathrm{g}^{*}-\mathrm{cl}(\{\mathrm{x}\})=\phi$.
(4) For any two distinct points x and y of X , either $\beta \mathrm{g}^{*}-\operatorname{cl}(\{\mathrm{x}\})=\beta \mathrm{g}^{*}-\operatorname{cl}(\{\mathrm{y}\})$ or $\beta \mathrm{g}^{*}-\operatorname{cl}(\{\mathrm{x}\}) \cap \beta \mathrm{g}^{*}-\operatorname{cl}(\{\mathrm{y}\})=$ ϕ.

Proof: $(1) \Rightarrow(2)$ Let $\mathrm{F} \in \beta \mathrm{G}^{*} \mathrm{C}(\mathrm{X}, \tau)$ and $\mathrm{x} \notin \mathrm{F}$. Then by (1), $\beta \mathrm{g}^{*}-\mathrm{cl}(\{\mathrm{x}\}) \subseteq \mathrm{X}-\mathrm{F}$. Set $\mathrm{U}=\mathrm{X}-\beta \mathrm{g}^{*}-\mathrm{cl}(\{\mathrm{x}\})$, then U is a $\beta \mathrm{g}^{*}$-open set such that $\mathrm{F} \subseteq \mathrm{U}$ and $\mathrm{x} \notin \mathrm{U}$.
(2) \Rightarrow (3) Let $\mathrm{F} \in \beta \mathrm{G}^{*} \mathrm{C}(\mathrm{X}, \tau)$ and $\mathrm{x} \notin \mathrm{F}$. There exists $\mathrm{U} \in \beta \mathrm{G}^{*} \mathrm{O}(\mathrm{X}, \tau)$ such that $\mathrm{F} \subseteq \mathrm{U}$ and $\mathrm{x} \notin \mathrm{U}$. Since $\mathrm{U} \in$ $\beta \mathrm{G}^{*} \mathrm{O}(\mathrm{X}, \tau)$, $\mathrm{U} \cap \beta \mathrm{g}^{*}-\mathrm{cl}(\{\mathrm{x}\})=\phi$ and $\mathrm{F} \cap \beta \mathrm{g}^{*}-\mathrm{cl}(\{\mathrm{x}\})=\phi$.
(3) \Rightarrow (4) Suppose that $\beta \mathrm{g}^{*}-\operatorname{cl}(\{\mathrm{x}\}) \neq \beta \mathrm{g}^{*}-\operatorname{cl}(\{\mathrm{y}\})$ for two distinct points $\mathrm{x}, \mathrm{y} \in \mathrm{X}$. There exists $\mathrm{z} \in \beta \mathrm{g}^{*}-\operatorname{cl}(\{\mathrm{x}\})$ such that $\mathrm{z} \notin \beta \mathrm{g}^{*}-\operatorname{cl}(\{\mathrm{y}\})\left[\right.$ or $\mathrm{z} \in \beta \mathrm{g}^{*}-\operatorname{cl}(\{\mathrm{y}\})$ such that $\left.\mathrm{z} \notin \beta \mathrm{g}^{*}-\operatorname{cl}(\{\mathrm{x}\})\right]$. There exists $\mathrm{V} \in \beta \mathrm{G}^{*} \mathrm{O}(\mathrm{X}, \tau)$ such that y $\notin \mathrm{V}$ and $\mathrm{z} \in \mathrm{V}$, hence $\mathrm{x} \in \mathrm{V}$. Therefore, we have $\mathrm{x} \notin \beta \mathrm{g}^{*}-\mathrm{cl}(\{\mathrm{y}\})$. By (3), we obtain $\beta \mathrm{g}^{*}-\mathrm{cl}(\{\mathrm{x}\}) \cap \beta \mathrm{g}^{*}-\mathrm{cl}(\{\mathrm{y}\})=$ ϕ.
(4) \Rightarrow (1) Let $\mathrm{V} \in \beta \mathrm{G}^{*} \mathrm{O}(\mathrm{X}, \tau)$ and $\mathrm{x} \in \mathrm{V}$. For each $\mathrm{y} \notin \mathrm{V}, \mathrm{x} \neq \mathrm{y}$ and $\mathrm{x} \notin \beta \mathrm{g}^{*}-\mathrm{cl}(\{\mathrm{y}\})$. This shows that $\beta \mathrm{g}^{*}-\mathrm{cl}(\{\mathrm{x}\})$ $\neq \beta \mathrm{g}^{*}-\operatorname{cl}(\{\mathrm{y}\})$. $\mathrm{By}(4), \beta \mathrm{g}^{*}-\operatorname{cl}(\{\mathrm{x}\}) \cap \beta \mathrm{g}^{*}-\operatorname{cl}(\{\mathrm{y}\})=\phi$ for each $\mathrm{y} \in \mathrm{X}-\mathrm{V}$ and hence $\beta \mathrm{g}^{*}-\operatorname{cl}(\{\mathrm{x}\}) \cap\left[\cup \beta \mathrm{g}^{*}-\operatorname{cl}(\{\mathrm{y}\})\right.$: $\mathrm{y} \in \mathrm{X}-\mathrm{V}\}]=\phi$. On the other hand, since $\mathrm{V} \in \beta \mathrm{G}^{*} \mathrm{O}(\mathrm{X}, \tau)$ and $\mathrm{y} \in \mathrm{X}-\mathrm{V}$, we have $\beta \mathrm{g}^{*}-\mathrm{cl}(\{\mathrm{y}\}) \subseteq \mathrm{X}-\mathrm{V}$ and hence $\mathrm{X}-\mathrm{V}=\mathrm{U}\left\{\beta \mathrm{g}^{*}-\mathrm{cl}(\{\mathrm{y}\}): \mathrm{y} \in \mathrm{X}-\mathrm{V}\right\}$. Therefore, we obtain $(\mathrm{X}-\mathrm{V}) \cap \beta \mathrm{g}^{*}-\mathrm{cl}(\{\mathrm{x}\})=\phi$ and $\beta \mathrm{g}^{*}-\mathrm{cl}(\{\mathrm{x}\}) \subseteq \mathrm{V}$. This shows that (X, τ) is a $\beta \mathrm{g}^{*}-\mathrm{R}_{0}$ space.

Theorem 4.3: If a topological space (X, τ) is $\beta \mathrm{g}^{*}-\mathrm{T}_{0}$ space and a $\beta \mathrm{g}^{*}-\mathrm{R}_{0}$ space then it is a $\beta \mathrm{g}^{*}-\mathrm{T}_{1}$ space.
Proof: Let x and y be any two distinct points of X . Since X is $\beta \mathrm{g}^{*}-\mathrm{T}_{0}$, there exists a $\beta \mathrm{g}^{*}$-open set U such that $x \in U$ and $y \notin U$. As $x \in U, \beta g^{*}-\operatorname{cl}(\{x\}) \subseteq U$. Since $y \notin U, y \notin \beta g^{*}-\operatorname{cl}(\{x\})$. Hence $y \in V=X-\beta g^{*}-\operatorname{cl}(\{x\})$ and it is clear that $\mathrm{x} \notin \mathrm{V}$. Hence it follows that there exist $\beta \mathrm{g}^{*}$-open sets U and V containing x and y respectively, such that $\mathrm{y} \notin \mathrm{U}$ and $\mathrm{x} \notin \mathrm{V}$ respectively. This implies that X is a $\beta \mathrm{g}^{*}-\mathrm{T}_{1}$ space.
.Theorem 4.4: For a topological space (X, τ) the following properties are equivalent:
(1) $\quad(\mathrm{X}, \tau)$ is $\beta \mathrm{g}^{*}-\mathrm{R}_{0}$ space.
(2) $\quad \mathrm{x} \in \beta \mathrm{g}^{*}-\operatorname{cl}(\{\mathrm{y}\})$ if and only if $\mathrm{y} \in \beta \mathrm{g}^{*}-\mathrm{cl}(\{\mathrm{x}\})$, for any two points x and y in X .

Proof: (1) \Rightarrow (2) Assume that X is $\beta \mathrm{g}^{*}-\mathrm{R}_{0}$. Let $\mathrm{x} \in \beta \mathrm{g}^{*}-\mathrm{cl}(\{\mathrm{y}\})$ and V be any $\beta \mathrm{g}^{*}$-open set such that $\mathrm{y} \in \mathrm{V}$. Now by hypothesis, $\mathrm{x} \in \mathrm{V}$. Therefore, every $\beta \mathrm{g}^{*}$-open set which contain y contains x also. Hence $\mathrm{y} \in \beta \mathrm{g}^{*}-\mathrm{cl}(\{\mathrm{x}\})$.
(2) \Rightarrow (1) Let U be a $\beta \mathrm{g}^{*}$-open set and $\mathrm{x} \in \mathrm{U}$. If $\mathrm{y} \notin \mathrm{U}$, then $\mathrm{x} \notin \beta \mathrm{g}^{*}-\mathrm{cl}(\{\mathrm{y}\})$ and hence $\mathrm{y} \notin \beta \mathrm{g}^{*}-\operatorname{cl}(\{\mathrm{x}\})$. This implies that $\beta \mathrm{g}^{*}-\mathrm{cl}(\{\mathrm{x}\}) \subseteq \mathrm{U}$. Hence (X, τ) is $\beta \mathrm{g}^{*}-\mathrm{R}_{0}$ space.

