IOSR Journal of Mathematics (IOSR-JM) e-ISSN: 2278-5728, p-ISSN: 2319-765X. Volume 15, Issue 1 Ser. I (Jan – Feb 2019), PP 07-14 www.iosrjournals.org

βg^* – Separation Axioms

C. Dhanapakyam¹, K.Indirani². Department of Mathematics Rathnavel subramaniam College of Arts & Science Coimbatore-, India Nirmala College for women Red fields, Coimbatore-, India Corresponding Author: C. Dhanapakyam

Abstract: In this paper, some new types of separation axioms in topological spaces by using βg^* -open sets are formulated. In particular the concept of $\beta g^* - R_0$ and $\beta g^* - R_1$ axioms are introduced. Several properties of these spaces are investigated using these axioms.

Keywords: βg^* -open set, βg^* - R_0 , βg^* - R_1 , βg^* - $T_i(i=0,1,2)$

Date of Submission: 04-01-2019

Date of acceptance: 21-01-2019

I. Introduction

In 1970, Levine[4] introduced the concept of generalized closed set in topological spaces. In 2000, Veeerakumar [6] introduced several generalized closed sets namely g^* closed sets, \hat{g} closed set. And rijevic[1] introduced β -open set in general topology. The aim of this paper is to introduce the some new type of separation axioms via βg^* -open sets. Throughout this paper (X, τ) and (Y, σ)(or simply X and Y)represents the non-empty topological spaces on which no separation axioms are assumed, unless otherwise mentioned. For a subset A of X, cl(A) and int(A) represents the closure of A and interior of A respectively.

II. Preliminaries

Definition 2.1: A subset A of (X, τ) is called

1) Generalized closed[4] (briefly g-closed) if $cl(A) \subset U$ whenever $A \subset U$ and U is open.

2) βg^* -closed [3] if gcl(A) \subset U whenever A \subset U and U is β -open in X.

Definition 2.2: A map $f: (X,\tau) \to (Y,\sigma)$ is called

1) Continuous [2] if $f^{-1}(V)$ is closed subset in (X,τ) for every closed subset V in (Y,σ) . 2). g continuous[5] if $f^{-1}(V)$ is g closed subset in (X,τ) for every closed subset V in (Y,σ) .

3) βg^* - continuous if $f^{-1}(V)$ is βg^* - closed subset in (X,τ) for every closed subset V in (Y,σ) .

Definition 2.3: A function $f:(X,\tau) \rightarrow (Y,\sigma)$ from a topological space X into a topological space Y is called a βg^* irresolute if $f^{1}(V)$ is βg^{*} closed set in X for every βg^{*} closed set V in Y.

III. $\beta g^* - T_k (k = 0, 1, 2)$ SPACES

In this section, a new type of separation axioms in topological spaces called βg^* -T_k spaces for k = 0, 1, 2 are defined and their properties are studied.

Definition 3.1: A topological space (X, τ) is said to be

- 1. $\beta g^* T_0$ if for each pair of distinct points x, y in X, there exists a βg^* -open set U such that either $x \in U$ and $y \notin U$ or $x \notin U$ and $y \in U$.
- 2. $\beta g^* T_1$ if for each pair of distinct points x, y in X, there exist two βg^* -open sets U and V such that $x \in U$ and $y \notin U$ and $y \in V$ but $x \notin V$.
- 3. $\beta g^* T_2$ if for each pair of distinct points x, y in X, there exist two disjoint βg^* -open sets U and V containing x and y respectively.

Example 3.2: (i) Let X = {a, b, c} with the topology $\tau = \{X, \phi, \{a\}\}$. Here βg^* -open sets are $\{X, \phi, \{a\}, \{b\}\}$. {c}, {a, b}, {b, c}, {a, c}}. Since for the distinct points a and b, there exist a βg^* -open set U= {a} such that a \in U and $b \notin U$ or $U = \{b\}$ such that $a \notin U$ and $b \in U$. In a similar manner other pairs of distinct points may also be discussed. Therefore X is βg^* -T₀ space.

c}, {a, c}}. Since for the distinct points a and b, there exist βg^* -open sets U= {a} and V={b, c} such that a $\in U$

DOI: 10.9790/5728-1501010714

but $b \notin U$ and $a \notin V$ but $b \in V$. In a similar manner other pairs of distinct points may also be discussed. Therefore X is βg^* -T₁ space.

(iii) Let X = {a, b, c} with the topology $\tau = \{X, \varphi, \{c\}, \{a, b\}\}$. Here βg^* -open sets are {X, $\varphi, \{a\}, \{b\}, \{c\}, \{a, b\}, \{b, c\}, \{a, c\}\}$. Since for the distinct points a and c, there exist two disjoint βg^* -open sets U= {a} and V={c} containing a and c. In a similar manner other pairs of distinct points may also be discussed. Therefore X is βg^* -T₂ space.

Remark 3.3: Let (X, τ) be a topological space, then the following statements are true:

- 1. Every βg^* -T₂ space is βg^* -T₁.
- 2. Every βg^* -T₁ space is βg^* -T₀.

Theorem 3.4: Every T_0 space is a βg^* - T_0 space.

Proof: Let X be a T₀ space. Let x, y be two distinct points in X. Since X is T₀ space, there exists an open set M in X such that $x \in M$, $y \notin M$. Since every open set is a βg^* -open set, M is a βg^* -open set in X. Thus, for any two distinct points x, y in X, there exists a βg^* -open set M in X such that $x \in M$, $y \notin M$. Hence X is a βg^* -T₀ space.

Theorem 3.5: A topological space (X, τ) is $\beta g^* - T_0$ if and only if for each pair of distinct points x, y of X, $\beta g^* - cl(\{x\}) \neq \beta g^* - cl(\{y\})$.

Proof: Necessity: Let (X, τ) be a βg^* -T₀ space and x, y be any two distinct points of X. There exists βg^* -open set U containing x or y, say x but not y. Then X–U is a βg^* - closed set which does not contain x but contains y. Since βg^* -cl({y}) is the smallest βg^* -closed set containing y, βg^* -cl({y}) \subseteq X–U and therefore $x \notin \beta g^*$ -cl({y}). Consequently βg^* -cl({x}) $\neq \beta g^*$ -cl({y}).

Sufficiency: Suppose that x, $y \in X$, $x \neq y$ and βg^* -cl($\{x\}$) $\neq \beta g^*$ -cl($\{y\}$). Let z be a point of X such that $z \in \beta g^*$ -cl($\{x\}$) but $z \notin \beta g^*$ -cl($\{y\}$). We claim that $x \notin \beta g^*$ -cl($\{y\}$). For if $x \in \beta g^*$ -cl($\{y\}$) then βg^* -cl($\{x\}$) $\subseteq \beta g^*$ -cl($\{y\}$). This contradicts the fact that $z \notin \beta g^*$ -cl($\{y\}$). Consequently x belongs to the βg^* -open set $X - \beta g^*$ -cl($\{y\}$) to which y does not belong to. Hence (X, τ) is a βg^* -T₀ space.

