On Commutativity Property Of $\boldsymbol{Q}_{k, m, n}, P_{k, m, n}, P_{k, m, \infty}$ and $\boldsymbol{Q}_{\boldsymbol{k} \cdot m, \infty}$ Rings

${ }^{1}$ G.Gopalakrishnamoorthy, H.Habeeb Rani ${ }^{2}$ and ${ }^{3}$ V Thiripurasundari
${ }^{1}$ Advisor, Sri Krishnasamy arts and science college, Mettamalai, Sattur
${ }^{2}$ Assistant Professor of Mathematics, H.K.R.H.College, Uthamapalayam, Theni district, Tamil nadu.
${ }^{3}$ Assistant Professor of Mathematics, Sri S.R.N.M.College, Sattur,Virudhunagar district,Tamil nadu Corresponding Author: G.Gopalakrishnamoorthy

```
ABSTRACT: We study commutativity in Rings \(R\) with the property that for fixed positive integers \(k, m, n, x^{k} S^{m}=\) \(S^{m} x^{k}\) for all \(x \in R\) and for all \(n\)-subsets \(S\) of \(R\).
```


I. Introduction

Recently G.Gopalakrishnamoorthy and S.Anitha have defined $Q_{k, n}$-rings by the property that $\mathrm{x}^{\mathrm{k}} \mathrm{S}=\mathrm{Sx}^{\mathrm{k}}$ for all $\mathrm{x} \in R$ and for all n -subsets S of R . They also have defined $Q_{k, \omega^{-}}$rings by the property that $\mathrm{x}^{\mathrm{k}} \mathrm{S}=\mathrm{Sx}{ }^{\mathrm{k}}$ for all $\mathrm{x} \in R$ and for all infinite subsets S of R , and defined $P_{k, n^{-}}$ring to be a ring R with the property that $\mathrm{XY}=\mathrm{YX}$ for all k-subsets X of R and n -subsets Y of R.. Also they have defined $P_{k, \infty}$-ring by the property that XY $=\mathrm{YX}$ for all k-subsets X of R and all infinite subsets Y of R . obviously every $Q_{k, n}$-ring is a $P_{k, n^{-}}$ring and every $P_{k, n^{-}}$ ring is a $P_{k, \infty}$-ring .It is proved that any $Q_{k, n}$-ring with identity such that $|R|>n$,is commutative. If $n \leq 4, Q_{k, n}$ -rings are commutative .If $n \leq 8$,every $Q_{k, n}$-ring with 1 is commutative.
In this paper we define $Q_{k, m, n}$-rings and $P_{k, m, n}$-rings, thus generalizing the above concepts and discuss their commutativity.

II. Preliminaries

Let R be an arbitrary ring not necessarily with identity.Let $\mathrm{D}, \mathrm{N}, \mathrm{Z}$ and $\mathrm{C}(\mathrm{R})$ denote the set of zero divisors, the set of nilpotents, the center and the commutator ideal of R respectively. Let $|R|$ denote the cardinality of R.For any subset Y of R , let $\mathrm{CR}(\mathrm{Y}), \mathrm{A} 1(\mathrm{Y}), \operatorname{Ar}(\mathrm{Y})$ and $\mathrm{A}(\mathrm{Y})$ denote the centralizer of Y ,the left,right and two sided annihilators of Y respectively.For $x, y \in R$ the set $L x, y, k$ is defined to be $\left\{w \in R \mid x^{k} y=w x^{k}\right\}$ where $\mathrm{k} \geq 1$ is a fixed integer.

2.1 Definition

Let k, m, n be three fixed positive integers.A ring R is said to be $Q_{k, m, n}$ ring if $x^{k} S^{m}=S^{m} x^{k}$ for all $x \in R$ and for all n subsets S of R.
where $|R|>\mathrm{n}$ and $\mathrm{S}^{\mathrm{m}}=\left\{\mathrm{s}^{\mathrm{m}} / \mathrm{s} \in \mathrm{S}\right\}$

2.2 Definition

Let $\mathrm{k}, \mathrm{m}, \mathrm{n}$ be three fixed positive integers.A ring R is said to be $\mathrm{P}_{\mathrm{k}, \mathrm{m}, \mathrm{n}}$ ring
$X^{m} Y^{m}=Y^{m} X^{m}$ for all k-subsets X of R and n-subsets Y of R.