Remark 4.5: From Definition 3.17 and Theorem 4.4 the notion of $\beta \mathrm{g}^{*}$-symmetric and $\beta \mathrm{g}^{*}-\mathrm{R}_{0}$ are equivalent.
Theorem 4.6: A topological space (X, τ) is $\beta \mathrm{g}^{*}-\mathrm{R}_{0}$ space if and only if for any two points x and y in $\mathrm{X}, \beta \mathrm{g}^{*}$ $\operatorname{cl}(\{\mathrm{x}\}) \neq \beta \mathrm{g}^{*}-\mathrm{cl}(\{\mathrm{y}\})$ implies $\beta \mathrm{g}^{*}-\mathrm{cl}(\{\mathrm{x}\}) \cap \beta \mathrm{g}^{*}-\mathrm{cl}(\{\mathrm{y}\})=\phi$.

Proof: Necessity: Suppose that (X, τ) is $\beta \mathrm{g}^{*}-\mathrm{R}_{0}$ and x and $\mathrm{y} \in \mathrm{X}$ such that $\beta \mathrm{g}^{*}-\operatorname{cl}(\{\mathrm{x}\}) \neq \beta \mathrm{g}^{*}-\operatorname{cl}(\{\mathrm{y}\})$. Then, there exists $\mathrm{z} \in \beta \mathrm{g}^{*}-\operatorname{cl}(\{\mathrm{x}\})$ such that $\mathrm{z} \notin \beta \mathrm{g}^{*}-\operatorname{cl}(\{\mathrm{y}\})$ [or $\mathrm{z} \in \beta \mathrm{g}^{*}-\mathrm{cl}(\{\mathrm{y}\})$ such that $\left.\mathrm{z} \notin \beta \mathrm{g}^{*}-\mathrm{cl}(\{\mathrm{x}\})\right]$. There exists $\mathrm{V} \in \beta \mathrm{G}^{*} \mathrm{O}(\mathrm{X}, \tau)$ such that $\mathrm{y} \notin \mathrm{V}$ and $\mathrm{z} \in \mathrm{V}$, hence $\mathrm{x} \in \mathrm{V}$. Therefore, we have $\mathrm{x} \notin \beta \mathrm{g}^{*}-\mathrm{cl}(\{\mathrm{y}\})$. Thus $\mathrm{x} \in\left[\mathrm{X}-\beta \mathrm{g}^{*}-\mathrm{cl}(\{\mathrm{y}\})\right] \in \beta \mathrm{G}^{*} \mathrm{O}(\mathrm{X}, \tau)$, which implies $\beta \mathrm{g}^{*}-\mathrm{cl}(\{\mathrm{x}\}) \subseteq\left[\mathrm{X}-\beta \mathrm{g}^{*}-\mathrm{cl}(\{\mathrm{y}\})\right]$ and $\beta \mathrm{g}^{*}-\mathrm{cl}(\{\mathrm{x}\}) \cap \beta \mathrm{g}^{*}-\operatorname{cl}(\{\mathrm{y}\})=\phi$.

Sufficiency: Let $\mathrm{V} \in \beta_{*} \mathrm{G}^{*} \mathrm{O}(\mathrm{X}, \tau)$ and let $\mathrm{x} \in \mathrm{V}$. To show that $\beta \mathrm{g}^{*}-\mathrm{cl}(\{\mathrm{x}\}) \subseteq \mathrm{V}$. Let $\mathrm{y} \notin \mathrm{V}$, that is $\mathrm{y} \in \mathrm{X}-\mathrm{V}$. Then $\mathrm{x} \neq \mathrm{y}$ and $\mathrm{x} \notin \beta \mathrm{g}^{*}-\operatorname{cl}(\{\mathrm{y}\})$. This shows that $\beta \mathrm{g}^{*}-\operatorname{cl}(\{\mathrm{x}\}) \neq \beta \mathrm{g}^{*}-\operatorname{cl}(\{\mathrm{y}\})$. By assumption, $\beta \mathrm{g}^{*}-\operatorname{cl}(\{\mathrm{x}\}) \cap \beta \mathrm{g}^{*}-$ $\operatorname{cl}(\{\mathrm{y}\})=\phi$. Hence $\mathrm{y} \notin \beta \mathrm{g}^{*}-\operatorname{cl}(\{\mathrm{x}\})$ and therefore $\beta \mathrm{g}^{*}-\mathrm{cl}(\{\mathrm{x}\}) \subseteq \mathrm{V}$. Hence (X, τ) is $\beta \mathrm{g}^{*}-\mathrm{R}_{0}$ space.

Theorem 4.7: The following statements are equivalent for any two points x and y in a topological space (X, τ):
(1) $\beta \mathrm{g}_{*}^{*}-\operatorname{ker}(\{\mathrm{x}\}) \neq \beta \mathrm{g}^{*}-\operatorname{ker}(\{\mathrm{y}\})$.
(2) $\beta \mathrm{g}^{*}-\operatorname{cl}(\{\mathrm{x}\}) \neq \beta \mathrm{g}^{*}-\mathrm{cl}(\{\mathrm{y}\})$.

Proof: $(1) \Rightarrow$ (2) Suppose that $\beta \mathrm{g}^{*}-\operatorname{ker}(\{\mathrm{x}\}) \neq \beta \mathrm{g}^{*}-\operatorname{ker}(\{\mathrm{y}\})$, then there exists a point z in X such that $\mathrm{z} \in \beta \mathrm{g}^{*}-$ $\operatorname{ker}(\{\mathrm{x}\})$ and $\mathrm{z} \notin \beta \mathrm{g}^{*}-\operatorname{ker}(\{\mathrm{y}\})$. Theorem 3.14, implies that $\mathrm{x} \in \beta \mathrm{g}^{*}-\mathrm{cl}(\{\mathrm{z}\})$, since $\mathrm{z} \in \beta \mathrm{g}^{*}-\operatorname{ker}(\{\mathrm{x}\})$. By $\mathrm{z} \notin$ $\beta \mathrm{g}^{*}-\operatorname{ker}(\{\mathrm{y}\})$, we have $\{\mathrm{y}\} \cap \beta \mathrm{g}^{*}-\operatorname{cl}(\{\mathrm{z}\})=\phi$. Since $\mathrm{x} \in \beta \mathrm{g}^{*}-\operatorname{cl}(\{\mathrm{z}\}), \beta \mathrm{g}^{*}-\operatorname{cl}(\{\mathrm{x}\}) \subseteq \beta \mathrm{g}^{*}-\operatorname{cl}(\{\mathrm{z}\})$ and $\{\mathrm{y}\} \cap$ $\beta \mathrm{g}^{*}-\operatorname{cl}(\{\mathrm{x}\})=\phi$. Therefore, it follows that $\beta \mathrm{g}^{*}-\operatorname{cl}(\{\mathrm{x}\}) \neq \beta \mathrm{g}^{*}-\operatorname{cl}(\{\mathrm{y}\})$. Hence $\beta \mathrm{g}^{*}-\operatorname{ker}(\{\mathrm{x}\}) \neq \beta \mathrm{g}^{*}-\operatorname{ker}(\{\mathrm{y}\})$ implies that $\beta \mathrm{g}^{*}-\mathrm{cl}(\{\mathrm{x}\}) \neq \beta \mathrm{g}^{*}-\mathrm{cl}(\{\mathrm{y}\})$.
(2) \Rightarrow (1) Suppose that $\beta \mathrm{g}^{*}-\operatorname{cl}(\{\mathrm{x}\}) \neq \beta \mathrm{g}^{*}-\operatorname{cl}(\{\mathrm{y}\})$. Then there exists a point z in X such that $\mathrm{z} \in \beta \mathrm{g}^{*}-\operatorname{cl}(\{\mathrm{x}\})$ but $\mathrm{z} \notin \beta \mathrm{g}^{*}-\mathrm{cl}(\{\mathrm{y}\})$. We claim that $\mathrm{x} \notin \beta \mathrm{g}^{*}-\operatorname{cl}(\{\mathrm{y}\})$, for if $\mathrm{x} \in \beta \mathrm{g}^{*}-\operatorname{cl}(\{\mathrm{y}\})$ then $\beta \mathrm{g}^{*}-\operatorname{cl}(\{\mathrm{x}\}) \subseteq \beta \mathrm{g}^{*}-\operatorname{cl}(\{\mathrm{y}\})$. This contradicts the fact that $\mathrm{z} \notin \beta \mathrm{g}^{*}-\operatorname{cl}(\{\mathrm{y}\})$. Hence $\mathrm{x} \notin \beta \mathrm{g}^{*}-\operatorname{cl}(\{\mathrm{y}\})$. Theorem 3.14, implies $\mathrm{y} \notin \beta \mathrm{g}^{*}-\operatorname{ker}(\{\mathrm{x}\})$. Therefore, $\beta \mathrm{g}^{*}-\operatorname{ker}(\{\mathrm{x}\}) \neq \beta \mathrm{g}^{*}-\operatorname{ker}(\{\mathrm{y}\})$.
Theorem 4.8: Let (X, τ) be a topological space. Then $\cap\left[\beta \mathrm{g}^{*}-\mathrm{cl}(\{\mathrm{x}\}): \mathrm{x} \in \mathrm{X}\right\}=\phi$ if and only if $\beta \mathrm{g}^{*}-$ $\operatorname{ker}(\{x\}) \neq X$ for every $x \in X$.