Theorem 3.6: In a topological space (X, τ) , if the singletons are βg^* -closed then X is βg^* -T₁ space and the converse is true if $\beta G^*O(X, \tau)$ is closed under arbitrary union.

Proof: Let $\{z\}$ is βg^* -closed for every $z \in X$. Let x, $y \in X$ with $x \neq y$. Now $x \neq y$ implies $y \in X - \{x\}$. Hence $X - \{x\}$ is a βg^* -open set that contains y but not x. Similarly $X - \{y\}$ is a βg^* -open set containing x but not y. Therefore X is a βg^* -T₁ space.

Conversely, let (X, τ) be $\beta g^* - T_1$ and x be any point of X. Choose $y \in X - \{x\}$, then $x \neq y$ and so there exists a βg^* -open set U such that $y \in U$ but $x \notin U$. Consequently $y \in U \subseteq X - \{x\}$, that is $X - \{x\} = \cup \{U_y: y \in X - \{x\}\}$ which is βg^* -open. Hence $\{x\}$ is βg^* -closed. That is every singleton set is βg^* -closed.

Theorem 3.7: The following statements are equivalent for a topological space (X, τ)

- 1. X is βg^* -T₂.
- 2. Let $x \in X$. For each $y \neq x$, there exists a βg^* -open set U containing x such that $y \notin \beta g^*$ -cl({U}).
- 3. For each $x \in X$, $\cap \{ \beta g^* cl(\{U\}) : U \in \beta G^*O(X, \tau) \text{ and } x \in U \} = \{x\}.$

Proof: (1) \Rightarrow (2): Let x \in X, and for any y \in X such that x \neq y, there exist two disjoint βg^* -open sets U and V containing x and y respectively, since X is βg^* -T₂. So U \subseteq X–V. Therefore βg^* -cl({U}) \subseteq X–V. So y $\notin \beta g^*$ -cl({U}).

(2) \Rightarrow (3) If possible for some $y \neq x$, $y \in \cap \{\beta g^* - cl(\{U\}) : U \in \beta G^*O(X, \tau) \text{ and } x \in U\}$. This implies $y \in \beta g^* - cl(\{U\})$ for every βg^* -open set U containing x, which contradicts (2). Hence $\cap \{\beta g^* - cl(\{U\}) : U \in \beta G^*O(X, \tau) \text{ and } x \in U\} = \{x\}$.

(3)⇒(1) Let x, y∈X and x ≠ y. Then there exists at least one βg^* -open set U containing x such that $y \notin \beta g^*$ cl({U}). Let V = X- βg^* -cl({U}), then y∈V and x ∈ U and also U∩V= φ . Therefore X is βg^* -T₂.

Theorem 3.8: Let (X, τ) and (Y, σ) be two topological spaces and f: $(X, \tau) \rightarrow (Y, \sigma)$ be an one to one function. Then if f is

(1) βg^* -continuous and Y is a T₀ space then X is a βg^* -T₀ space.

(2) βg^* -irresolute and Y is a βg^* -T₀ space then X is a βg^* -T₀ space.

(3) Continuous and Y is a T_0 space then X is a βg^* - T_0 space.

(4) Onto, βg^* -irresolute and X is a βg^* -T₀ space then Y is a βg^* -T₀ space.

Proof: (1) Let x, y be two distinct points in X. Then f(x) and f(y) are distinct points in Y. Then there exists two open set U in Y such that $f(x) \in U$ and $f(y) \notin U$ or $f(y) \in U$ and $f(x) \notin U$. Then $f^{-1}(U)$ is a βg^* -open set in X such that $x \in f^{1}(U)$ and $y \notin f^{1}(U)$ or $y \in f^{1}(U)$ and $x \notin f^{1}(U)$. Therefore X is a βg^{*} -T₀ space. Proof of (2) to (4) are similar.

Remark 3.9: The property of being a βg^* -T₀ space is preserved under one to one, onto and βg^* -irresolute mappings.

Theorem 3.10: Let (X, τ) and (Y, σ) be two topological spaces and f: $(X, \tau) \rightarrow (Y, \sigma)$ be an one to one function. Then if f is

(1) βg^* -continuous and Y is a T₁ space, then X is a βg^* -T₁ space.

(2) βg^* -irresolute and Y is a βg^* -T₁ space, then X is a βg^* -T₁ space.

- (3) Continuous and Y is a T_1 space, then X is a βg^* - T_1 space.
- (4) Onto and βg^* -irresolute and X is a βg^* -T₁ space then Y is a βg^* -T₁ space.

Proof: Let x, y be two distinct points in X. Then f(x) and f(y) are distinct points in Y. Then there exists two open sets U and V in Y such that $f(x) \in U$ but $f(y) \notin U$ and $f(y) \in V$ and $f(x) \notin V$. Then $f^{-1}(U)$ and $f^{-1}(V)$ are βg^* -open sets in X such that $x \in f^{-1}(U)$ and

 $y \notin f^{1}(U)$ and $y \in f^{1}(V)$ and $x \notin f^{1}(V)$. Therefore X is a βg^{*} -T₁ space. Proof of (2) to (4) are similar.

Remark 3.11: The property of being a βg^* -T₁ space is preserved under one to one, onto and βg^* -irresolute mappings.

Definition 3.12: Let A be a subset of a topological space (X, τ) . The βg^* -kernel of A is defined as the intersection of all βg^* -open sets of (X, τ) which contains A (briefly βg^* -ker(A)). That is βg^* -ker(A) = $\cap \{U \in A \}$ $\beta G^*O(X, \tau) : A \subseteq U$.

Definition 3.13: Let x be a point of a topological space X. Then βg^* -ker(x) = $\cap \{M : M \in \beta G^*O(X, \tau) \text{ and } x \in M\}$.

Theorem 3.14: Let (X, τ) be a topological space and $x \in X$. Then $y \in \beta g^*$ -ker $(\{x\})$ if and only if $x \in \beta g^*$ $cl(\{y\}).$

Proof: Suppose that $y \notin \beta g^*$ -ker({x}). Then there exists a βg^* -open set U containing x such that $y \notin U$. Therefore, $x \notin \beta g^*$ -cl({y}). The proof of the converse case can be done similarly.

Theorem 3.15: Let (X, τ) be a topological space and A be a subset of X. Then βg^* -ker $(\{A\}) = \{x \in X : \beta g^*$ $cl({x}) \cap A \neq \phi$.

