On Commutativity Property Of $Q_{k,m,n}$, $P_{k,m,n}$, $P_{k,m,\infty}$ and $Q_{k,m,\infty}$ Rings

¹ G.Gopalakrishnamoorthy, H.Habeeb Rani² and ³ V Thiripurasundari

¹Advisor, Sri Krishnasamy arts and science college, Mettamalai, Sattur. ²Assistant Professor of Mathematics, H.K.R.H.College, Uthamapalayam, Theni district, Tamil nadu. ³Assistant Professor of Mathematics, Sri S.R.N.M.College, Sattur, Virudhunagar district, Tamil nadu Corresponding Author: G.Gopalakrishnamoorthy

ABSTRACT: We study commutativity in Rings R with the property that for fixed positive integers k,m,n, $x^k S^m = S^m x^k$ for all $x \in R$ and for all n-subsets S of R.

Date of Submission: 12-01-2019 Date of acceptance: 27-01-2019

I. Introduction

Recently G.Gopalakrishnamoorthy and S.Anitha have defined $Q_{k,n}$ -rings by the property that $x^k S=Sx^k$ for all $x \in R$ and for all n-subsets S of R. They also have defined $Q_{k,n}$ - rings by the property that $x^k S = Sx^k$ for all $x \in R$ and for all infinite subsets S of R, and defined $P_{k,n}$ - ring to be a ring R with the property that XY=YX for all k-subsets X of R and n-subsets Y of R. Also they have defined $P_{k,n}$ -ring by the property that XY=YX for all k-subsets X of R and all infinite subsets Y of R. Obviously every $Q_{k,n}$ -ring is a $P_{k,n}$ - ring and every $P_{k,n}$ -ring is a $P_{k,n}$ - ring. It is proved that any $Q_{k,n}$ -ring with identity such that |R| > n, is commutative. If $n \le 4$, $Q_{k,n}$ -rings are commutative. If $n \le 8$, every $Q_{k,n}$ -ring with 1 is commutative.

In this paper we define $Q_{k,m,n}$ -rings and $P_{k,m,n}$ -rings, thus generalizing the above concepts and discuss their commutativity.

II. Preliminaries

Let R be an arbitrary ring not necessarily with identity.Let D,N,Z and C(R) denote the set of zero divisors, the set of nilpotents, the center and the commutator ideal of R respectively. Let |R| denote the cardinality of R.For any subset Y of R,let CR(Y),A1(Y), Ar(Y) and A(Y) denote the centralizer of Y,the left,right and two sided annihilators of Y respectively.For $x,y \in R$ the set Lx,y,k is defined to be $\{w \in R | x^k y = wx^k\}$ where $k \ge 1$ is a fixed integer.

2.1 Definition

Let k,m,n be three fixed positive integers. A ring R is said to be $Q_{k,m,n}$ ring if $x^k S^m = S^m x^k$ for all $x \in R$ and for all n-subsets S of R. where |R| > n and $S^m = \{s^m/s \in S\}$

2.2 Definition

Let k,m,n be three fixed positive integers. A ring R is said to be $P_{k,m,n}$ ring $X^m Y^m = Y^m X^m$ for all k-subsets X of R and n-subsets Y of R.

2.3 Definition

Let k,m be two fixed positive integers. A ring R is said to be $Q_{k,m,\infty}$, ring if $x^k S^m = S^m x^k$ for all $x \in \mathbb{R}$ and for all infinite subsets S of R. where |R| > n and $S^m = \{s^m/s \in S\}$

2.4 Definition

Let k, m, be two fixed positive integers. A ring R is said to be $P_{k,m,\infty}$, ring $X^m Y^m = Y^m X^m$ for all k-subsets X of R and for all infinite subsets Y of R. Taking m=1 we note that XY=YX for all k-subsets X of R and for all infinite subsets Y of R. We simply call $P_{k,1,\infty}$ ring as a $P_{k,\infty}$ ring.

2.5 Note

- **i.** Every $Q_{k,m,n}$ ring is a $Q_{k,m,\infty}$ ring
- **ii.** Every $Q_{k,m,n}$ ring is a $P_{k,m,n}$ ring
- **iii.** Every $P_{k,m,n}$ ring is a $P_{k,m,\infty}$ ring
- **iv.** Every $Q_{k,m,\infty}$ ring is a $P_{k,m,\infty}$ ring
- **v.** Every $Q_{k_{u}\infty}$ ring is a $P_{k,\infty}$ ring

2.6 Definition

Let R be a ring and I be a subset of R.Let (k, m) be fixed positive integers.I is said to be a left (k,m)- ideal of R if

i. $x^m, y^m \in I \Rightarrow x^m \cdot y^m \in I$ and

ii. $x^m \in I, r \in R \Rightarrow r^k x^m \in I$

Similarly the right (k,m)-Ideal and two sided (k,m) ideal can be defined.

2.7 Lemma

Let R be a $Q_{k,m,n}$ ring with |R| > n. Then

- for all $x \in R, x^k R^m = R^m x^k$ i.
- If x^k is idempotent then x^k commutes with the mth power of every $a \in \mathbb{R}$ ii.
- iii. N is a (k,m) ideal of R.
- $|A_r(x^k)^m| = |A_l(x^k)^m|$ iv.
- If R is not commutative and $(x^k)^m \notin \mathbb{Z}$ then $\mathbb{R}\setminus A_l(x^k)^m \cup C_R(x^k)^m$ and $\mathbb{R}\setminus A_r(x^k)^m \cup C_R(x^k)^m$ are non-empty. v.