Proof: Necessity: Suppose that $\cap\left[\beta \mathrm{g}^{*}-\mathrm{cl}(\{\mathrm{x}\}): \mathrm{x} \in \mathrm{X}\right\}=\phi$. Assume that there is a point y in X such that $\beta \mathrm{g}^{*}-$ $\operatorname{ker}(\{y\})=X$. Let x be any point of X. Then $x \in U$ for every $\beta \mathrm{g}^{*}$-open set U containing y and hence $y \in \beta \mathrm{~g}^{*}-$ $\operatorname{cl}(\{\mathrm{x}\})$ for any $\mathrm{x} \in \mathrm{X}$. This implies that $\mathrm{y} \in \cap\left\{\beta \mathrm{g}^{*}-\mathrm{cl}(\{\mathrm{x}\}): \mathrm{x} \in \mathrm{X}\right\}$. But this is a contradiction. Hence $\beta \mathrm{g}^{*}-$ $\operatorname{ker}(\{x\}) \neq X$ for every $x \in X$.

Sufficiency: Assume that $\beta \mathrm{g}^{*}-\operatorname{ker}(\{\mathrm{x}\}) \neq \mathrm{X}$ for every $\mathrm{x} \in \mathrm{X}$. If there exists a point y in X such that $\mathrm{y} \in \cap\left\{\beta \mathrm{g}^{*}-\right.$ $\operatorname{cl}(\{\mathrm{x}\}): \mathrm{x} \in \mathrm{X}\}$, then every $\beta \mathrm{g}^{*}$-open set containing y must contain every point of X . This implies that the space X is the only $\beta \mathrm{g}^{*}$-open set containing y. Hence $\beta \mathrm{g}^{*}-\operatorname{ker}(\{\mathrm{y}\})=\mathrm{X}$ which is a contradiction. Therefore $\cap\left[\beta \mathrm{g}^{*}-\right.$ $\operatorname{cl}(\{x\}): x \in X\}=\phi$.

Theorem 4.9: For a topological space (X, τ) the following properties are equivalent:
(1) (X, τ) is a $\beta \mathrm{g}^{*}-\mathrm{R}_{0}$ space.
(2) For any non-empty set A and $\mathrm{G} \in \beta \mathrm{G}^{*} \mathrm{O}(\mathrm{X}, \tau)$ such that $\mathrm{A} \cap \mathrm{G} \neq \phi$, there exists $\mathrm{F} \in \beta \mathrm{G}^{*} \mathrm{C}(\mathrm{X}, \tau)$ such that $A \cap F \neq \phi$ and $F \subseteq G$.
(3) For any $\mathrm{G} \in \beta \mathrm{G}^{*} \mathrm{O}(\mathrm{X}, \tau)$, we have $\mathrm{G}=\mathrm{U}\left\{\mathrm{F} \in \beta \mathrm{G}^{*} \mathrm{C}(\mathrm{X}, \tau): \mathrm{F} \subseteq \mathrm{G}\right\}$.
(4) For any $\mathrm{F} \in \beta \mathrm{G}^{*} \mathrm{C}(\mathrm{X}, \tau)$, we have $\mathrm{F}=\cap\left\{\mathrm{G} \in \beta \mathrm{G}^{*} \mathrm{O}(\mathrm{X}, \tau): \mathrm{F} \subseteq \mathrm{G}\right\}$.
(5) For every $\mathrm{x} \in \mathrm{X}, \beta \mathrm{g}^{*}-\mathrm{cl}(\{\mathrm{x}\}) \subseteq \beta \mathrm{g}^{*}-\operatorname{ker}(\{\mathrm{x}\})$.

Proof: (1) \Rightarrow (2) Let A be a non-empty subset of X and $\mathrm{G} \in \beta \mathrm{G}^{*} \mathrm{O}(\mathrm{X}, \tau)$ such that $\mathrm{A} \cap \mathrm{G} \neq \phi$. Let $\mathrm{x} \in \mathrm{A} \cap \mathrm{G}$. Then $\mathrm{x} \in \mathrm{G} \Rightarrow \beta \mathrm{g}^{*}-\mathrm{cl}(\{\mathrm{x}\}) \subseteq \mathrm{G}$, since (X, τ) is $\beta \mathrm{g}^{*}-\mathrm{R}_{0}$ space. Set $\mathrm{F}=\beta \mathrm{g}^{*}-\mathrm{cl}(\{\mathrm{x}\})$, then $\mathrm{F} \in \beta \mathrm{G}^{*} \mathrm{C}(\mathrm{X}, \tau), \mathrm{F} \subseteq \mathrm{G}$ and $\mathrm{A} \cap \mathrm{F} \neq \phi$.
(2) \Rightarrow (3) Let $\mathrm{G} \in \beta \mathrm{G}^{*} \mathrm{O}(\mathrm{X}, \tau)$, choose $\mathrm{x} \in \cup\left\{\mathrm{F} \in \beta \mathrm{G}^{*} \mathrm{C}(\mathrm{X}, \tau): \mathrm{F} \subseteq \mathrm{G}\right\}$. Then $\mathrm{x} \in \mathrm{F}$ for some $\mathrm{F} \in \beta \mathrm{G}^{*} \mathrm{C}(\mathrm{X}, \tau)$ and $F \subseteq G$. Therefore, $x \in G$. On the other hand, suppose $x \in G$. If we define $A=\{x\}$, then $A \cap G \neq \phi$. By our hypothesis, there exists $\mathrm{F} \in \beta \mathrm{G}^{*} \mathrm{C}(\mathrm{X}, \tau)$ such that $\mathrm{A} \cap \mathrm{F} \neq \phi$, and $\mathrm{F} \subseteq \mathrm{G}$. Since $\mathrm{A}=\{\mathrm{x}\}, \mathrm{x} \in \mathrm{F} \subseteq \cup\left\{\mathrm{F} \in \beta \mathrm{G}^{*} \mathrm{C}(\mathrm{X}, \tau)\right.$: $\mathrm{F} \subseteq \mathrm{G}\}$. Hence $\mathrm{G}=\mathrm{U}\left\{\mathrm{F} \in \beta \mathrm{G}^{*} \mathrm{C}(\mathrm{X}, \tau): \mathrm{F} \subseteq \mathrm{G}\right\}$.
(3) \Rightarrow (4) Obvious.
(4) \Rightarrow (5) Let x be any point of X and $y \notin \beta g^{*}-\operatorname{ker}(\{x\})$. There exists $U \in \beta G^{*} O(X, \tau)$ such that $x \in U$ and $y \notin U$, hence $\beta \mathrm{g}^{*}-\mathrm{cl}(\{\mathrm{y}\}) \cap \mathrm{U}=\phi$. By (4) $\left(\cap\left\{\mathrm{G} \in \beta \mathrm{G}^{*} \mathrm{O}(\mathrm{X}, \tau): \beta \mathrm{g}^{*}-\mathrm{cl}(\{\mathrm{y}\}) \subseteq \mathrm{G}\right\}\right) \cap \mathrm{U}=\phi$ and there exists $\mathrm{G} \in$ $\beta \mathrm{G}^{*} \mathrm{O}(\mathrm{X}, \tau)$ such that $\mathrm{x} \notin \mathrm{G}$ and $\beta \mathrm{g}^{*}-\mathrm{cl}(\{\mathrm{y}\}) \subseteq \mathrm{G}$. Therefore $\beta \mathrm{g}^{*}-\mathrm{cl}(\{\mathrm{x}\}) \cap \mathrm{G}=\phi$ and $\mathrm{y} \notin \beta \mathrm{g}^{*}-\mathrm{cl}(\{\mathrm{x}\})$. Consequently, we obtain $\beta \mathrm{g}^{*}-\operatorname{cl}(\{\mathrm{x}\}) \subseteq \beta \mathrm{g}^{*}-\operatorname{ker}(\{\mathrm{x}\})$.
(5) \Rightarrow (1) Let $\mathrm{G} \in \beta \mathrm{G}^{*} \mathrm{O}(\mathrm{X}, \tau)$ and $\mathrm{x} \in \mathrm{G}$. Let $\mathrm{y} \in \beta \mathrm{g}^{*}-\operatorname{ker}(\{\mathrm{x}\})$, then $\mathrm{x} \in \beta \mathrm{g}^{*}-\mathrm{cl}(\{\mathrm{y}\})$ and $\mathrm{y} \in \mathrm{G}$. This implies that $\beta \mathrm{g}^{*}-\operatorname{ker}(\{\mathrm{x}\}) \subseteq \mathrm{G}$. Therefore $\mathrm{x} \in \beta \mathrm{g}^{*}-\mathrm{cl}(\{\mathrm{x}\}) \subseteq \beta \mathrm{g}^{*}-\operatorname{ker}(\{\mathrm{x}\}) \subseteq \mathrm{G}$. Therefore (X, τ) is a $\beta \mathrm{g}^{*}-\mathrm{R}_{0}$ space.