Proof: $x \in \beta g^*$ -ker({A}) and suppose βg^* -cl({x}) $\cap A = \phi$. Hence $x \notin X - \beta g^*$ -cl({x}) which is a βg^* -open set containing A. This is impossible, since $x \in \beta g^*$ -ker({A}). Consequently, βg^* -cl({x}) $\cap A \neq \phi$. Next, let $x \in X$ such that βg^* -cl({x}) $\cap A \neq \phi$ and suppose that $x \notin \beta g^*$ -ker({A}). Then there exists a βg^* -open set U containing A and $x \notin U$. Let $y \in \beta g^*$ -cl({x}) $\cap A$. Hence U is a βg^* -neighbourhood of y which does not contain x. By this contradiction $x \in \beta g^*$ -ker({A}) and hence the claim.

Theorem 3.16: The following properties hold for any two subsets A, B of a topological space (X, τ)

1. $A \subseteq \beta g^{\hat{}} - ker(\{A\}).$

- 2. $A \subseteq B$ implies that βg^* -ker({A}) $\subseteq \beta g^*$ -ker({B}). 3. If A is βg^* -open in (X, τ), then $A = \beta g^*$ -ker({A}).
- 4. βg^* -ker(βg^* -ker($\{A\}$)) = βg^* -ker($\{A\}$).

Proof: The proof of (1), (2) and (3) are immediate consequences of Definition 3.12. (4) By (1) and (2), we have βg^* -ker({A}) $\subseteq \beta g^*$ -ker(βg^* -ker({A})). If $x \notin \beta g^*$ -ker({A}), then there exists $U \in \mathbb{R}^+$ $\beta G^{*}O(X, \tau)$ such that $A \subseteq U$ and $x \notin U$. Hence βg^{*} -ker({A}) \subseteq U, and so $x \notin \beta g^{*}$ -ker($\{A\}$)). Thus βg^{*} - $\ker(\beta g^* \operatorname{-ker}(\{A\})) = \beta g^* \operatorname{-ker}(\{A\}).$

Definition 3.17: A topological space (X, τ) is said to be βg^* -symmetric if for any pair of distinct points x and y in X, $x \in \beta g^*$ -cl({y}) implies $y \in \beta g^*$ -cl({x}).

Theorem 3.18: For a topological space (X, τ) , the following are equivalent:

1. (X, τ) is a βg^* -symmetric space.

2. {x} is βg^* -closed, for each x $\in X$.

Proof: (1)=>(2): Let (X, τ) be a βg^* -symmetric space. Assume that $\{x\} \subseteq U \in \beta G^* O(X, \tau)$, but βg^* -cl($\{x\}) \notin U$. Then βg^* -cl($\{x\}$) $\cap (X-U) \neq \phi$. Now, we take $y \in \beta g^*$ -cl($\{x\}$) $\cap (X-U)$, then by hypothesis $x \in \beta g^*$ -cl($\{y\}$) $\subseteq X-U$ that is, $x \notin U$, which is a contradiction. Therefore $\{x\}$ is βg^* -closed, for each $x \in X$. (2) \Rightarrow (1): Assume that $x \in \beta g^*$ -cl($\{y\}$), but $y \notin \beta g^*$ -cl($\{x\}$). Then $\{y\} \subseteq X - \beta g^*$ -cl($\{x\}$) and hence βg^* -

(2) \Rightarrow (1): Assume that $x \in \beta g$ -cl({y}), but $y \notin \beta g$ -cl({x}). Then $\{y\} \subseteq X - \beta g$ -cl({x}) and hence βg - cl({y}) $\subseteq X - \beta g^*$ -cl({x}). Therefore $x \in X - \beta g^*$ -cl({x}), which is contradiction and hence $y \in \beta g^*$ -cl({x}).

Corollary 3.19: Let $\beta G^*O(X, \tau)$ be closed under arbitrary union. If the topological space (X, τ) is a βg^* -T₁ space, then it is βg^* -symmetric.

Proof: In a βg^* -T₁ space, every singleton set is βg^* -closed and therefore, by theorem 3.18, (X, τ) is βg^* -symmetric.

Corollary 3.20: If a topological space (X, τ) is βg^* -symmetric and βg^* -T₀, then (X, τ) is a βg^* -T₁ space.

Proof: Let $x \neq y$ and as (X, τ) is βg^* -T₀, we may assume that $x \in U \subseteq X - \{y\}$ for some $U \in \beta G^*O(X, \tau)$. Then $x \notin \beta g^*$ -cl($\{y\}$) and hence $y \notin \beta g^*$ -cl($\{x\}$). There exists a βg^* -open set V such that $y \in V \subseteq X - \{x\}$ and thus (X, τ) is a βg^* -T₁ space.

IV. βg^* -R_k(k=0, 1) SPACES

In this section, a new class of topological spaces called $\beta g^* - R_0$ and $\beta g^* - R_1$ spaces are introduced and some of their properties are studied.

Definition 4.1: A topological space (X, τ) is said to be $\beta g^* \cdot R_0$ if U is βg^* -open set and $x \in U$ then $\beta g^* \cdot cl(\{x\}) \subseteq U$.

Theorem 4.2: For a topological space (X, τ) the following properties are equivalent:

- (1) (X, τ) is $\beta g^* R_0$ space.
- (2) For any $F \in \beta G^*C(X, \tau)$, $x \notin F$ implies $F \subseteq U$ and $x \notin U$ for some $U \in \beta G^*O(X, \tau)$.
- (3) For any $F \in \beta G^* C(X, \tau)$, $x \notin F$ implies $F \cap \beta g^*$ -cl({x}) = φ .
- (4) For any two distinct points x and y of X, either βg^* -cl({x}) = βg^* -cl({y}) or βg^* -cl({x}) $\cap \beta g^*$ -cl({y}) = ϕ .

Proof: (1) \Rightarrow (2) Let $F \in \beta G^*C(X, \tau)$ and $x \notin F$. Then by (1), βg^* -cl({x}) $\subseteq X - F$. Set $U = X - \beta g^*$ -cl({x}), then U is a βg^* -open set such that $F \subseteq U$ and $x \notin U$.

(2)=>(3) Let $F \in \beta G^*C(X, \tau)$ and $x \notin F$. There exists $U \in \beta G^*O(X, \tau)$ such that $F \subseteq U$ and $x \notin U$. Since $U \in \beta G^*O(X, \tau)$, $U \cap \beta g^*-cl(\{x\}) = \varphi$ and $F \cap \beta g^*-cl(\{x\}) = \varphi$.

(3) \Rightarrow (4) Suppose that βg^* -cl({x}) $\neq \beta g^*$ -cl({y}) for two distinct points x, y $\in X$. There exists $z \in \beta g^*$ -cl({x}) such that $z \notin \beta g^*$ -cl({y}) [or $z \in \beta g^*$ -cl({y}) such that $z \notin \beta g^*$ -cl({x})]. There exists $V \in \beta G^*O(X, \tau)$ such that $y \notin V$ and $z \in V$, hence $x \in V$. Therefore, we have $x \notin \beta g^*$ -cl({y}). By (3), we obtain βg^* -cl({x}) $\cap \beta g^*$ -cl({y}) = φ .