2.3 Definition

Let k, m be two fixed positive integers. A ring R is said to be $Q_{k, m, \infty}$, ring if $\mathrm{x}^{\mathrm{k}} \mathrm{S}^{\mathrm{m}}=\mathrm{S}^{\mathrm{m}} \mathrm{x}^{\mathrm{k}}$ for all $\mathrm{x} \in \mathrm{R}$ and for all infinite subsets S of R.
where $|R|>\mathrm{n}$ and $\mathrm{S}^{\mathrm{m}}=\left\{\mathrm{s}^{\mathrm{m}} / \mathrm{s} \in \mathrm{S}\right\}$

2.4 Definition

Let k, m, be two fixed positive integers. A ring R is said to be $P_{k, m, \infty}$, ring
$\mathrm{X}^{\mathrm{m}} \mathrm{Y}^{\mathrm{m}}=\mathrm{Y}^{\mathrm{m}} \mathrm{X}^{\mathrm{m}}$ for all k -subsets X of R and for all infinite subsets Y of R .
Taking $\mathrm{m}=1$ we note that $\mathrm{XY}=\mathrm{YX}$ for all k -subsets X of R and for all infinite subsets Y of R .
We simply call $P_{k, 1, \infty}$ ring as a $P_{k, \infty}$ ring.

2.5 Note

i. Every $Q_{k, m, n}$ ring is a $Q_{k, m, \infty}$ ring
ii. Every $Q_{k, m, n}$ ring is a $P_{k, m, n}$ ring
iii. Every $P_{k, m, n}$ ring is a $P_{k, m, \infty}$ ring
iv. Every $Q_{k, m, \infty}$ ring is a $P_{k, m, \infty}$ ring
v. Every $Q_{k, \ldots \infty}$ ring is a $P_{k, \infty}$ ring

2.6 Definition

Let R be a ring and I be a subset of R.Let (k, m) be fixed positive integers.I is said to be a left (k, m) - ideal of R if
i. $\quad x^{m}, y^{m} \in I \Rightarrow x^{m}-y^{m} \in I$ and
ii. $\quad x^{m} \in I, r \in R \Rightarrow r^{k} x^{m} \in I$

Similarly the right (k, m)-Ideal and two sided (k, m) ideal can be defined.

2.7 Lemma

Let R be a $Q_{k, m, n}$ ring with $|R|>\mathrm{n}$. Then
i. for all $x \in R, x^{k} R^{m}=R^{m} x^{k}$
ii. If x^{k} is idempotent then x^{k} commutes with the $m^{\text {th }}$ power of every $a \in R$
iii. $\quad \mathrm{N}$ is a (k, m) ideal of R .
iv. $\quad\left|A_{r}\left(x^{k}\right)^{m}\right|=\left|A_{l}\left(x^{k}\right)^{m}\right|$
v. If R is not commutative and $\left(x^{k}\right)^{m} \notin Z$ then $R \backslash A_{1}\left(x^{k}\right)^{m} \cup C_{R}\left(x^{k}\right)^{m}$ and $R \backslash A_{r}\left(x^{k}\right)^{m} \cup C_{R}\left(x^{k}\right)^{m}$ are non-empty.

Proof:

Let R be a $Q_{k, m, n}$ ring with $|R|>\mathrm{n}$
i. $\quad z \in R^{m} x^{k}$ iff $z=r^{m} x^{k}$ for some $r \in R$
iff $z \in S^{m} x^{k}$ for some n-subsets $S \subset R$
iff $z \in x^{k} S^{m}$ for some n-subsets $S \subset R$
iff $\mathrm{z}=\mathrm{x}^{\mathrm{k}}\left(\mathrm{s}^{\mathrm{m}}\right)$ ' for some $\mathrm{s} \in \mathrm{S} \subset \mathrm{R}$
iff $z \in x^{k} R^{m}$
i.e, $R^{m} x^{k}=x^{k} R^{m}$ for all $x \in R$
ii. Let $x \in R$ be such that x^{k} is idempotent.Then for all $a \in R$

$$
\begin{aligned}
x^{k} a^{m} & =x^{2 k} a^{m}\left(\begin{array}{l}
\text { since } \\
x^{k}
\end{array}\right. \\
& =x^{k}\left(x^{k} \cdot a^{m}\right) \\
& =x^{k}\left(a^{m} \cdot x^{k}\right)\left(\text { since } x^{k} R^{m}=R^{m} x^{k}\right) \\
& =\left(x^{k} \cdot a^{m}\right) x^{k} \\
& =\left(a^{m} \cdot x^{k}\right) x^{k}\left(\text { since } x^{k} R^{m}=R^{m} x^{k}\right) \\
& =a^{m} x^{2 k} \\
& =a^{m} x^{k}\left(\text { since } x^{k} \text { is idempotent }\right)
\end{aligned}
$$

Hence x^{k} commutes with the $m^{\text {th }}$ power of every $a \in R$
iii. Let $\mathrm{x}^{\mathrm{m}}, \mathrm{y}^{\mathrm{m}} \in \mathrm{N}$. clearly $\mathrm{x}^{\mathrm{m}}+\mathrm{y}^{\mathrm{m}} \in \mathrm{N}$ (adopt the standard proof that N is an ideal in commutative rings)