Theorem 4.10: A topological space (X, $\tau)$ is $\beta \mathrm{g}^{*}-\mathrm{R}_{0}$ space if and only if $\beta \mathrm{g}^{*}-\operatorname{cl}(\{\mathrm{x}\})=\beta \mathrm{g}^{*}-\operatorname{ker}(\{\mathrm{x}\})$, for each $\mathrm{x} \in \mathrm{X}$.

Proof: Let (X, τ) be a $\beta \mathrm{g}^{*}-\mathrm{R}_{0}$ space. By theorem $4.9, \beta \mathrm{~g}^{*}-\mathrm{cl}(\{\mathrm{x}\}) \subseteq \beta \mathrm{g}^{*}-\operatorname{ker}(\{\mathrm{x}\})$ for each $\mathrm{x} \in \mathrm{X}$. Let $\mathrm{y} \in \beta \mathrm{g}^{*}-$ $\operatorname{ker}(\{\mathrm{x}\})$, then $\mathrm{x} \in \beta \mathrm{g}^{*}-\operatorname{cl}(\{\mathrm{y}\})$ and by theorem 3.14, $\mathrm{y} \in \beta \mathrm{g}^{*}-\operatorname{cl}(\{\mathrm{x}\})$ and hence $\beta \mathrm{g}^{*}-\operatorname{ker}(\{\mathrm{x}\}) \subseteq \beta \mathrm{g}^{*}-\operatorname{cl}(\{\mathrm{x}\})$. Therefore $\beta \mathrm{g}^{*}-\mathrm{cl}(\{\mathrm{x}\})=\beta \mathrm{g}^{*}-\operatorname{ker}(\{\mathrm{x}\})$. Converse part is true from theorem 4.9.

Theorem 4.11: A topological space (X, τ) is $\beta \mathrm{g}_{*}^{*}-\mathrm{R}_{0}$ if and only if for any two points x and y in $\mathrm{X}, \beta \mathrm{g}^{*}-$ $\operatorname{ker}(\{\mathrm{x}\}) \neq \beta \mathrm{g}^{*}-\operatorname{ker}(\{\mathrm{y}\})$ implies $\beta \mathrm{g}^{*}-\operatorname{ker}(\{\mathrm{x}\}) \cap \beta \mathrm{g}^{*}-\operatorname{ker}(\{\mathrm{y}\})=\phi$.

Proof: Suppose that (X, τ) is a $\beta \mathrm{g}^{*}-\mathrm{R}_{0}$ space. Thus by theorem 4.7 for any two points x and y in X if $\beta \mathrm{g}^{*}$ $\operatorname{ker}(\{\mathrm{x}\}) \neq \beta \mathrm{g}^{*}-\operatorname{ker}(\{\mathrm{y}\})$ then $\beta \mathrm{g}^{*}-\operatorname{cl}(\{\mathrm{x}\}) \neq \beta \mathrm{g}^{*}-\operatorname{cl}(\{\mathrm{y}\})$. Now we prove that $\beta \mathrm{g}^{*}-\operatorname{ker}(\{\mathrm{x}\}) \cap \beta \mathrm{g}^{*}-\operatorname{ker}(\{\mathrm{y}\})=\phi$. Assume that $\mathrm{z} \in \beta \mathrm{g}^{*}-\operatorname{ker}(\{\mathrm{x}\}) \cap \beta \mathrm{g}^{*}-\operatorname{ker}(\{\mathrm{y}\})$. $\mathrm{By}_{\mathrm{z}} \mathrm{z} \in \beta \mathrm{g}^{*}-\operatorname{ker}(\{\mathrm{x}\})$ and by theorem 3.14, we get $\mathrm{x} \in \beta \mathrm{g}^{*}-$ $\operatorname{cl}(\{\mathrm{z}\})$. Since $\mathrm{x} \in \beta \mathrm{g}^{*}-\operatorname{cl}(\{\mathrm{x}\})$, by theorem 4.2, $\beta \mathrm{g}^{*}-\operatorname{cl}(\{\mathrm{x}\})=\beta \mathrm{g}^{*}-\mathrm{cl}(\{\mathrm{z}\})$. Similarly, we have $\beta \mathrm{g}^{*}-\mathrm{cl}(\{\mathrm{y}\})=\beta \mathrm{g}^{*}-$ $\operatorname{cl}(\{\mathrm{z}\})=\beta \mathrm{g}^{*}-\mathrm{cl}(\{\mathrm{x}\})$. This is a contradiction. Therefore, we have $\beta \mathrm{g}^{*}-\operatorname{ker}(\{\mathrm{x}\}) \cap \beta \mathrm{g}^{*}-\operatorname{ker}(\{\mathrm{y}\})=\phi$.
Conversely, let (X, τ) be a topological space such that for any points x and y in $\mathrm{X}, \beta \mathrm{g}^{*}-\operatorname{ker}(\{\mathrm{x}\}) \neq \beta \mathrm{g}^{*}-\operatorname{ker}(\{\mathrm{y}\})$ implies $\beta \mathrm{g}^{*}-\operatorname{ker}(\{\mathrm{x}\}) \cap \beta \mathrm{g}^{*}-\operatorname{ker}(\{\mathrm{y}\})=\phi$.Theorem 4.7 states that, if $\beta \mathrm{g}^{*}-\operatorname{ker}(\{\mathrm{x}\}) \neq \beta \mathrm{g}^{*}-\operatorname{ker}(\{\mathrm{y}\})$, then $\beta \mathrm{g}^{*}-$ $\operatorname{cl}(\{\mathrm{x}\}) \neq \beta \mathrm{g}^{*}-\operatorname{cl}(\{\mathrm{y}\})$. By theorem 4.6, it is enough to prove $\beta \mathrm{g}^{*}-\operatorname{cl}(\{\mathrm{x}\}) \cap \beta \mathrm{g}^{*}-\operatorname{cl}(\{\mathrm{y}\})=\phi$. Suppose $\beta \mathrm{g}^{*}-$ $\operatorname{cl}(\{\mathrm{x}\}) \cap \beta \mathrm{g}^{*}-\mathrm{cl}(\{\mathrm{y}\}) \neq \phi$. Let $\mathrm{z} \in \beta \mathrm{g}^{*}-\mathrm{cl}(\{\mathrm{x}\}) \cap \beta \mathrm{g}^{*}-\mathrm{cl}(\{\mathrm{y}\})$ Then $\mathrm{z} \in \beta \mathrm{g}^{*}-\mathrm{cl}(\{\mathrm{x}\})$ and $\mathrm{z} \in \beta \mathrm{g}^{*}-\mathrm{cl}(\{\mathrm{y}\})$. Since $\mathrm{z} \in \beta \mathrm{g}^{*}-\operatorname{cl}(\{\mathrm{x}\})$, and by theorem 3.14, $\mathrm{x} \in \beta \mathrm{g}^{*}-\operatorname{ker}(\{\mathrm{z}\})$. Therefore, $\beta \mathrm{g}^{*}-\operatorname{ker}(\{\mathrm{x}\}) \cap \beta \mathrm{g}^{*}-\operatorname{ker}(\{\mathrm{y}\}) \neq \phi$. Then by hypothesis, we get $\beta \mathrm{g}^{*}-\operatorname{ker}(\{\mathrm{x}\})=\beta \mathrm{g}^{*}-\operatorname{ker}(\{\mathrm{z}\})$. Similarly from $\mathrm{z} \in \beta \mathrm{g}^{*}-\operatorname{cl}(\{\mathrm{y}\})$, we can prove that $\beta \mathrm{g}^{*}-$ $\operatorname{ker}(\{\mathrm{y}\})=\beta \mathrm{g}^{*}-\operatorname{ker}(\{\mathrm{z}\})$. Therefore $\beta \mathrm{g}^{*}-\operatorname{ker}(\{\mathrm{x}\})=\beta \mathrm{g}^{*}-\operatorname{ker}(\{\mathrm{z}\})=\beta \mathrm{g}^{*}-\operatorname{ker}(\{\mathrm{y}\})$. This is a contradiction to our assumption $\beta \mathrm{g}^{*}-\operatorname{cl}(\{\mathrm{x}\}) \neq \beta \mathrm{g}^{*}-\operatorname{cl}(\{\mathrm{y}\})$. Therefore $\beta \mathrm{g}^{*}-\operatorname{cl}(\{\mathrm{x}\})=\beta \mathrm{g}^{*}-\operatorname{cl}(\{\mathrm{y}\})$. Hence (X, τ) is a $\beta \mathrm{g}^{*}-\mathrm{R}_{0}$ space.

Theorem 4.12: For a topological space (X, τ) the following properties are equivalent:
(1) (X, τ) is a $\beta \mathrm{g}^{*}-\mathrm{R}_{0}$ space.
(2) If F is $\beta \mathrm{g}^{*}$-closed, then $\mathrm{F}=\beta \mathrm{g}^{*}-\operatorname{ker}(\mathrm{F})$.
(3) If F is $\beta \mathrm{g}^{*}$-closed and $\mathrm{x} \in \mathrm{F}$, then $\beta \mathrm{g}^{*}-\operatorname{ker}(\{\mathrm{x}\}) \subseteq \mathrm{F}$.
(4) If $\mathrm{x} \in \mathrm{X}$, then $\beta \mathrm{g}^{*}-\operatorname{ker}(\{\mathrm{x}\}) \subseteq \beta \mathrm{g}^{*}-\mathrm{cl}(\{\mathrm{x}\})$.