(4) ⇒ (1) Let V∈ $\beta G^*O(X, \tau)$ and x∈V. For each $y \notin V$, $x \neq y$ and $x \notin \beta g^*$ -cl({y}). This shows that βg^* -cl({x}) $\neq \beta g^*$ -cl({y}). By (4), βg^* -cl({x}) $\cap \beta g^*$ -cl({y}) = ϕ for each $y \in X - V$ and hence βg^* -cl({x}) $\cap [\cup \beta g^*$ -cl({y}): $y \in X - V$ }] = ϕ . On the other hand, since V∈ $\beta G^*O(X, \tau)$ and $y \in X - V$, we have βg^* -cl({y}) $\subseteq X - V$ and hence $X - V = \cup \{\beta g^*$ -cl({y}) : $y \in X - V\}$. Therefore, we obtain $(X - V) \cap \beta g^*$ -cl({x}) = ϕ and βg^* -cl({x}) $\subseteq V$. This shows that (X, τ) is a βg^* -R₀ space.

Theorem 4.3: If a topological space (X, τ) is $\beta g^* - T_0$ space and a $\beta g^* - R_0$ space then it is a $\beta g^* - T_1$ space.

Proof: Let x and y be any two distinct points of X. Since X is βg^* -T₀, there exists a βg^* -open set U such that $x \in U$ and $y \notin U$. As $x \in U$, βg^* -cl({x}) $\subseteq U$. Since $y \notin U$, $y \notin \beta g^*$ -cl({x}). Hence $y \in V = X - \beta g^*$ -cl({x}) and it is clear that $x \notin V$. Hence it follows that there exist βg^* -open sets U and V containing x and y respectively, such that $y \notin U$ and $x \notin V$ respectively. This implies that X is a βg^* -T₁ space.

.Theorem 4.4: For a topological space (X, τ) the following properties are equivalent:

(1) (X, τ) is βg^* -R₀ space.

(2) $x \in \beta g^*$ -cl({y}) if and only if $y \in \beta g^*$ -cl({x}), for any two points x and y in X.

Proof: (1) \Rightarrow (2) Assume that X is $\beta g^* \cdot R_0$. Let $x \in \beta g^* \cdot cl(\{y\})$ and V be any βg^* -open set such that $y \in V$. Now by hypothesis, $x \in V$. Therefore, every βg^* -open set which contain y contains x also. Hence $y \in \beta g^* \cdot cl(\{x\})$. (2) \Rightarrow (1) Let U be a βg^* -open set and $x \in U$. If $y \notin U$, then $x \notin \beta g^* \cdot cl(\{y\})$ and hence $y \notin \beta g^* \cdot cl(\{x\})$. This implies that $\beta g^* \cdot cl(\{x\}) \subseteq U$. Hence (X, τ) is $\beta g^* \cdot R_0$ space.

Remark 4.5: From Definition 3.17 and Theorem 4.4 the notion of βg^* -symmetric and βg^* -R₀ are equivalent.

Theorem 4.6: A topological space (X, τ) is $\beta g^* - R_0$ space if and only if for any two points x and y in X, $\beta g^* - cl(\{x\}) \neq \beta g^* - cl(\{y\})$ implies $\beta g^* - cl(\{x\}) \cap \beta g^* - cl(\{y\}) = \varphi$.

Proof: Necessity: Suppose that (X, τ) is $\beta g^* - R_0$ and x and $y \in X$ such that $\beta g^* - cl(\{x\}) \neq \beta g^* - cl(\{y\})$. Then, there exists $z \in \beta g^* - cl(\{x\})$ such that $z \notin \beta g^* - cl(\{y\})$ [or $z \in \beta g^* - cl(\{y\})$ such that $z \notin \beta g^* - cl(\{x\})$]. There exists $V \in \beta G^*O(X, \tau)$ such that $y \notin V$ and $z \in V$, hence $x \in V$. Therefore, we have $x \notin \beta g^* - cl(\{y\})$. Thus $x \in [X - \beta g^* - cl(\{y\})] \in \beta G^*O(X, \tau)$, which implies $\beta g^* - cl(\{x\}) \subseteq [X - \beta g^* - cl(\{y\})]$ and $\beta g^* - cl(\{x\}) \cap \beta g^* - cl(\{y\}) = \varphi$.

Sufficiency: Let $V \in \beta G^*O(X, \tau)$ and let $x \in V$. To show that βg^* -cl({x}) $\subseteq V$. Let $y \notin V$, that is $y \in X - V$. Then $x \neq y$ and $x \notin \beta g^*$ -cl({y}). This shows that βg^* -cl({x}) $\neq \beta g^*$ -cl({y}). By assumption, βg^* -cl({x}) $\cap \beta g^*$ -cl({y}) = φ . Hence $y \notin \beta g^*$ -cl({x}) and therefore βg^* -cl({x}) $\subseteq V$. Hence (X, τ) is βg^* -R₀ space.

Theorem 4.7: The following statements are equivalent for any two points x and y in a topological space (X, τ) : (1) βg^* -ker({x}) $\neq \beta g^*$ -ker({y}). (2) βg^* -cl({x}) $\neq \beta g^*$ -cl({y}).

Proof: (1) \Rightarrow (2) Suppose that βg^* -ker({x}) $\neq \beta g^*$ -ker({y}), then there exists a point z in X such that $z \in \beta g^*$ -ker({x}) and $z \notin \beta g^*$ -ker({y}). Theorem 3.14, implies that $x \in \beta g^*$ -cl({z}), since $z \in \beta g^*$ -ker({x}). By $z \notin \beta g^*$ -ker({y}), we have {y} $\cap \beta g^*$ -cl({z}) = φ . Since $x \in \beta g^*$ -cl({z}), βg^* -cl({x}) $\subseteq \beta g^*$ -cl({z}) and {y} $\cap \beta g^*$ -cl({x}) = φ . Therefore, it follows that βg^* -cl({x}) $\neq \beta g^*$ -cl({y}). Hence βg^* -ker({x}) $\neq \beta g^*$ -ker({y}) implies that βg^* -cl({x}) $\neq \beta g^*$ -cl({x}) $\neq \beta g^*$ -ker({y}).

(2) \Rightarrow (1) Suppose that βg^* -cl({x}) $\neq \beta g^*$ -cl({y}). Then there exists a point z in X such that $z \in \beta g^*$ -cl({x}) but $z \notin \beta g^*$ -cl({y}). We claim that $x \notin \beta g^*$ -cl({y}), for if $x \in \beta g^*$ -cl({y}) then βg^* -cl({x}) $\subseteq \beta g^*$ -cl({y}). This contradicts the fact that $z \notin \beta g^*$ -cl({y}). Hence $x \notin \beta g^*$ -cl({y}). Theorem 3.14, implies $y \notin \beta g^*$ -ker({x}). Therefore, βg^* -ker({x}) $\neq \beta g^*$ -ker({y}).