Since $\mathrm{x}^{\mathrm{m}} \in \mathrm{N},\left(\mathrm{x}^{\mathrm{m}}\right)^{\mathrm{n}}=0$ for some $\mathrm{n} \geq 1$.
For all $\mathrm{r} \in R$

$$
\begin{aligned}
& \left(\mathrm{r}^{\mathrm{k}} \mathrm{x}^{\mathrm{m}}\right)^{\mathrm{n}}=\left(\mathrm{r}^{\mathrm{k}} \mathrm{x}^{\mathrm{m}}\right)\left(\mathrm{r}^{\mathrm{k}} \mathrm{x}^{\mathrm{m}}\right) \ldots \ldots .\left(\mathrm{r}^{\mathrm{k}} \mathrm{x}^{\mathrm{m}}\right) \mathrm{n} \text { times } \\
& =r^{\mathrm{k}}\left(\mathrm{x}^{\mathrm{m}} \mathrm{r}^{\mathrm{k}}\right)\left(\mathrm{x}^{\mathrm{m} r^{k}}\right) \ldots \ldots\left(\mathrm{x}^{\mathrm{m}} \mathrm{r}^{\mathrm{k}}\right) \mathrm{x}^{\mathrm{m} .} \\
& =r^{k}\left(r^{k} x^{m}\right)\left(r^{k} x^{m}\right) \ldots \ldots\left(r^{k} x^{m}\right) x^{m} \\
& =r^{2 k}\left(x^{m} r^{k}\right)\left(x^{m} r^{k}\right) \ldots \ldots\left(x^{m} r^{k}\right) x^{2 m} \\
& =r^{2 k}\left(r^{k} x^{m}\right)\left(r^{k} x^{m}\right) \ldots \ldots\left(r^{k} x^{m}\right) x^{2 m} \\
& =r^{3 \mathrm{k}}\left(\mathrm{x}^{\mathrm{m}} \mathrm{r}^{\mathrm{k}}\right)\left(\mathrm{x}^{\mathrm{m}} \mathrm{r}^{\mathrm{k}}\right) \ldots \ldots\left(\mathrm{x}^{\mathrm{m}} \mathrm{r}^{\mathrm{k}}\right) \mathrm{x}^{3 \mathrm{~m}} \\
& = \\
& =\mathrm{r}^{\mathrm{nk}} \mathrm{x}^{\mathrm{nm}} \\
& =0\left(\text { since }\left(x^{m}\right)^{\mathrm{n}}=\mathrm{x}^{\mathrm{mn}}=0\right) \\
& \left(\mathrm{r}^{\mathrm{k}} \mathrm{x}^{\mathrm{m}}\right)^{\mathrm{n}}=\mathrm{o} \\
& \text { Hence } r^{k} x^{m} \in N \\
& \text { Thus } x^{m} \in N, r \in R \Rightarrow r^{k} x^{m} \in N \\
& \text { So, } N \text { is a (k,m) ideal of } R
\end{aligned}
$$

iv. Also,
$\mathrm{z}^{\mathrm{m}} \in A_{l}\left(x^{k}\right)^{m} \quad$ iff $\mathrm{z}^{\mathrm{m}} \mathrm{x}^{\mathrm{k}}=0$

$$
\begin{gathered}
\text { iff } \mathrm{x}^{\mathrm{k} \mathrm{z}^{\mathrm{m}}=0 \quad(\text { using (i) })} \\
\text { iff } \mathrm{z}^{\mathrm{m}} \in A_{r}\left(x^{k}\right)^{m}
\end{gathered}
$$

Hence $\left|A_{l}\left(x^{k}\right)^{m}\right|=\left|A_{r}\left(x^{k}\right)^{m}\right|$
v. Let R be a non-commutative ring and x^{k} does not belongs to Z . Then there exist $\mathrm{y} \in \mathrm{R}$ such that $x^{k} y^{m} \neq y^{m} x^{k}$ Consequently y does not belongs to $C_{r}\left(x^{k}\right)^{m} . S_{0} C_{r}\left(x^{k}\right)^{m}$ is a proper subgroups of $(R,+)$.Then from (i) and (iv) imply that $A_{l}\left(x^{k}\right)^{m}$ and $A_{r}\left(x^{k}\right)^{m}$ are also proper subgroups of ($\mathrm{R},+$). Since a group cannot be the union of two proper subgroups,(v) is proved.

2.8 Note

This generalizes lemma 2.8[4].

2.9 Lemma

If R is an infinite $Q_{k, m, n}$ ring then R is commutative.