Proof: $(1) \Rightarrow(2)$ Let F be $\beta \mathrm{g}^{*}$-closed and $\mathrm{x} \notin \mathrm{F}$. Thus $\mathrm{X}-\mathrm{F}$ is a $\beta \mathrm{g}^{*}$-open set containing x . Since (X, τ) is $\beta \mathrm{g}^{*}-\mathrm{R}_{0}$, $\beta \mathrm{g}^{*}-\mathrm{cl}(\{\mathrm{x}\}) \subseteq \mathrm{X}-\mathrm{F}$. Thus $\beta \mathrm{g}^{*}-\mathrm{cl}(\{\mathrm{x}\}) \cap \mathrm{F}=\phi$ and by theorem 3.15, $\mathrm{x} \notin \beta \mathrm{g}^{*}-\operatorname{ker}(\mathrm{F})$. Therefore $\beta \mathrm{g}^{*}-\operatorname{ker}(\mathrm{F})=\mathrm{F}$.
$(2) \Rightarrow$ (3) In general, $\mathrm{A} \subseteq \mathrm{B}$ implies $\beta \mathrm{g}^{*}-\operatorname{ker}(\mathrm{A}) \subseteq \beta \mathrm{g}^{*}-\operatorname{ker}(\mathrm{B})$. Therefore, it follows from (2), that $\beta \mathrm{g}^{*}-\operatorname{ker}(\{\mathrm{x}\})$ $\subseteq \beta \mathrm{g}^{*}-\operatorname{ker}(\mathrm{F})=\mathrm{F}$.
(3) \Rightarrow (4) Since $\mathrm{x} \in \beta \mathrm{g}^{*}-\operatorname{cl}(\{\mathrm{x}\})$ and $\beta \mathrm{g}^{*}-\operatorname{cl}(\{\mathrm{x}\})$ is $\beta \mathrm{g}^{*}-\operatorname{closed}$, by $(3), \beta \mathrm{g}^{*}-\operatorname{ker}(\{\mathrm{x}\}) \subseteq \beta \mathrm{g}^{*}-\operatorname{cl}(\{\mathrm{x}\})$.
(4) \Rightarrow (1) Let $\mathrm{x} \in \beta \mathrm{g}^{*}-\mathrm{cl}(\{\mathrm{y}\})$. Then by theorem 3.14, $\mathrm{y} \in \beta \mathrm{g}^{*}-\operatorname{ker}(\{\mathrm{x}\}) .(4) \Rightarrow \mathrm{y} \in \beta \mathrm{g}^{*}-\operatorname{ker}(\{\mathrm{x}\}) \subseteq \beta \mathrm{g}^{*}-\mathrm{cl}(\{\mathrm{x}\})$. Therefore $\mathrm{x} \in \beta \mathrm{g}^{*}-\mathrm{cl}(\{\mathrm{y}\})$ implies $\mathrm{y} \in \beta \mathrm{g}^{*}-\mathrm{cl}(\{\mathrm{x}\})$. Therefore (X, τ) is $\beta \mathrm{g}^{*}-\mathrm{R}_{0}$ space.

Definition 4.13: In a topological space (X, τ) is said to be $\beta \mathrm{g}^{*}-\mathrm{R}_{1}$ if for x, y, in X with $\beta \mathrm{g}^{*}-\mathrm{cl}(\{\mathrm{x}\}) \neq \beta \mathrm{g}^{*}-$ $\operatorname{cl}(\{y\})$, there exist disjoint $\beta \mathrm{g}^{*}$-open sets U and V such that $\beta \mathrm{g}^{*}-\mathrm{cl}(\{\mathrm{x}\}) \subseteq \mathrm{U}$ and $\beta \mathrm{g}^{*}-\mathrm{cl}(\{\mathrm{y}\}) \subseteq \mathrm{V}$.

Theorem 4.14: A topological space (X, τ) is $\beta \mathrm{g}^{*}-\mathrm{R}_{1}$ space if it is $\beta \mathrm{g}^{*}-\mathrm{T}_{2}$ space.
Proof: Let x and y be any two points X such that $\beta \mathrm{g}^{*}-\mathrm{cl}(\{\mathrm{x}\}) \neq \beta \mathrm{g}^{*}-\mathrm{cl}(\{\mathrm{y}\})$. By Remark 3.3 (1), every $\beta \mathrm{g}^{*}-\mathrm{T}_{2}$ space is $\beta \mathrm{g}^{*}-\mathrm{T}_{1}$ space. Therefore, by theorem 3.6, $\beta \mathrm{g}^{*}-\mathrm{cl}(\{\mathrm{x}\})=\{\mathrm{x}\}, \beta \mathrm{g}^{*}-\mathrm{cl}(\{\mathrm{y}\})=\{\mathrm{y}\}$ and hence $\{\mathrm{x}\} \neq\{\mathrm{y}\}$. Since (X, τ) is $\beta \mathrm{g}^{*}-\mathrm{T}_{2}$, there exist a disjoint $\beta \mathrm{g}^{*}$-open sets U and V such that $\beta \mathrm{g}^{*}-\mathrm{cl}(\{\mathrm{x}\})=\{\mathrm{x}\} \subseteq \mathrm{U}$ and $\beta \mathrm{g}^{*}-\mathrm{cl}(\{\mathrm{y}\})=$ $\{\mathrm{y}\} \subseteq \mathrm{V}$. Therefore (X, τ) is $\beta \mathrm{g}^{*}-\mathrm{R}_{1}$ space.

Theorem 4.15: For a topological space (X, τ) is $\beta \mathrm{g}^{*}$-symmetric, then the following are equivalent:
(1) (X, τ) is $\beta \mathrm{g}^{*}-\mathrm{T}_{2}$ space.
(2) (X, τ) is $\beta \mathrm{g}^{*}-\mathrm{R}_{1}$ space and $\beta \mathrm{g}^{*}{ }_{-} \mathrm{T}_{1}$ space.
(3) (X, τ) is $\beta \mathrm{g}^{*}-\mathrm{R}_{1}$ space and $\beta \mathrm{g}^{*}-\mathrm{T}_{0}$ space.

Proof: $(1) \Rightarrow(2)$ and $(2) \Rightarrow(3)$ obvious.
(3) \Rightarrow (1) Let $\mathrm{x}, \mathrm{y} \in \mathrm{X}$ such that $\mathrm{x} \neq \mathrm{y}$. Since (X, τ) is $\beta \mathrm{g}^{*}-\mathrm{T}_{0}$ space. By theorem $3.5 \beta \mathrm{~g}^{*}-\operatorname{cl}(\{\mathrm{x}\}) \neq \beta \mathrm{g}^{*}-\operatorname{cl}(\{\mathrm{y}\})$, since X is $\beta \mathrm{g}^{*}-\mathrm{R}_{1}$, there exist disjoint $\beta \mathrm{g}^{*}$-open sets U and V such that $\beta \mathrm{g}^{*}-\mathrm{cl}(\{\mathrm{x}\}) \subseteq \mathrm{U}$ and $\beta \mathrm{g}^{*}-\mathrm{cl}(\{\mathrm{y}\}) \subseteq \mathrm{V}$. Therefore, there exist disjoint $\beta \mathrm{g}^{*}$-open set U and V such that $\mathrm{x} \in \mathrm{U}$ and $\mathrm{y} \in \mathrm{V}$. Hence (X, τ) is $\beta \mathrm{g}^{*}-\mathrm{T}_{2}$ space.

Remark 4.16: For a topological space (X, τ) the following statements are equivalent:
(1) (X, τ) is $\beta \mathrm{g}^{*}-\mathrm{R}_{1}$ space.
(2) If $\mathrm{x}, \mathrm{y} \in \mathrm{X}$ such that $\beta \mathrm{g}^{*}-\mathrm{cl}(\{\mathrm{x}\}) \neq \beta \mathrm{g}^{*}-\mathrm{cl}(\{\mathrm{y}\})$, then there exist $\beta \mathrm{g}^{*}$-closed sets F_{1} and F_{2} such that $\mathrm{x} \in \mathrm{F}_{1}$, $\mathrm{y} \notin \mathrm{F}_{1}, \mathrm{y} \in \mathrm{F}_{2}, \mathrm{x} \notin \mathrm{F}_{2}$ and $\mathrm{X}=\mathrm{F}_{1} \cup \mathrm{~F}_{2}$.