Theorem 4.8: Let (X, τ) be a topological space. Then $\cap [\beta g^* - cl(\{x\}) : x \in X] = \varphi$ if and only if $\beta g^* - ker(\{x\}) \neq X$ for every $x \in X$.

Proof: Necessity: Suppose that $\cap [\beta g^* - cl(\{x\}) : x \in X] = \varphi$. Assume that there is a point y in X such that $\beta g^* - ker(\{y\}) = X$. Let x be any point of X. Then $x \in U$ for every βg^* -open set U containing y and hence $y \in \beta g^* - cl(\{x\})$ for any $x \in X$. This implies that $y \in \cap \{\beta g^* - cl(\{x\}) : x \in X\}$. But this is a contradiction. Hence $\beta g^* - ker(\{x\}) \neq X$ for every $x \in X$.

Sufficiency: Assume that $\beta g^* \cdot \ker(\{x\}) \neq X$ for every $x \in X$. If there exists a point y in X such that $y \in \cap \{\beta g^* - \operatorname{cl}(\{x\}) : x \in X\}$, then every βg^* -open set containing y must contain every point of X. This implies that the space X is the only βg^* -open set containing y. Hence $\beta g^* \cdot \ker(\{y\}) = X$ which is a contradiction. Therefore $\cap [\beta g^* - \operatorname{cl}(\{x\}) : x \in X\} = \varphi$.

Theorem 4.9: For a topological space (X, τ) the following properties are equivalent:

- (1) (X, τ) is a βg^* -R₀ space.
- (2) For any non-empty set A and $G \in \beta G^*O(X, \tau)$ such that $A \cap G \neq \phi$, there exists $F \in \beta G^*C(X, \tau)$ such that $A \cap F \neq \phi$ and $F \subseteq G$.
- (3) For any $G \in \beta G^*O(X, \tau)$, we have $G = \bigcup \{F \in \beta G^*C(X, \tau) : F \subseteq G\}$.
- (4) For any $F \in \beta G^*C(X, \tau)$, we have $F = \cap \{G \in \beta G^*O(X, \tau) : F \subseteq G\}$.
- (5) For every $x \in X$, βg^* -cl({x}) $\subseteq \beta g^*$ -ker({x}).

Proof: (1) \Rightarrow (2) Let A be a non-empty subset of X and $G \in \beta G^*O(X, \tau)$ such that $A \cap G \neq \phi$. Let $x \in A \cap G$. Then $x \in G \Rightarrow \beta g^* - cl(\{x\}) \subseteq G$, since (X, τ) is $\beta g^* - R_0$ space. Set $F = \beta g^* - cl(\{x\})$, then $F \in \beta G^*C(X, \tau)$, $F \subseteq G$ and $A \cap F \neq \phi$.

 $(2) \Rightarrow (3)$ Let $G \in \beta G^*O(X, \tau)$, choose $x \in \cup \{ F \in \beta G^*C(X, \tau) : F \subseteq G \}$. Then $x \in F$ for some $F \in \beta G^*C(X, \tau)$ and $F \subseteq G$. Therefore, $x \in G$. On the other hand, suppose $x \in G$. If we define $A = \{x\}$, then $A \cap G \neq \phi$. By our hypothesis, there exists $F \in \beta G^*C(X, \tau)$ such that $A \cap F \neq \phi$, and $F \subseteq G$. Since $A = \{x\}$, $x \in F \subseteq \cup \{F \in \beta G^*C(X, \tau) : F \subseteq G\}$. F $\subseteq G \}$. Hence $G = \cup \{F \in \beta G^*C(X, \tau) : F \subseteq G\}$.

 $(3) \Rightarrow (4)$ Obvious.

 $(4) \Rightarrow (5) \text{ Let } x \text{ be any point of } X \text{ and } y \notin \beta g^* \text{-ker}(\{x\}). \text{ There exists } U \in \beta G^*O(X, \tau) \text{ such that } x \in U \text{ and } y \notin U, \\ \text{hence } \beta g^* \text{-cl}(\{y\}) \cap U = \varphi. \text{ By } (4) \ (\cap \{G \in \beta G^*O(X, \tau) : \beta g^* \text{-cl}(\{y\}) \subseteq G\}) \cap U = \varphi \text{ and there exists } G \in \\ \beta G^*O(X, \tau) \text{ such that } x \notin G \text{ and } \beta g^* \text{-cl}(\{y\}) \subseteq G. \text{ Therefore } \beta g^* \text{-cl}(\{x\}) \cap G = \varphi \text{ and } y \notin \beta g^* \text{-cl}(\{x\}). \\ \text{Consequently, we obtain } \beta g^* \text{-cl}(\{x\}) \subseteq \beta g^* \text{-ker}(\{x\}).$

(5) \Rightarrow (1) Let $G \in \beta G^*O(X, \tau)$ and $x \in G$. Let $y \in \beta g^*$ -ker({x}), then $x \in \beta g^*$ -cl({y}) and $y \in G$. This implies that βg^* -ker({x}) $\subseteq G$. Therefore $x \in \beta g^*$ -cl({x}) $\subseteq \beta g^*$ -ker({x}) $\subseteq G$. Therefore (X, τ) is a βg^* -R₀ space.

Theorem 4.10: A topological space (X, τ) is $\beta g^* \cdot R_0$ space if and only if $\beta g^* \cdot cl(\{x\}) = \beta g^* \cdot ker(\{x\})$, for each $x \in X$.

Proof: Let (X, τ) be a βg^* -R₀ space. By theorem 4.9, βg^* -cl($\{x\}$) $\subseteq \beta g^*$ -ker($\{x\}$) for each $x \in X$. Let $y \in \beta g^*$ -ker($\{x\}$), then $x \in \beta g^*$ -cl($\{y\}$) and by theorem 3.14, $y \in \beta g^*$ -cl($\{x\}$) and hence βg^* -ker($\{x\}$) $\subseteq \beta g^*$ -cl($\{x\}$). Therefore βg^* -cl($\{x\}$) = βg^* -ker($\{x\}$). Converse part is true from theorem 4.9.

Theorem 4.11: A topological space (X, τ) is $\beta g^* \cdot R_0$ if and only if for any two points x and y in X, $\beta g^* \cdot \ker(\{x\}) \neq \beta g^* \cdot \ker(\{y\})$ implies $\beta g^* \cdot \ker(\{x\}) \cap \beta g^* \cdot \ker(\{y\}) = \varphi$.