Proof

Let R be an infinite $\mathrm{Q}_{\mathrm{k}, \mathrm{m}, \mathrm{n}}$ ring.
If R is commutative then there is nothing to prove.
Suppose R is non-commutative. Since all $\mathrm{Q}_{1,1,1}$ rings are commutative, $\mathrm{k}>1, \mathrm{~m}>1$ and $\mathrm{n}>1$.
Assume that R is not a $Q_{k, m, s}$ ring for any $s<n$ Then there exist $x \in R$ and an ($n-1$) subset H of R such that $\mathrm{x}^{\mathrm{k}} \mathrm{H}^{\mathrm{m}} \neq \mathrm{H}^{\mathrm{m}} \mathrm{x}^{\mathrm{k}}$. Since R is infinite $\mathrm{R} \backslash \mathrm{H} \neq \varnothing$
For any $\mathrm{a} \in \mathrm{R} \mid \mathrm{H}, \mathrm{x}^{\mathrm{k}}(\mathrm{H} \cup\{a\})^{\mathrm{m}}=(\mathrm{H} \cup\{a\})^{\mathrm{m}} \mathrm{x}^{\mathrm{k}}$
So if we take $h \in H$ for which $x^{k} h^{m}$ does not belongs to $H^{m} x^{k}$
We have $\mathrm{x}^{\mathrm{k}} \mathrm{h}^{\mathrm{m}}=\mathrm{a}^{\mathrm{m}} \mathrm{x}^{\mathrm{k}}$
Since (1) holds for all $\mathrm{a} \in \mathrm{R} \backslash \mathrm{H}$ it follows that for fixed
$b \in R \backslash H, R \backslash H^{m} \subseteq b^{m}+A_{1}\left(x^{k}\right)^{m}$
Moreover

$$
\begin{align*}
& \text { if } c \in A_{l}\left(x^{k}\right),\left(b^{m}+c^{m}\right) x^{k}=b^{m} x^{k}+c^{m} x^{k} \tag{2}\\
& =b^{m} x^{\mathrm{k}} \\
& =\mathrm{x}^{\mathrm{k}} \mathrm{~h}^{\mathrm{m}} \notin \mathrm{H}^{\mathrm{m}} \mathrm{x}^{\mathrm{k}}
\end{align*}
$$

So $b^{m}+c^{m} \notin H^{m}$
That is $b^{m}+c^{m} \notin b^{m}+A_{l}\left(x^{k}\right)^{m}$
This implies $\mathrm{b}+\mathrm{c} \notin \mathrm{H}$
Hence $\mathrm{b}^{\mathrm{m}}+\mathrm{A}_{\mathrm{l}}\left(\mathrm{x}^{\mathrm{k}}\right)^{\mathrm{m}} \subseteq \mathrm{R}-\mathrm{H}^{\mathrm{m}}$
Hence by (2) and (3) we have
$\mathrm{R}-\mathrm{H}^{\mathrm{m}}=\mathrm{b}^{\mathrm{m}}+\mathrm{A}_{1}\left(\mathrm{x}^{\mathrm{k}}\right)^{\mathrm{m}}$
Hence $\left|\mathrm{R}-\mathrm{H}^{\mathrm{m}}\right|=\left|\mathrm{A}_{1}\left(\mathrm{x}^{\mathrm{k}}\right)^{\mathrm{m}}\right|$ and
$\left|\mathrm{R} \backslash \mathrm{A}_{\mathrm{l}}\left(\mathrm{x}^{\mathrm{k}}\right)^{\mathrm{m}}\right|=\left|\mathrm{H}^{\mathrm{m}}\right|$
Since $A_{l}\left(x^{k}\right)$ is a proper subgroup of $(R,+)$
we have
$\left|R-A_{l}\left(x^{k}\right)^{m}\right| \geq\left|A_{l}\left(x^{k}\right)^{m}\right|$
That is $\left|\mathrm{H}^{\mathrm{m}}\right|>\left|\mathrm{R}-\mathrm{H}^{\mathrm{m}}\right|$
The finiteness of H^{m} yields finiteness of R,contradicting
R is infinite.
Hence R is commutative

2.10 Note :

This generalizes lemma 2.10[4]

2.11 Lemma: (See[6])

If R is a finite ring with $\mathrm{N} \subseteq Z$, then R is commutative.

2.12 Remark

Inview of lemma 2.11,we assume henceforth that R is finite.

III. Commutativity of $\mathbf{Q}_{\mathrm{k}, \mathrm{m}, \mathrm{n}}$ Rings

3.1Theorem If R is any $Q_{k, m, n}$ ring with identity such that $|R|>n$, then R is commutative.

Proof : If R is infinite,Commutativity follows from Lemma 2.9.So, assume R is finite.
By Lemma 2.11, we need only to show that $\mathrm{N} \subseteq \mathrm{Z}$.
Since $u \varepsilon N$ implies $1+u$ is invertible, it sufficies to prove that invertible elements are central.
Let $x \varepsilon R$ be an invertible element. If $x \varepsilon Z$, there is nothing to prove. Assume $x \notin Z$,
then $x^{m} \notin Z^{m}$. Hence $C_{R}\left(x^{m}\right)$ is a proper subset of R. Choose $y \varepsilon R$ such that $y^{m} \notin C_{R}\left(x^{m}\right)$.
Then $y^{m} x^{m} \neq x^{m} y^{m}$. If H is any $(n-1)$ subset R, which does not contain y, the condition
$\left(x^{\mathrm{k}}\right)^{\mathrm{m}}\left(\left\{\mathrm{y}^{\mathrm{m}}\right\} \cup \mathrm{H}^{\mathrm{m}}\right)=\left(\left\{\mathrm{y}^{\mathrm{m}}\right\} \cup \mathrm{H}^{\mathrm{m}}\right)\left(\mathrm{x}^{\mathrm{k}}\right)^{\mathrm{m}}$ yields an $\mathrm{z} \varepsilon \mathrm{H}$ such that
$\left(x^{\mathrm{k}}\right)^{\mathrm{m}} \mathrm{y}^{\mathrm{m}}=\mathrm{z}^{\mathrm{m}}\left(\mathrm{x}^{\mathrm{k}}\right)^{\mathrm{m}}$
(1)