Theorem 4.17: If a topological space (X, τ) is $\beta \mathrm{g}^{*}-\mathrm{R}_{1}$ space, then (X, τ) is $\beta \mathrm{g}^{*}-\mathrm{R}_{0}$ space.
Proof: Let U be a $\beta \mathrm{g}^{*}$-open set such that $\mathrm{x} \in \mathrm{U}$. If $\mathrm{y} \notin \mathrm{U}$, then $\mathrm{x} \notin \beta \mathrm{g}^{*}-\mathrm{cl}(\{y\})$, therefore $\beta \mathrm{g}^{*}-\mathrm{cl}(\{\mathrm{x}\}) \neq \beta \mathrm{g}^{*}$ $\operatorname{cl}(\{y\})$. So, there exists a $\beta \mathrm{g}^{*}$-open set V such that $\beta \mathrm{g}^{*}-\mathrm{cl}(\{y\}) \subseteq \mathrm{V}$ and $\mathrm{x} \notin \mathrm{V}$, which implies $\mathrm{y} \notin \beta \mathrm{g}^{*}-\mathrm{cl}(\{\mathrm{x}\})$. Hence $\beta \mathrm{g}^{* *}-\mathrm{cl}(\{\mathrm{x}\}) \subseteq \mathrm{U}$. Therefore, (X, τ) is $\beta \mathrm{g}^{*}-\mathrm{R}_{0}$ space.

Theorem 4.18: A topological space ($\mathrm{X}, \tau)$ is $\beta \mathrm{g}^{*}-\mathrm{R}_{1}$ space if and only if $\mathrm{x} \in \mathrm{X}-\beta \mathrm{g}^{*}-\mathrm{cl}(\{\mathrm{y}\})$ implies that x and y have disjoint $\beta \mathrm{g}^{*}$-open neighbourhoods.

Proof: Necessity: Let (X, τ) be a $\beta \mathrm{g}^{*}-\mathrm{R}_{1}$ space. Let $\mathrm{x} \in \mathrm{X}-\beta \mathrm{g}^{*}-\mathrm{cl}(\{\mathrm{y}\})$. Then $\beta \mathrm{g}^{*}-\mathrm{cl}(\{\mathrm{x}\}) \neq \beta \mathrm{g}^{*}-\mathrm{cl}(\{\mathrm{y}\})$, so x and y have disjoint $\beta \mathrm{g}^{*}$-open neighbourhoods.

Sufficiency: First to show that (X, τ) is $\beta \mathrm{g}^{*}-\mathrm{R}_{0}$ space. Let U be a $\beta \mathrm{g}^{*}$-open set and $\mathrm{x} \in \mathrm{U}$. Suppose that $\mathrm{y} \notin \mathrm{U}$. Then, $\beta \mathrm{g}^{*}-\mathrm{cl}(\{\mathrm{y}\}) \cap \mathrm{U}=\phi$ and $\mathrm{x} \notin \beta \mathrm{g}^{*}-\mathrm{cl}(\{\mathrm{y}\})$. There exist a $\beta \mathrm{g}^{*}$-open sets U_{x} and U_{y} such that $\mathrm{x} \in \mathrm{U}_{\mathrm{x}}, \mathrm{y} \in \mathrm{U}_{\mathrm{y}}$ and $\mathrm{U}_{\mathrm{x}} \cap \mathrm{U}_{\mathrm{y}}=\phi$. Hence, $\beta \mathrm{g}^{*}-\mathrm{cl}(\{\mathrm{x}\}) \subseteq \beta \mathrm{g}^{*}-\mathrm{cl}\left(\left\{\mathrm{U}_{\mathrm{x}}\right\}\right)$ and $\beta \mathrm{g}^{*}-\mathrm{cl}(\{\mathrm{x}\}) \cap \mathrm{U}_{\mathrm{y}} \subseteq \beta \mathrm{g}^{*}-\mathrm{cl}\left(\left\{\mathrm{U}_{\mathrm{x}}\right\}\right) \cap \mathrm{U}_{\mathrm{y}}=\phi$. [For since U_{y} is $\beta \mathrm{g}^{*}$-open set, $\mathrm{X}-\mathrm{U}_{\mathrm{y}}$ is $\beta \mathrm{g}^{*}$-closed set. So $\beta \mathrm{g}^{*}$-cl(\{X-U $\left.\left.\mathrm{U}_{\mathrm{y}}\right\}\right)=\mathrm{X}-\mathrm{U}_{\mathrm{y}}$. Also since $\mathrm{U}_{\mathrm{x}} \cap \mathrm{U}_{\mathrm{y}}=\phi$ and $\mathrm{U}_{\mathrm{x}} \subseteq \mathrm{U}_{\mathrm{y}}{ }^{c}$. So $\beta \mathrm{g}^{*}-\operatorname{cl}\left(\left\{\mathrm{U}_{\mathrm{x}}\right\}\right) \subseteq \beta \mathrm{g}^{*}-\operatorname{cl}\left(\left\{\mathrm{X}-\mathrm{U}_{\mathrm{y}}\right\}\right)$. Thus $\left.\beta \mathrm{g}^{*}-\operatorname{cl}\left(\left\{\mathrm{U}_{\mathrm{x}}\right\}\right) \subseteq \mathrm{X}-\mathrm{U}_{\mathrm{y}}\right]$. Therefore, $\mathrm{y} \notin \beta \mathrm{g}^{*}-\operatorname{cl}(\{\mathrm{x}\})$. Consequently, $\beta \mathrm{g}^{*}$ $\operatorname{cl}(\{\mathrm{x}\}) \subseteq \mathrm{U}$ and (X, τ) is $\beta \mathrm{g}^{*}-\mathrm{R}_{0}$ space. Next to show that (X, τ) is $\beta \mathrm{g}^{*}-\mathrm{R}_{1}$ space. Suppose that $\beta \mathrm{g}^{*}-\mathrm{cl}(\{\mathrm{x}\}) \neq \beta \mathrm{g}^{*}$ $\operatorname{cl}(\{y\})$. Then, assume that there exists $\mathrm{z} \in \beta \mathrm{g}^{*}-\mathrm{cl}(\{\mathrm{x}\})$ such that $\mathrm{z} \notin \beta \mathrm{g}^{*}-\mathrm{cl}(\{\mathrm{y}\})$. There exist a $\beta \mathrm{g}^{*}$-open sets V_{z} and V_{y} such that $z \in V_{z}, y \in V_{y}$ and $V_{z} \cap V_{y}=\phi$. Since $z \in \beta \mathrm{~g}^{*}-\mathrm{cl}(\{x\}), x \in V_{z}$. Since (X, τ) is $\beta g^{*}-R_{0}$ space, we obtain $\beta \mathrm{g}^{*}-\mathrm{cl}(\{\mathrm{x}\}) \subseteq \mathrm{V}_{\mathrm{z}}, \beta \mathrm{g}^{*}-\mathrm{cl}(\{\mathrm{y}\}) \subseteq \mathrm{V}_{\mathrm{y}}$ and $\mathrm{V}_{\mathrm{z}} \cap \mathrm{V}_{\mathrm{y}}=\phi$. Therefore (X, τ) is $\beta \mathrm{g}^{*}-\mathrm{R}_{1}$ space.

Theorem 4.19: A topological space (X, τ) is $\beta \mathrm{g}^{*}-\mathrm{R}_{1}$ space if and only if for each $\mathrm{x} \neq \mathrm{y} \in \mathrm{X}$ with $\beta \mathrm{g}^{*}-\operatorname{ker}(\{\mathrm{x}\}) \neq$ $\beta \mathrm{g}^{*}-\operatorname{ker}(\{\mathrm{y}\})$, then there exist $\beta \mathrm{g}^{*}$-closed sets $\mathrm{G}_{1}, \mathrm{G}_{2}$ such that $\beta \mathrm{g}^{*}-\operatorname{ker}(\{\mathrm{x}\}) \subseteq \mathrm{G}_{1}, \beta \mathrm{~g}^{*}-\operatorname{ker}(\{\mathrm{x}\}) \mathrm{OG}_{2}=\phi$ and $\beta \mathrm{g}^{*}-\operatorname{ker}(\{\mathrm{y}\}) \subseteq \mathrm{G}_{2}, \beta \mathrm{~g}^{*}-\operatorname{ker}(\{\mathrm{y}\}) \cap \mathrm{G}_{1}=\phi$ and $\mathrm{G}_{1} \cup \mathrm{G}_{2}=\mathrm{X}$.