Proof: Suppose that (X, τ) is a βg^* -R₀ space. Thus by theorem 4.7 for any two points x and y in X if βg^* -ker({x}) $\neq \beta g^*$ -ker({y}) then βg^* -cl({x}) $\neq \beta g^*$ -cl({y}). Now we prove that βg^* -ker({x}) $\cap \beta g^*$ -ker({y}) = ϕ . Assume that $z \in \beta g^*$ -ker({x}) $\cap \beta g^*$ -ker({y}) . By $z \in \beta g^*$ -ker({x}) and by theorem 3.14, we get $x \in \beta g^*$ -cl({z}). Since $x \in \beta g^*$ -cl({x}), by theorem 4.2, βg^* -cl({x})= βg^* -cl({z}). Similarly, we have βg^* -cl({y})= βg^* -cl({z})= βg^* -cl({x}). This is a contradiction. Therefore, we have βg^* -ker({x}) $\cap \beta g^*$ -ker({y}) = ϕ .

Conversely, let (X, τ) be a topological space such that for any points x and y in X, βg^* -ker $(\{x\}) \neq \beta g^*$ -ker $(\{y\})$ implies βg^* -ker $(\{x\}) \cap \beta g^*$ -ker $(\{y\}) = \varphi$. Theorem 4.7 states that, if βg^* -ker $(\{x\}) \neq \beta g^*$ -ker $(\{y\})$, then βg^* -cl $(\{x\}) \neq \beta g^*$ -cl $(\{y\})$. By theorem 4.6, it is enough to prove βg^* -cl $(\{x\}) \cap \beta g^*$ -cl $(\{y\}) = \varphi$. Suppose βg^* -cl $(\{x\}) \cap \beta g^*$ -cl $(\{y\}) \neq \varphi$. Let $z \in \beta g^*$ -cl $(\{x\}) \cap \beta g^*$ -cl $(\{y\})$ Then $z \in \beta g^*$ -cl $(\{x\})$ and $z \in \beta g^*$ -cl $(\{y\})$. Since $z \in \beta g^*$ -cl $(\{x\})$, and by theorem 3.14, $x \in \beta g^*$ -ker $(\{z\})$. Therefore, βg^* -ker $(\{x\}) \cap \beta g^*$ -ker $(\{y\}) \neq \varphi$. Then by hypothesis, we get βg^* -ker $(\{x\}) = \beta g^*$ -ker $(\{z\})$. Similarly from $z \in \beta g^*$ -cl $(\{y\})$, we can prove that βg^* -ker $(\{y\}) = \beta g^*$ -ker $(\{z\})$. Therefore βg^* -ker $(\{z\}) = \beta g^*$ -ker $(\{z\})$. Therefore βg^* -cl $(\{x\}) = \beta g^*$ -ker $(\{z\})$. This is a contradiction to our assumption βg^* -cl $(\{x\}) \neq \beta g^*$ -cl $(\{y\})$. Therefore βg^* -cl $(\{x\}) = \beta g^*$ -cl $(\{y\})$. Hence (X, τ) is a βg^* -R₀ space.

Theorem 4.12: For a topological space (X, τ) the following properties are equivalent:

- (1) (X, τ) is a βg^* -R₀ space.
- (2) If F is βg^* -closed, then F= βg^* -ker(F).
- (3) If F is βg^* -closed and x \in F, then βg^* -ker({x}) \subseteq F.
- (4) If $x \in X$, then βg^* -ker $(\{x\}) \subseteq \beta g^*$ -cl $(\{x\})$.

Proof: (1)=>(2) Let F be βg^* -closed and $x \notin F$. Thus X-F is a βg^* -open set containing x. Since (X, τ) is βg^* -R₀, βg^* -cl({x}) \subseteq X-F. Thus βg^* -cl({x}) \cap F = φ and by theorem 3.15, $x \notin \beta g^*$ -ker(F). Therefore βg^* -ker(F) = F. (2) => (3) In general, A \subseteq B implies βg^* -ker(A) $\subseteq \beta g^*$ -ker(B). Therefore, it follows from (2), that βg^* -ker({x}) $\subseteq \beta g^*$ -ker(F) = F.

 $(3) \Rightarrow (4) \text{ Since } x \in \beta g^* \text{-cl}(\{x\}) \text{ and } \beta g^* \text{-cl}(\{x\}) \text{ is } \beta g^* \text{-closed, by } (3), \beta g^* \text{-ker}(\{x\}) \subseteq \beta g^* \text{-cl}(\{x\}).$

(4) \Rightarrow (1) Let $x \in \beta g^*$ -cl({y}). Then by theorem 3.14, $y \in \beta g^*$ -ker({x}). (4) $\Rightarrow y \in \beta g^*$ -ker({x}) $\subseteq \beta g^*$ -cl({x}). Therefore $x \in \beta g^*$ -cl({y}) implies $y \in \beta g^*$ -cl({x}). Therefore (X, τ) is βg^* -R₀ space.

Definition 4.13: In a topological space (X, τ) is said to be $\beta g^* \cdot R_1$ if for x, y, in X with $\beta g^* \cdot cl(\{x\}) \neq \beta g^* \cdot cl(\{y\})$, there exist disjoint $\beta g^* \cdot open$ sets U and V such that $\beta g^* \cdot cl(\{x\}) \subseteq U$ and $\beta g^* \cdot cl(\{y\}) \subseteq V$.

Theorem 4.14: A topological space (X, τ) is $\beta g^* - R_1$ space if it is $\beta g^* - T_2$ space.

Proof: Let x and y be any two points X such that $\beta g^* - cl(\{x\}) \neq \beta g^* - cl(\{y\})$. By Remark 3.3 (1), every $\beta g^* - T_2$ space is $\beta g^* - T_1$ space. Therefore, by theorem 3.6, $\beta g^* - cl(\{x\}) = \{x\}$, $\beta g^* - cl(\{y\}) = \{y\}$ and hence $\{x\} \neq \{y\}$. Since (X, τ) is $\beta g^* - T_2$, there exist a disjoint βg^* -open sets U and V such that $\beta g^* - cl(\{x\}) = \{x\} \subseteq U$ and $\beta g^* - cl(\{y\}) = \{y\} \subseteq V$. Therefore (X, τ) is $\beta g^* - R_1$ space.

Theorem 4.15: For a topological space (X, τ) is βg^* -symmetric, then the following are equivalent:

- (1) (X, τ) is βg^* -T₂ space.
- (2) (X, τ) is βg^* -R₁ space and βg^* -T₁ space.
- (3) (X, τ) is $\beta g^* R_1$ space and $\beta g^* T_0$ space.

Proof: (1) \Rightarrow (2) and (2) \Rightarrow (3) obvious.

 $(3) \Rightarrow (1)$ Let x, y $\in X$ such that $x \neq y$. Since (X, τ) is $\beta g^* - T_0$ space. By theorem 3.5 $\beta g^* - cl(\{x\}) \neq \beta g^* - cl(\{y\})$, since X is $\beta g^* - R_1$, there exist disjoint βg^* -open sets U and V such that $\beta g^* - cl(\{x\}) \subseteq U$ and $\beta g^* - cl(\{y\}) \subseteq V$. Therefore, there exist disjoint βg^* -open set U and V such that $x \in U$ and $y \in V$. Hence (X, τ) is $\beta g^* - T_2$ space.