Since x is invertible, there is unique $z \varepsilon R$ satisfying (1). Thus we have proved that every(n-1) subsets of R contains either y^{m} or z^{m}.
But $S=\left|R-\left\{y^{m}, z^{m}\right\}\right|$ does not contain y^{m} and z^{m} and $|S| \geq n-1$, a contradiction. This contradiction proves that non - central invertible elements cannot exist. This proves the theorem.

3.2 Remark

This theorem generalizes theorem 3.1[4]

3.3 Theorem

Let $n \geq 4$ and let R be a $Q_{k, m, n}$ ring $|R|>2 n-2$ or if n is even and $|R|>2 n-4$.
Then $\left(x^{k}\right)^{m} \varepsilon Z$ for all $x \varepsilon R$.
Proof : le $n \geq 4$ and R be a $Q_{k, m, n}$ ring.
We shall prove that if there exists $x \in R$ such that $\left(x^{k}\right)^{m} \notin Z$, then $|R| \leq 2 n-2$ or $|R| \leq 2 n-4$.
Since $(n-1)<2 n-4$, we may suppose that $|R| \geq n$. Suppose there exists $x \in R$ such that $\left(x^{k}\right)^{m} \notin Z$, by Lemma 2.8(v), there exists

$$
\left.\mathrm{y} \varepsilon \mathrm{R} \backslash\left\{\mathrm{~A}_{\mathrm{r}}\left(\mathrm{x}^{\mathrm{k}}\right)^{\mathrm{m}}\right\} \cup \mathrm{C}_{\mathrm{R}}\left(\mathrm{x}^{\mathrm{k}}\right)^{\mathrm{m}}\right\} .
$$

If H is any ($n-1$) subset which doesnot contain y, we have
$\left.\left.\left(\mathrm{x}^{\mathrm{k}}\right)^{\mathrm{m}}\left(\left\{\mathrm{y}^{\mathrm{m}}\right\}\right\} \cup \mathrm{H}^{\mathrm{m}}\right)=\left(\left\{\mathrm{y}^{\mathrm{m}}\right\}\right\} \cup \mathrm{H}^{\mathrm{m}}\right)\left(\mathrm{x}^{\mathrm{k}}\right)^{\mathrm{m}}$.
Since $\left(x^{k}\right)^{m} y^{m} \neq z^{m}\left(x^{k}\right)^{m}$, there exists $z^{m} \varepsilon H$ such that That $\left(x^{k}\right)^{m} y^{m}=z^{m}\left(x^{k}\right)^{m} \quad$ is $z^{m} \varepsilon L_{x, y, k}$.
So $\mathrm{H}^{\mathrm{m}} \cap \mathrm{L}_{\mathrm{x}, \mathrm{y}, \mathrm{k}} \neq \phi$.
Thus we have proved that any ($n-1$) subset of R must either contain y or intersect $L_{x, y, k}$
This condition cannot hold if $\left|\mathrm{R}-\mathrm{L}_{\mathrm{x}, \mathrm{y}, \mathrm{k}}\right| \geq \mathrm{n}$.
So, $\left|R-L_{x, y}\right| \leq(n-1)$
That is $|\mathrm{R}| \leq\left|\mathrm{L}_{\mathrm{x}, \mathrm{y}, \mathrm{k}}\right|+(\mathrm{n}-1)$
Now, if $w \varepsilon L_{x, y, k}$ then $L_{x, y, k}=w+A_{1}\left(x^{k}\right)^{m}$
Hence $\left|L_{x, y, k}\right|=\left|A_{1}\left(x^{k}\right)^{m}\right|$.
Again by Lemma $2.8(\mathrm{v}), \mathrm{A}_{1}\left(\mathrm{x}^{\mathrm{k}}\right)^{\mathrm{m}} \neq \mathrm{R}$.
So $\left|\mathrm{L}_{\mathrm{x}, \mathrm{y}, \mathrm{k}}\right|=\frac{|\mathrm{R}|}{P}$ for some $\mathrm{p} \geq 2$.
Substituting in(1), we get $|\mathrm{R}| \leq \frac{|\mathrm{R}|}{P}+(\mathrm{n}-1)$
i.e, $|R|(1-1 / \mathrm{p}) \leq(\mathrm{n}-1)$
i.e, $|R| \leq \frac{p}{p-1}(n-1) \leq 2 n-2$