Proof: Let (X, τ) be a $\beta \mathrm{g}^{*}-\mathrm{R}_{1}$ space such that for each $\mathrm{x} \neq \mathrm{y} \in \mathrm{X}$ with $\beta \mathrm{g}^{*}-\operatorname{ker}(\{\mathrm{x}\}) \neq \beta \mathrm{g}^{*}-\operatorname{ker}(\{\mathrm{y}\})$. Since every $\beta \mathrm{g}^{*}-\mathrm{R}_{1}$ space is $\beta \mathrm{g}^{*}-\mathrm{R}_{0}$ space. By theorem 4.7, $\beta \mathrm{g}^{*}-\mathrm{cl}(\{\mathrm{x}\}) \neq \beta \mathrm{g}^{*}-\mathrm{cl}(\{\mathrm{y}\})$. As X is $\beta \mathrm{g}^{*}-\mathrm{R}_{1}$ space there exists $\beta \mathrm{g}^{*}$-open sets $\mathrm{U}_{1}, \mathrm{U}_{2}$ such that $\beta \mathrm{g}^{* *}-\mathrm{cl}(\{\mathrm{x}\}) \subseteq \mathrm{U}_{1}$ and $\beta \mathrm{g}^{*}-\mathrm{cl}(\{\mathrm{y}\}) \subseteq \mathrm{U}_{2}$ and $\mathrm{U}_{1} \cap \mathrm{U}_{2}=\phi$ then $\mathrm{X}-\mathrm{U}_{1}$ and $\mathrm{X}-\mathrm{U}_{2}$ are $\beta \mathrm{g}^{*}$-closed sets such that $\left(\mathrm{X}-\mathrm{U}_{1} \cup \mathrm{X}-\mathrm{U}_{2}\right)=\mathrm{X}$. Put $\mathrm{G}_{1}=\mathrm{X}-\mathrm{U}_{2}$ and $\mathrm{G}_{2}=\mathrm{X}-\mathrm{U}_{1}$. Thus $\mathrm{x} \subseteq \mathrm{G}_{1}$ and $\mathrm{y} \subseteq \mathrm{G}_{2}$, so that $\beta \mathrm{g}^{*}-\operatorname{ker}(\{\mathrm{x}\}) \subseteq \mathrm{G}_{1}, \beta \mathrm{~g}^{*}-\operatorname{ker}(\{\mathrm{y}\}) \subseteq \mathrm{G}_{2}$ and $\mathrm{G}_{1} \cup \mathrm{G}_{2}=\mathrm{X}$ and $\beta \mathrm{g}^{*}-\operatorname{ker}(\{\mathrm{x}\}) \cap \mathrm{G}_{2}=\phi, \beta \mathrm{g}^{*}-\operatorname{ker}(\{y\}) \cap \mathrm{G}_{1}=\phi$. Conversely, let for each $\mathrm{x} \neq \mathrm{y} \in \mathrm{X}$ with $\beta \mathrm{g}^{*}-\operatorname{ker}(\{\mathrm{x}\}) \neq \beta \mathrm{g}^{*}-\operatorname{ker}(\{\mathrm{y}\})$, there exists $\beta \mathrm{g}^{*}$-closed sets G_{1} and G_{2} such that $\beta \mathrm{g}^{*}-\operatorname{ker}(\{\mathrm{x}\}) \subseteq \mathrm{G}_{1}, \beta \mathrm{~g}^{*}-\operatorname{ker}(\{\mathrm{x}\}) \cap \mathrm{G}_{2}=\phi$ and $\beta \mathrm{g}^{*}-\operatorname{ker}(\{\mathrm{y}\}) \subseteq \mathrm{G}_{2}, \beta \mathrm{~g}^{*}-\operatorname{ker}(\{\mathrm{y}\}) \cap \mathrm{G}_{1}=\phi$ and $\mathrm{G}_{1} \cup \mathrm{G}_{2}=\mathrm{X}$, then $\mathrm{X}-\mathrm{G}_{1}$ and $\mathrm{X}-\mathrm{G}_{2}$ are $\beta \mathrm{g}^{*}$-open sets such that $\left(\mathrm{X}-\mathrm{G}_{1} \cap \mathrm{X}-\mathrm{G}_{2}\right)=\phi$. Put $\mathrm{X}-\mathrm{G}_{1}=\mathrm{U}_{2}$ and $\mathrm{X}-\mathrm{G}_{2}=\mathrm{U}_{1}$. Thus $\beta \mathrm{g}^{*}-\operatorname{ker}(\{\mathrm{x}\}) \subseteq \mathrm{U}_{1}$ and $\beta \mathrm{g}^{*}-\operatorname{ker}(\{\mathrm{y}\}) \subseteq \mathrm{U}_{2}$ and $\mathrm{U}_{1} \cap \mathrm{U}_{2}=\phi$, so that $\mathrm{x} \in \mathrm{U}_{1}$ and $\mathrm{y} \in \mathrm{U}_{2}$ implies $\mathrm{x} \notin \beta \mathrm{g}^{*}-\mathrm{cl}(\{\mathrm{y}\})$ and $\mathrm{y} \notin \beta \mathrm{g}^{*}-\mathrm{cl}(\{\mathrm{x}\})$, then $\beta \mathrm{g}^{-}-\mathrm{cl}(\{\mathrm{x}\}) \subseteq \mathrm{U}_{1}$ and $\beta \mathrm{g}^{*}-\mathrm{cl}(\{\mathrm{y}\}) \subseteq \mathrm{U}_{2}$. Thus (X, τ) is $\beta \mathrm{g}^{*}-\mathrm{R}_{1}$ space.

Corollary 4.20: A topological space (X, τ) is $\beta \mathrm{g}^{*}-\mathrm{R}_{1}$ space if and only if for each $\mathrm{x} \neq \mathrm{y} \in \mathrm{X}$ with $\beta \mathrm{g}^{*}-\mathrm{cl}(\{\mathrm{x}\}) \neq$ $\beta \mathrm{g}^{*}-\mathrm{cl}(\{\mathrm{y}\})$ there exist disjoint $\beta \mathrm{g}^{*}$-open sets U and V such that $\beta \mathrm{g}^{*}-\mathrm{cl}\left(\beta \mathrm{g}^{*}-\operatorname{ker}(\{\mathrm{x}\})\right) \subseteq \mathrm{U}$ and $\beta \mathrm{g}^{*}-\mathrm{cl}\left(\beta \mathrm{g}^{*}-\right.$ $\operatorname{ker}(\{y\})) \subseteq \mathrm{V}$.

Proof: Let (X, τ) be a $\beta \mathrm{g}^{*}-\mathrm{R}_{1}$ space and let $\mathrm{x} \neq \mathrm{y} \in \mathrm{X}$ with $\beta \mathrm{g}^{*}-\mathrm{cl}(\{\mathrm{x}\}) \neq \beta \mathrm{g}^{*}-\mathrm{cl}(\{\mathrm{y}\})$, then there exist disjoint $\beta \mathrm{g}^{*}-$ open sets U and V such that $\beta \mathrm{g}^{*}-\operatorname{cl}(\{\mathrm{x}\}) \subseteq \mathrm{U}$ and $\beta \mathrm{g}^{*}-\mathrm{cl}(\{\mathrm{y}\}) \subseteq \mathrm{V}$. Also (X, τ) is $\beta \mathrm{g}^{*}-\mathrm{R}_{0}$ space implies by theorem 4.10, for each $\mathrm{x} \in \mathrm{X}$, then $\beta \mathrm{g}^{*}-\operatorname{cl}(\{\mathrm{x}\})=\beta \mathrm{g}^{*}-\operatorname{ker}(\{\mathrm{x}\})$, but $\beta \mathrm{g}^{*}-\operatorname{cl}(\{\mathrm{x}\})=\beta \mathrm{g}^{*}-\operatorname{cl}\left(\beta \mathrm{g}^{*}-\operatorname{cl}(\{\mathrm{x}\})\right)=\beta \mathrm{g}^{*}-\operatorname{cl}\left(\beta \mathrm{g}^{*}-\right.$ $\operatorname{ker}(\{\mathrm{x}\}))$. Thus $\beta \mathrm{g}^{*}-\mathrm{cl}\left(\beta \mathrm{g}^{*}-\operatorname{ker}(\{\mathrm{x}\})\right) \subseteq \mathrm{U}$ and $\beta \mathrm{g}^{*}-\operatorname{cl}\left(\beta \mathrm{g}^{*}-\operatorname{ker}(\{\mathrm{y}\})\right) \subseteq \mathrm{V}$.
Conversely, let for each $\mathrm{x} \neq \mathrm{y} \in \mathrm{X}$ with $\beta \mathrm{g}^{*}-\operatorname{cl}(\{\mathrm{x}\}) \neq \beta \mathrm{g}^{*}-\operatorname{cl}(\{\mathrm{y}\})$, there exist disjoint $\beta \mathrm{g}^{*}$-open sets U and V such that $\beta \mathrm{g}^{*}-\operatorname{cl}\left(\beta \mathrm{g}^{*}-\operatorname{ker}(\{\mathrm{x}\})\right) \subseteq \mathrm{U}$ and $\beta \mathrm{g}^{*}-\operatorname{cl}\left(\beta \mathrm{g}^{*}-\operatorname{ker}(\{\mathrm{y}\})\right) \subseteq \mathrm{V}$. Since $\{\mathrm{x}\} \in \beta \mathrm{g}^{*}-\operatorname{ker}(\{\mathrm{x}\})$ then $\beta \mathrm{g}^{*}-\operatorname{cl}(\{\mathrm{x}\}) \subseteq \beta \mathrm{g}^{*}-$ $\operatorname{cl}\left(\beta \mathrm{g}^{*}-\operatorname{ker}(\{\mathrm{x}\})\right)$ for each $\mathrm{x} \in \mathrm{X}$, so we get $\beta \mathrm{g}^{*}-\mathrm{cl}(\{\mathrm{x}\}) \subseteq \mathrm{U}$ and $\beta \mathrm{g}^{*}-\mathrm{cl}(\{\mathrm{y}\}) \subseteq \mathrm{V}$. Thus (X, τ) is $\beta \mathrm{g}^{*}-\mathrm{R}_{1}$ space.

Theorem 4.21: A topological space ($\mathrm{X}, \tau)$ is $\beta \mathrm{g}^{*}-\mathrm{T}_{0}$ space if and only if either $\mathrm{y} \notin \beta \mathrm{g}^{*}-\operatorname{ker}(\{\mathrm{x}\})$ or $\mathrm{x} \notin \beta \mathrm{g}^{*}$ $\operatorname{ker}(\{y\})$, for each $x \neq y \in X$.