Remark 4.16: For a topological space (X, τ) the following statements are equivalent:

- (1) (X, τ) is βg^* -R₁ space.
- (2) If x, y $\in X$ such that βg^* -cl({x}) $\neq \beta g^*$ -cl({y}), then there exist βg^* -closed sets F_1 and F_2 such that $x \in F_1$, $y \notin F_1$, $y \in F_2$, $x \notin F_2$ and $X = F_1 \cup F_2$.

Theorem 4.17: If a topological space (X, τ) is $\beta g^* \cdot R_1$ space, then (X, τ) is $\beta g^* \cdot R_0$ space.

Proof: Let U be a βg^* -open set such that $x \in U$. If $y \notin U$, then $x \notin \beta g^*$ -cl($\{y\}$), therefore βg^* -cl($\{x\}$) $\neq \beta g^*$ -cl($\{y\}$). So, there exists a βg^* -open set V such that βg^* -cl($\{y\}$) $\subseteq V$ and $x \notin V$, which implies $y \notin \beta g^*$ -cl($\{x\}$). Hence βg^* -cl($\{x\}$) $\subseteq U$. Therefore, (X, τ) is βg^* -R₀ space.

Theorem 4.18: A topological space (X, τ) is $\beta g^* \cdot R_1$ space if and only if $x \in X - \beta g^* \cdot cl(\{y\})$ implies that x and y have disjoint βg^* -open neighbourhoods.

Proof: Necessity: Let (X, τ) be a βg^* -R₁ space. Let $x \in X - \beta g^*$ -cl($\{y\}$). Then βg^* -cl($\{x\}$) $\neq \beta g^*$ -cl($\{y\}$), so x and y have disjoint βg^* -open neighbourhoods.

Sufficiency: First to show that (X, τ) is $\beta g^* \cdot R_0$ space. Let U be a βg^* -open set and $x \in U$. Suppose that $y \notin U$. Then, $\beta g^* \cdot cl(\{y\}) \cap U = \phi$ and $x \notin \beta g^* \cdot cl(\{y\})$. There exist a βg^* -open sets U_x and U_y such that $x \in U_x$, $y \in U_y$ and $U_x \cap U_y = \phi$. Hence, $\beta g^* \cdot cl(\{x\}) \subseteq \beta g^* \cdot cl(\{U_x\})$ and $\beta g^* \cdot cl(\{x\}) \cap U_y \subseteq \beta g^* \cdot cl(\{U_x\}) \cap U_y = \phi$. [For since U_y is βg^* -open set, $X - U_y$ is $\beta g^* \cdot closed$ set. So $\beta g^* \cdot cl(\{X - U_y\}) = X - U_y$. Also since $U_x \cap U_y = \phi$ and $U_x \subseteq U_y^c$. So $\beta g^* - cl(\{U_x\}) \subseteq \beta g^* - cl(\{X - U_y\})$. Thus $\beta g^* - cl(\{U_x\}) \subseteq X - U_y$. Therefore, $y \notin \beta g^* - cl(\{x\})$. Consequently, $\beta g^* - cl(\{x\}) \subseteq U$ and (X, τ) is $\beta g^* - R_0$ space. Next to show that (X, τ) is $\beta g^* - R_1$ space. Suppose that $\beta g^* - cl(\{x\}) \neq \beta g^* - cl(\{y\})$. Then, assume that there exists $z \in \beta g^* - cl(\{x\})$ such that $z \notin \beta g^* - cl(\{y\})$. There exist a βg^* -open sets V_z and V_y such that $z \in V_z$, $y \in V_y$ and $V_z \cap V_y = \phi$. Since $z \in \beta g^* - cl(\{x\})$, $x \in V_z$. Since (X, τ) is $\beta g^* - R_0$ space, we obtain $\beta g^* - cl(\{x\}) \subseteq V_z$, $\beta g^* - cl(\{y\}) \subseteq V_y$ and $V_z \cap V_y = \phi$. Therefore (X, τ) is $\beta g^* - R_1$ space.

Theorem 4.19: A topological space (X, τ) is $\beta g^* \cdot R_1$ space if and only if for each $x \neq y \in X$ with $\beta g^* \cdot \ker(\{x\}) \neq \beta g^* \cdot \ker(\{y\})$, then there exist $\beta g^* \cdot \operatorname{closed}$ sets G_1 , G_2 such that $\beta g^* \cdot \ker(\{x\}) \subseteq G_1$, $\beta g^* \cdot \ker(\{x\}) \cap G_2 = \varphi$ and $\beta g^* \cdot \ker(\{y\}) \subseteq G_2$, $\beta g^* \cdot \ker(\{y\}) \cap G_1 = \varphi$ and $G_1 \cup G_2 = X$.

Proof: Let (X, τ) be a βg^* -R₁ space such that for each $x \neq y \in X$ with βg^* -ker $(\{x\}) \neq \beta g^*$ -ker $(\{y\})$. Since every βg^* -R₁ space is βg^* -R₀ space. By theorem 4.7, βg^* -cl $(\{x\}) \neq \beta g^*$ -cl $(\{y\})$. As X is βg^* -R₁ space there exists βg^* -open sets U₁, U₂ such that βg^* -cl $(\{x\}) \subseteq U_1$ and βg^* -cl $(\{y\}) \subseteq U_2$ and U₁ $\cap U_2 = \phi$ then X -U₁ and X -U₂ are βg^* -closed sets such that $(X - U_1 \cup X - U_2) = X$. Put G₁= X -U₂ and G₂ = X -U₁. Thus $x \subseteq G_1$ and $y \subseteq G_2$, so that βg^* -ker $(\{x\}) \subseteq G_1$, βg^* -ker $(\{y\}) \subseteq G_2$ and G₁ $\cup G_2 = X$ and βg^* -ker $(\{x\}) \cap G_2 = \phi$, βg^* -ker $(\{y\}) \cap G_1 = \phi$. Conversely, let for each $x \neq y \in X$ with βg^* -ker $(\{x\}) \neq \beta g^*$ -ker $(\{y\})$, there exists βg^* -closed sets G₁ and G₂ such that βg^* -ker $(\{x\}) \subseteq G_1$, βg^* -ker $(\{x\}) \cap G_2 = \phi$ and βg^* -ker $(\{y\}) \subseteq G_2$, βg^* -ker $(\{y\}) \cap G_1 = \phi$ and G₁ $\cup G_2 = X$, then X -G₁ and X -G₂ are βg^* -open sets such that $(X - G_1 \cap X - G_2) = \phi$. Put X-G₁= U₂ and X-G₂= U₁. Thus βg^* -ker $(\{x\}) \subseteq U_1$ and βg^* -ker $(\{y\}) \subseteq U_2$ and U₁ $\cap U_2 = \phi$, so that $x \in U_1$ and $y \in U_2$ implies $x \notin \beta g^*$ -cl $(\{y\})$ and $y \notin g^*$ -cl $(\{x\})$, then βg^* -cl $(\{x\}) \subseteq U_1$ and βg^* -cl $(\{y\}) \subseteq U_2$. Thus (X, τ) is βg^* -R₁ space.