Suppose that n is even, If $\left(A_{1}\left(x^{k}\right)^{m}\right)$ has index atleast 3 in ($R,+$), the inequality (2) yields

$$
|\mathrm{R}| \leq \frac{3(\mathrm{n}-1)}{2} \leq 2 \mathrm{n}-4
$$

Thus we may assume that $\left|A_{1}\left(x^{k}\right)^{m}\right|=\frac{|R|}{2}$ We shall show that $|R| \neq 2 n-2$.
Suppose $|R|=2 n-2$, then $\left|A_{r}\left(x^{k}\right)^{m}\right|=\frac{2 n-2}{2}=(n-1)$. So $\left|A_{1}\left(x^{k}\right)^{m}\right|=(n-1)$
We note that $A_{l}\left(x^{k}\right)^{m}$ is an ($n-1$) subset not intersecting $L_{x, y, k}$.
Hence y $\varepsilon \mathrm{A}_{\mathrm{l}}\left(\mathrm{x}^{\mathrm{k}}\right)^{\mathrm{m}}$.
Since $y \varepsilon R \backslash\left\{A_{r}\left(x^{k}\right)^{m} \cup C_{R}\left(x^{k}\right)^{m}\right\}$, we see that $y \notin A_{r}\left(x^{k}\right)^{m}$.
So, $A_{l}\left(x^{k}\right)^{m} \neq A_{r}\left(x^{k}\right)^{m}$ and consequently $A_{r}\left(x^{k}\right)^{m}\left(x^{k}\right)^{m} \neq 0$.
Now, $x^{k m}\left(\left\{y^{m}\right\} \cup A_{r}\left(x^{k}\right)^{m}\right)=\left(\left\{y^{m}\right\} \cup A_{r}\left(x^{k}\right)^{m}\right)\left(x^{k}\right){ }^{m}$ and therefore $A_{r}\left(x^{k}\right)^{m}\left(x^{k}\right)^{m} \subseteq\left\{\left(x^{k}\right)^{m}, y^{m}, 0\right\}$.
Hence $A_{r}\left(x^{k}\right)^{m}\left(x^{k}\right)^{m}=\left\{0, x^{k}, y^{m}\right\}$ is an additive subgroup of order 2 .
Hence the map $\phi: \mathrm{A}_{\mathrm{r}}\left(\mathrm{x}^{\mathrm{k}}\right)^{\mathrm{m}} \rightarrow \mathrm{A}_{\mathrm{r}}\left(\mathrm{x}^{\mathrm{k}}\right)^{\mathrm{m}}\left(\mathrm{x}^{\mathrm{k}}\right)^{\mathrm{m}}$ given by $\phi(\mathrm{w})=\mathrm{w}\left(\mathrm{x}^{\mathrm{k}}\right)^{\mathrm{m}}$ has kernel of index 2 in $\mathrm{A}_{\mathrm{r}}\left(\mathrm{x}^{\mathrm{k}}\right)^{m}$.
But $\left|A_{r}\left(x^{k}\right)^{m}\right|$ is odd and so we have a contradiction.
Hence $|\mathrm{R}| \leq 2 n-4$.

3.4 Lemma (Theorem 5|5|)

Suppose the ring R is such that $\mathrm{x}^{\mathrm{n}(\mathrm{x})} \varepsilon \mathrm{Z}$, the centre of R , for all $\mathrm{x} \varepsilon \mathrm{R}$. Then if R has no non - zero nilideals, it must be commutative.

3.5 Theorem

Let $n \geq 4$ and R be a $Q_{k, m, n}$ ring. If $|R|>2 n-2$ or if n is even and $|R|>2 n-4$, then R is commutative, provided R has no non- zero nilideals.
Proof: Follows from Theorem 3.3 and Lemma 3.4.

3.6 Theorem

Let $\mathrm{n} \geq 4$ and let R be a $\mathrm{Q}_{\mathrm{k}, \mathrm{m}, \mathrm{n}}$ ring with $|\mathrm{R}|>\frac{3}{2}(\mathrm{n}-1)$. Then R is commutative, if one the following is satisfied
i. $|R|$ is odd.
ii. ($R,+$) is not the union of three proper subgroups.
iii. N is commutative.
iv. $R^{3} \neq\{0\}$.