Proof: Let (X, τ) be a $\beta \mathrm{g}^{*}-\mathrm{T}_{0}$ space then for each $\mathrm{x} \neq \mathrm{y} \in \mathrm{X}$, there exist $\beta \mathrm{g}^{*}$-open set U such that $\mathrm{x} \in \mathrm{U}, \mathrm{y} \notin \mathrm{U}$ or $\mathrm{x} \notin \mathrm{U}, \mathrm{y} \in \mathrm{U}$. Thus if $\mathrm{x} \in \mathrm{U}$ and $\mathrm{y} \notin \mathrm{U}$ then $\mathrm{y} \notin \beta \mathrm{g}^{*}-\operatorname{ker}(\{\mathrm{x}\})$ or else if $\mathrm{x} \notin \mathrm{U}$ and $\mathrm{y} \in \mathrm{U}$ then $\mathrm{x} \notin \beta \mathrm{g}^{*}-\operatorname{ker}(\{y\})$. Conversely, let either $\mathrm{y} \nexists \beta \mathrm{g}^{*}-\operatorname{ker}(\{\mathrm{x}\})$ or $\mathrm{x} \notin \beta \mathrm{g}^{*}-\operatorname{ker}(\{\mathrm{y}\})$, for each $\mathrm{x} \neq \mathrm{y} \in \mathrm{X}$. Then there exists $\beta \mathrm{g}^{*}$-open set U such that $\mathrm{x} \in \mathrm{U}, \mathrm{y} \notin \mathrm{U}$ or $\mathrm{x} \notin \mathrm{U}, \mathrm{y} \in \mathrm{U}$. Thus (X, τ) is $\beta \mathrm{g}^{*}-\mathrm{T}_{0}$ space.

Theorem 4.22: A topological space (X, τ) is $\beta \mathrm{g}^{*}-\mathrm{T}_{1}$ space if and only if for each $\mathrm{x} \neq \mathrm{y} \in \mathrm{X}, \mathrm{y} \notin \beta \mathrm{g}^{*}-\operatorname{ker}(\{\mathrm{x}\})$ and $\mathrm{x} \notin \beta \mathrm{g}^{*}-\operatorname{ker}(\{\mathrm{y}\})$.
Proof: Let (X, τ) be a $\beta \mathrm{g}^{*}-\mathrm{T}_{1}$ space then for each $\mathrm{x} \neq \mathrm{y} \in \mathrm{X}$, there exists $\beta \mathrm{g}^{*}$-open sets U, V such that $\mathrm{x} \in \mathrm{U}, \mathrm{y} \notin \mathrm{U}$ and $\mathrm{y} \in \mathrm{V}, \mathrm{x} \notin \mathrm{V}$ implies $\mathrm{y} \nexists \beta \mathrm{g}^{*}-\operatorname{ker}(\{\mathrm{x}\})$ and $\mathrm{x} \notin \beta \mathrm{g}^{*}-\operatorname{ker}(\{\mathrm{y}\})$.
Conversely, let $\mathrm{y} \notin \beta \mathrm{g}^{*}-\operatorname{ker}(\{\mathrm{x}\})$ and $\mathrm{x} \notin \beta \mathrm{g}^{*}-\operatorname{ker}(\{\mathrm{y}\})$, for each $\mathrm{x} \neq \mathrm{y} \in \mathrm{X}$. Then there exists $\beta \mathrm{g}^{*}$-open sets U, V such that $\mathrm{x} \in \mathrm{U}, \mathrm{y} \notin \mathrm{U}$ and $\mathrm{y} \in \mathrm{V}, \mathrm{x} \notin \mathrm{V}$. Thus (X, τ) is $\beta \mathrm{g}^{*}-\mathrm{T}_{1}$ space.

Theorem 4.23: A topological space (X, τ) is $\beta \mathrm{g}^{*}-\mathrm{T}_{1}$ space if and only if for each $\mathrm{x} \neq \mathrm{y} \in \mathrm{X}, \beta \mathrm{g}^{*}-\operatorname{ker}(\{\mathrm{x}\}) \cap \beta \mathrm{g}^{*}-$ $\operatorname{ker}(\{y\})=\phi$.

Proof: Let (X, τ) be a $\beta \mathrm{g}^{*}-\mathrm{T}_{1}$ space. Then $\beta \mathrm{g}^{*}-\operatorname{ker}(\{\mathrm{x}\})=\{\mathrm{x}\}$ and $\beta \mathrm{g}^{*}-\operatorname{ker}(\{\mathrm{y}\})=\{\mathrm{y}\}$. Thus $\beta \mathrm{g}^{*}-\operatorname{ker}(\{\mathrm{x}\}) \cap$ $\beta \mathrm{g}^{*}-\operatorname{ker}(\{\mathrm{y}\})=\phi$.
Conversely, let for each $\mathrm{x} \neq \mathrm{y} \in \mathrm{X}$ implies $\beta \mathrm{g}^{*}-\operatorname{ker}(\{\mathrm{x}\}) \cap \beta \mathrm{g}^{*}-\operatorname{ker}(\{\mathrm{y}\})=\phi$ and suppose that (X, τ) be not $\beta \mathrm{g}^{*}-\mathrm{T}_{1}$ space then by theorem 4.21 we get for each $\mathrm{x} \neq \mathrm{y} \in \mathrm{X}$ implies $\mathrm{y} \in \beta \mathrm{g}^{*}-\operatorname{ker}(\{\mathrm{x}\})$ or $\mathrm{x} \in \beta \mathrm{g}^{*}-\operatorname{ker}(\{\mathrm{y}\})$, then $\beta \mathrm{g}^{*}-$ $\operatorname{ker}(\{\mathrm{x}\}) \cap \beta \mathrm{g}^{*}-\operatorname{ker}(\{\mathrm{y}\}) \neq \phi$ this is contradiction. Thus (X, τ) is $\beta \mathrm{g}^{*}-\mathrm{T}_{1}$ space.

Corollary 4.24: Let (X, τ) be a topological space. A $\beta \mathrm{g}^{*}-\mathrm{T}_{1}$ space is $\beta \mathrm{g}^{*}-\mathrm{T}_{2}$ space if and only if one of the following conditions holds:

1. For each $\mathrm{x} \neq \mathrm{y} \in \mathrm{X}$ with $\beta \mathrm{g}^{*}-\mathrm{cl}(\{\mathrm{x}\}) \neq \beta \mathrm{g}^{*}-\mathrm{cl}(\{\mathrm{y}\})$, then there exist $\beta \mathrm{g}^{*}$-open sets U, V such that $\beta \mathrm{g}^{*}-\mathrm{cl}\left(\beta \mathrm{g}^{*}-\right.$ $\operatorname{ker}(\{\mathrm{x}\})) \subseteq \mathrm{U}$ and $\beta \mathrm{g}^{*}-\mathrm{cl}\left(\beta \mathrm{g}^{*}-\operatorname{ker}(\{\mathrm{y}\})\right) \subseteq \mathrm{V}$.
2. For each $\mathrm{x} \neq \mathrm{y} \in \mathrm{X}$ with $\beta \mathrm{g}^{*}-\operatorname{ker}(\{\mathrm{x}\}) \neq \beta \mathrm{g}^{*}-\operatorname{ker}(\{\mathrm{y}\})$, then there exist $\beta \mathrm{g}^{*}$-closed sets $\mathrm{F}_{1}, \mathrm{~F}_{2}$ such that $\beta \mathrm{g}^{*}-$ $\operatorname{ker}(\{\mathrm{x}\}) \subseteq \mathrm{F}_{1}, \beta \mathrm{~g}^{*}-\operatorname{ker}(\{\mathrm{x}\}) \cap \mathrm{F}_{2}=\phi$ and $\beta \mathrm{g}^{*}-\operatorname{ker}(\{\mathrm{y}\}) \subseteq \mathrm{F}_{2}, \beta \mathrm{~g}^{*}-\operatorname{ker}(\{\mathrm{y}\}) \cap \mathrm{F}_{1}$ and $\mathrm{F}_{1} \cup \mathrm{~F}_{2}=\mathrm{X}$.

References

[1]. D.Andrijevic, semi preopen sets, Mat.Vesnik, 38(1) (1986), 24-32
[2]. K.Balachandran, P.Sundaram and H.Maki, On generalized continuous maps in topological spaces, Mem.Fac.sci.Kochi.Univ.Math.,12(1991),5-13.
[3]. C.Dhanapakyam ,K.ndirani,On $\beta \mathrm{g}$ *closed sets in topological spaces, Int. J. App. Research (2016),388391
[4]. N.Levine, Generalized Closed sets in Topology, rend.Cir.Mat.palermo,2(1970),89-96. N.Levine, Semiopen sets and semi continuity in topological spaces.,Amer.Math.Monthly, 70(1963),36-41.
[5]. M.K.R.S Veerakumar, Between closed sets and g-closed sets, Mem. Fac. Sci.Kochi Univ.Ser.A,Math., 21 (2000) 1-19.

[^0]
[^0]: C. Dhanapakyam. " $\beta \mathrm{g}^{*}-$ Separation Axioms." IOSR Journal of Mathematics (IOSR-JM) 15.1 (2019): 07-14