Corollary 4.20: A topological space (X, τ) is $\beta g^* \cdot R_1$ space if and only if for each $x \neq y \in X$ with $\beta g^* \cdot cl(\{x\}) \neq 0$ βg^* -cl({y}) there exist disjoint βg^* -open sets U and V such that βg^* -cl(βg^* -ker({x})) \subseteq U and βg^* -cl(βg^* $ker(\{y\})) \subseteq V.$

Proof: Let (X, τ) be a βg^* -R₁ space and let $x \neq y \in X$ with βg^* -cl({x}) $\neq \beta g^*$ -cl({y}), then there exist disjoint βg^* -open sets U and V such that βg^* -cl({x}) \subseteq U and βg^* -cl({y}) \subseteq V. Also (X, τ) is βg^* -R₀ space implies by theorem 4.10, for each $x \in X$, then βg^* -cl({x})= βg^* -ker({x}), but βg^* -cl({x})= βg^* -cl($\{x\}$))) \subseteq U and βg^* -cl($\{y\}$)) \subseteq V. Conversely, let for each $x \neq y \in X$ with βg^* -cl($\{x\}$) $\neq \beta g^*$ -cl($\{y\}$), there exist disjoint βg^* -open sets U and V such that βg^* -cl(βg^* -ker({x}))) \subseteq U and βg^* -cl(βg^* -ker({x})) then βg^* -cl({x}) $\subseteq \beta g^*$ -cl(βg^* -ker({x})) for each $x \in X$, so we get βg^* -cl($\{x\}$) \subseteq U and βg^* -cl($\{y\}$) \subseteq U. Thus (X, τ) is βg^* -R₁ space.

Theorem 4.21: A topological space (X, τ) is $\beta g^* - T_0$ space if and only if either $y \notin \beta g^* - \ker(\{x\})$ or $x \notin \beta g^*$ $ker(\{y\})$, for each $x \neq y \in X$.

Proof: Let (X, τ) be a βg^* -T₀ space then for each $x \neq y \in X$, there exist βg^* -open set U such that $x \in U, y \notin U$ or $x \notin U, y \in U$. Thus if $x \in U$ and $y \notin U$ then $y \notin \beta g^*$ -ker({x}) or else if $x \notin U$ and $y \in U$ then $x \notin \beta g^*$ -ker({y}). Conversely, let either $y \notin \beta g^*$ -ker({x}) or $x \notin \beta g^*$ -ker({y}), for each $x \neq y \in X$. Then there exists βg^* -open set U such that $x \in U$, $y \notin U$ or $x \notin U$, $y \in U$. Thus (X, τ) is $\beta g^* - T_0$ space.

Theorem 4.22: A topological space (X, τ) is βg^* -T₁ space if and only if for each $x \neq y \in X$, $y \notin \beta g^*$ -ker({x}) and $x \notin \beta g^*$ -ker({y}).

Proof: Let (X, τ) be a βg^* -T₁ space then for each $x \neq y \in X$, there exists βg^* -open sets U, V such that $x \in U$, $y \notin U$ and $y \in V$, $x \notin V$ implies $y \notin \beta g^*$ -ker({x}) and $x \notin \beta g^*$ -ker({y}).

Conversely, let $y \notin \beta g^*$ -ker({x}) and $x \notin \beta g^*$ -ker({y}), for each $x \neq y \in X$. Then there exists βg^* -open sets U, V such that $x \in U$, $y \notin U$ and $y \in V$, $x \notin V$. Thus (X, τ) is βg^* -T₁ space.

Theorem 4.23: A topological space (X, τ) is $\beta g^* - T_1$ space if and only if for each $x \neq y \in X$, $\beta g^* - \ker(\{x\}) \cap \beta g^*$. $ker(\{y\}) = \phi$.

Proof: Let (X, τ) be a βg^* - T_1 space. Then βg^* -ker $(\{x\}) = \{x\}$ and βg^* -ker $(\{y\}) = \{y\}$. Thus βg^* -ker $(\{x\}) \cap$ βg^* -ker({y}) = φ .

Conversely, let for each $x \neq y \in X$ implies βg^* -ker({x}) $\cap \beta g^*$ -ker({y}) = φ and suppose that (X, τ) be not βg^* -T₁ space then by theorem 4.21 we get for each $x \neq y \in X$ implies $y \in \beta g^*$ -ker({x}) or $x \in \beta g^*$ -ker({y}), then βg^* - $\ker(\{x\}) \cap \beta g^* - \ker(\{y\}) \neq \phi$ this is contradiction. Thus (X, τ) is $\beta g^* - T_1$ space.

Corollary 4.24: Let (X, τ) be a topological space. A βg^* -T₁ space is βg^* -T₂ space if and only if one of the following conditions holds:

- 1. For each $x \neq y \in X$ with $\beta g^* cl(\{x\}) \neq \beta g^* cl(\{y\})$, then there exist $\beta g^* open sets U, V$ such that $\beta g^* cl(\beta g^* cl(\{y\})) = 0$. $\ker(\{x\}) \subseteq U$ and $\beta g^* - \operatorname{cl}(\beta g^* - \ker(\{y\})) \subseteq V$.
- 2. For each $x \neq y \in X$ with βg^* -ker({x}) $\neq \beta g^*$ -ker({y}), then there exist βg^* -closed sets F_1 , F_2 such that βg^* -ker({x}) $\subseteq F_1$, βg^* -ker({x}) $\cap F_2 = \phi$ and βg^* -ker({y}) $\subseteq F_2$, βg^* -ker({y}) $\cap F_1$ and $F_1 \cup F_2 = X$.

References

- D.Andrijevic, semi preopen sets, Mat.Vesnik, 38(1) (1986), 24-32 [1].
- K.Balachandran, P.Sundaram and H.Maki, On generalized continuous maps in topological spaces, [2]. Mem.Fac.sci.Kochi.Univ.Math.,12(1991),5-13.
- [3]. C.Dhanapakyam ,K.ndirani,On β g*closed sets in topological spaces, Int. J. App. Research (2016),388-391
- [4]. N.Levine, Generalized Closed sets in Topology, rend.Cir.Mat.palermo,2(1970),89-96. N.Levine, Semiopen sets and semi continuity in topological spaces., Amer. Math. Monthly, 70(1963), 36-41.
- M.K.R.S Veerakumar, Between closed sets and g-closed sets, Mem. Fac. Sci.Kochi Univ.Ser.A, Math., 21 [5]. (2000) 1-19.

C. Dhanapakyam. "ßg* – Separation Axioms." IOSR Journal of Mathematics (IOSR-JM) 15.1 (2019): 07-14

DOI: 10.9790/5728-150101071