Proof: (i) Assume $|R|$ is odd.
Suppose that R is not commutative.
Since, $|R|>\frac{3}{2}(n-1)>n$
The arguments in the proof of throrem 3.3 gives
$\left|\mathrm{A}_{\mathrm{r}}\left(\mathrm{x}^{\mathrm{k}}\right)^{\mathrm{m}}\right|=\left|\mathrm{A}_{\mathrm{r}}\left(\mathrm{x}^{\mathrm{k}}\right)^{\mathrm{m}}\right|=|\mathrm{R}| / 2$
This is impossible. So, R must be commutative.
(ii) Assume ($\mathrm{R},+$) is not the union of three proper subgroups. Suppose that R is not commutative. Then by (i), $|\mathrm{R}|$ is even. By applying the first isomorphism throrem of groups:

$$
\left|\left(x^{k}\right)^{m} R\right|=\left|R\left(x^{k}\right)^{m}\right|=2
$$

Hence for any $u \in R \backslash A_{r}\left(x^{k}\right)^{m},\left(x^{k}\right)^{m} R=\left\{0,\left(x^{k}\right)^{m} u\right\}$ and for any $v \varepsilon R \backslash A_{r}\left(x^{k}\right)^{m}$
$R\left(x^{k}\right)^{m}=\left\{0, v\left(x^{k}\right)^{m}\right\}$
By Lemma 2.8(i),
$\left(x^{\mathrm{k}}\right)^{\mathrm{m}} \mathrm{R}=\mathrm{R}\left(\mathrm{x}^{\mathrm{k}}\right)^{\mathrm{m}}$.
If $y \varepsilon R \backslash A_{l}\left(x^{k}\right)^{m} \cup A_{r}\left(x^{k}\right)^{m}$ then
$\left\{0,\left(x^{k}\right)^{m} y\right\}=\left(x^{k}\right)^{m} R=R\left(x^{k}\right)^{m}=\left\{0, y\left(x^{k}\right)^{m}\right\}$
Hence $y \in C_{R}\left(x^{k}\right)^{m}$
Thus $R=A_{1}\left(x^{k}\right)^{m} \cup A_{r}\left(x^{k}\right)^{m} \cup C_{R}\left(x^{k}\right)^{m}$ which is a contradiction to our assumtion that ($R,+$) is not the union of three proper subgroups.
(iii) Assume N is commutative.

Suppose R is not commutative. Then by throrem 3.1, if R is any $Q_{k, m, n}$ ring with 1 such that
$|R|>n$, then R is commutative.
Now, R doesnot have 1 . Hence, $R=D$ fro R is finite. If $\left(x^{k}\right)^{m} \notin N$, some power of $\left(x^{k}\right)^{m}$ is an idempotent zero divisor e $\neq 0$.
Since, $A_{r}\left(x^{k}\right)^{m} \subseteq A_{1}(e)$ and $A_{1}(e) \neq R$,
We must have $\mathrm{A}_{1}\left(\mathrm{x}^{\mathrm{k}}\right)^{\mathrm{m}}=\mathrm{A}_{1}(\mathrm{e})$
And similarly $\mathrm{A}_{\mathrm{r}}\left(\mathrm{x}^{\mathrm{k}}\right)^{\mathrm{m}}=\mathrm{A}_{\mathrm{r}}(\mathrm{e})$
By lemma 2.8 (ii),e is central.
Hence, $A_{l}\left(x^{k}\right)^{m}=A_{r}\left(x^{k}\right)^{m}=A\left(x^{k}\right)^{m} \subseteq C_{R}\left(x^{k}\right)^{m}$.
Thus if $y \notin A\left(x^{k}\right)^{m}$ then $y \notin A_{1}\left(x^{k}\right)^{m}$ and $y \notin A_{r}\left(x^{k}\right)^{m}$.
$\mathrm{Y} \notin \mathrm{A}_{\mathrm{l}}\left(\mathrm{x}^{\mathrm{k}}\right)^{\mathrm{m}} \rightarrow \mathrm{y} \varepsilon \mathrm{R} \backslash \mathrm{A}_{\mathrm{l}}\left(\mathrm{x}^{\mathrm{k}}\right)^{\mathrm{m}}$.

$$
\rightarrow\left\{0,\left(\mathrm{x}^{\mathrm{k}}\right)^{\mathrm{m}} \mathrm{y}\right\}=\left(\mathrm{x}^{\mathrm{k}}\right)^{\mathrm{m}} \mathrm{R}=\mathrm{R}\left(\mathrm{x}^{\mathrm{k}}\right)^{\mathrm{m}}=\left\{0, \mathrm{y}\left(\mathrm{x}^{\mathrm{k}}\right)^{\mathrm{m}}\right\}
$$

Hence $y \varepsilon C_{R}\left(x^{k}\right)^{m}$ which is the contradiction to the assumption that $\left(x^{k}\right)^{m} \notin Z$.
Hence $\left(x^{k}\right)^{m}$ is a non - central element.
If there exits two non - commutative elements, which is a contradicton to the assumption that N is commutative. (iv) Assume $\mathrm{R}^{3} \neq 0$.

Suppose R is not commutative. Then there exists $x \varepsilon R$ such that $x \notin Z$. the fact that $\left(x^{k}\right)^{m} \varepsilon N$ yields
$\mathrm{A}_{\mathrm{r}}\left(\mathrm{x}^{\mathrm{k}}\right)^{\mathrm{m}} \supseteq \mathrm{A}_{\mathrm{r}}\left(\mathrm{x}^{\mathrm{k}}\right)^{\mathrm{m}}$
So, $A_{r}\left(x^{k}\right)^{m}=R$
Hence, $\left(x^{k+1}\right)^{m} R=R\left(x^{k+1}\right)^{m}=(0)$
Choose y $\left.\varepsilon R \backslash \mathrm{~A}_{\mathrm{r}}\left(\mathrm{x}^{\mathrm{k}}\right)^{\mathrm{m}} \cup \mathrm{C}_{\mathrm{R}}\left(\mathrm{x}^{\mathrm{k}}\right)^{\mathrm{m}}\right)$ and $\left.\mathrm{w} \varepsilon \mathrm{R} \backslash \mathrm{A}_{\mathrm{r}}\left(\mathrm{x}^{\mathrm{k}}\right)^{\mathrm{m}} \cup \mathrm{C}_{\mathrm{R}}\left(\mathrm{x}^{\mathrm{k}}\right)^{\mathrm{m}}\right)$)
Then $\mathrm{y}^{\mathrm{k}+1} \mathrm{R}=R \mathrm{y}^{\mathrm{k}+1}$
More over, $\left\{0,\left(x^{k}\right)^{m} y\right\}=\left(x^{k}\right)^{m} R=R\left(x^{k}\right)^{m}=\left\{0, w\left(x^{k}\right)^{m}\right\}$ so that $\left(x^{k}\right)^{m} y=w\left(x^{k}\right)^{m}$

Thus $\left(x^{k}\right)^{m} R^{2}=\left(x^{k}\right)^{m} y R=w\left(x^{k}\right)^{m} R=\left\{w\left(x^{k}\right)^{m} y, 0\right\}=\left\{x y^{k+1}, 0\right\}=(0)$
If $z \varepsilon Z$ then $\left(x^{k}\right)^{m}+Z \notin Z$ so that $(x+Z) R^{2}=\{0\}$
Hence $R^{3}=\{0\}$, which is a contradiction to the fact that $R^{3} \neq\{0\}$.
Hence R is commutative.

IV. Further Results for Small n

4.1 Theorem

If $\mathrm{n} \leq 8$, then every $\mathrm{Q}_{\mathrm{k}, \mathrm{m}, \mathrm{n}}$ ring with 1 is commutative.
Proof: Let R be any $\mathrm{Q}_{\mathrm{k}, \mathrm{m}, \mathrm{n}}$ ring with identity. Suppose R is not commutative.
We any assume that $\mathrm{n}=8$.
Then by theorem $3.1,|\mathrm{R}| \leq 8$.
Since all rings with 1 having fewer than 8 elements are commutative, $|R|=8$ and R is indecomposable. Since idempotents are central, we must have no idempotents except 0 and 1 . Hence every element is either nilpotent or invertible. Since u $\varepsilon N, 1+u$ is invertible. If follows from lemma 2.12, there exists a pair x^{m}, y^{m} of non- commuting invertible elements. The groups of units is not commutative and has almost 7 elements, hence is isomorphic to S_{3}. Thus, there exists a unique non - zero nilpotent element u which by Lemma 2.12 is not central. Hence there is an invertible element w such that $u\left(w^{k}\right)^{m} \neq\left(w^{k}\right)^{m} u$. By Lemma 2.8(iii), $\left(w^{k}\right)^{m}$ and $u\left(w^{k}\right)^{m}$ are non-zero nilpotents. This gives a contradiction.
So, R is ccommutative.

References

1]. H.E.Bell: A.Setwise commutativity Property for Rings, Comm.Algebra 25 No.3,(1997),989-998
[2]. H.E.Bell: A.A.Klein: A Combinatorial commutativity Property for Rings, VMMS 29-9,(2002),525-530.
[3]. B.Corbas: Rings With Few ZeroDivisors, Math.Ann.181,(1969),1-7.
[4]. Dr.G.Gopalakrishnamoorthy:S.Anitha,On Commutativity Property of $Q_{k, n}, Q_{k, \infty}, P_{k, n}, P_{\infty}$ and $Q_{, \infty}$ Rings ,Jour.of.Inst.Of Mathematics and computer Science(Mathematics Series) Vol.23,No.2(2010)63-70.
[5]. I.N.Herstein:A Theorem on Rings,Canad J.Maths.5,(1953),238-241.
[6]. I.N.Herstein: A Note on Rings With Central Nilpotent Elements, Proc.Amer.Math.Soc. 5 (1954),620.

G.Gopalakrishnamoorthy. " On Commutativity Property Of Q_(k,m,n),P_(k,m,n),P_(k,m, ∞)And

 Q_(k.m, ∞) Rings." IOSR Journal of Mathematics (IOSR-JM) 15.1 (2019): 29-34.