Proof:

Let R be a $Q_{k,m,n}$ ring with |R| > ni. $z \in \mathbb{R}^m x^k$ iff $z = r^m x^k$ for some $r \in \mathbb{R}$ iff $z \in \mathbb{S}^m x^k$ for some n-subsets $S \subset \mathbb{R}$ iff $z \in x^k S^m$ for some n-subsets $S \subset R$ iff $z = x^k (s^m)$ ' for some $s \in S \subset R$ iff $z \in x^k R^m$ i.e, $R^m x^k = x^k R^m$ for all $x \in R$ Let $x \in R$ be such that x^k is idempotent. Then for all $a \in R$ ii. $x^{k}a^{m} = x^{2k}a^{m}$ (since x^{k} is idempotent) $= x^{k} (x^{k} a^{m})$ $= \mathbf{x}^{k} (\mathbf{a}^{m} \cdot \mathbf{x}^{k}) (\text{since } \mathbf{x}^{k} \mathbf{R}^{m} = \mathbf{R}^{m} \mathbf{x}^{k})$ $= (\mathbf{x}^{k} \cdot \mathbf{a}^{m}) \mathbf{x}^{k}$ = $(a^m.x^k) x^k$ (since $x^k R^m = R^m x^k$) $= a^m x^{2k}$ $= a^m x^k$ (since x^k is idempotent) Hence x^k commutes with the mth power of every $a \in R$

Let $x^m, y^m \in N$.clearly $x^m+y^m \in N$ (adopt the standard proof that N is an ideal in commutative rings) iii. Since $x^m \in N$, $(x^m)^n = 0$ for some $n \ge 1$. For all $r \in R$

For all
$$r \in \mathbf{X}$$

 $(r^k x^m)^n = (r^k x^m) (r^k x^m) \dots (r^k x^m) n \text{ times}$
 $= r^k (x^m r^k) (x^m r^k) \dots (x^m r^k) x^m$ (using (i))
 $= r^{2k} (r^k x^m) (r^k x^m) \dots (r^k x^m) x^{2m}$
 $= r^{2k} (r^k x^m) (r^k x^m) \dots (r^k x^m) x^{2m}$
 $= r^{3k} (x^m r^k) (x^m r^k) \dots (x^m r^k) x^{3m}$
 $= \dots \dots \dots$
 $= r^{nk} x^{nm}$
 $= 0 (\text{since } (x^m)^n = x^{mn} = 0)$
 $(r^k x^m)^n = o$
Hence $r^k x^m \in N$
Thus $x^m \in N, r \in R \Rightarrow r^k x^m \in N$
So, N is a (k,m) ideal of R

iv. Also,

 $z^{m} \in A_{l}(x^{k})^{m} \quad iff \ z^{m}x^{k} = 0$ iff $x^{k}z^{m} = 0$ (using (i)) iff $z^{m} \in A_{r}(x^{k})^{m}$

Hence $|A_{l}(x^{k})^{m}| = |A_{r}(x^{k})^{m}|$

v. Let R be a non-commutative ring and x^k does not belongs to Z.Then there exist $y \in R$ such that $x^k y^m \neq y^m x^k$ Consequently y does not belongs to $C_r(x^k)^m$.So $C_r(x^k)^m$ is a proper subgroups of (R,+).Then from (i) and (iv) imply that $A_l(x^k)^m$ and $A_r(x^k)^m$ are also proper subgroups of (R,+).Since a group cannot be the union of two proper subgroups,(v) is proved.

2.8 Note

This generalizes lemma 2.8[4].

2.9 Lemma

If R is an infinite $Q_{k,m,n}$ ring then R is commutative.

Proof

Let R be an infinite $Q_{k,m,n}$ ring. If R is commutative then there is nothing to prove. Suppose R is non-commutative. Since all Q_{1,1,1} rings are commutative, k>1, m>1 and n>1. Assume that R is not a $Q_{k,m,s}$ ring for any s<n Then there exist x \in R and an (n-1) subset H of R such that $x^{k}H^{m} \neq H^{m}x^{k}$. Since R is infinite $R \setminus H \neq \emptyset$ For any $a \in R|H, x^k(H \cup \{a\})^m = (H \cup \{a\})^m x^k$ So if we take $h \in H$ for which $x^k h^m$ does not belongs to $H^m x^k$ We have $x^k h^m = a^m x^k$ (1)Since (1) holds for all $a \in \mathbb{R} \setminus \mathbb{H}$ it follows that for fixed $b \in \mathbb{R} \setminus H, \mathbb{R} \setminus H^m \subseteq b^m + A_l(x^k)^m$ (2)Moreover if $c \in A_{l}(x^{k})$, $(b^{m}+c^{m})x^{k}=b^{m}x^{k}+c^{m}x^{k}$ $= \mathbf{b}^{\mathbf{m}}\mathbf{x}^{\mathbf{k}}$ $= x^k h^m \notin H^m x^k$ So $b^m + c^m \notin H^m$ That is $b^m + c^m \notin b^m + A_1(x^k)^m$ This implies $b+c \notin H$ Hence $b^m + A_l(x^k)^m \subseteq R - H^m$ (3) Hence by (2) and (3) we have $R-H^m = b^m + A_l(x^k)^m$ Hence $|\mathbf{R}-\mathbf{H}^m| = |\mathbf{A}_l(\mathbf{x}^k)^m|$ and $|\mathbf{R} \setminus \mathbf{A}_{\mathbf{l}}(\mathbf{x}^{\mathbf{k}})^{\mathbf{m}}| = |\mathbf{H}^{\mathbf{m}}|$ Since $A_i(x^k)$ is a proper subgroup of (R,+)we have $|\mathbf{R}-\mathbf{A}_{\mathbf{l}}(\mathbf{x}^{\mathbf{k}})^{\mathbf{m}}| \geq |\mathbf{A}_{\mathbf{l}}(\mathbf{x}^{\mathbf{k}})^{\mathbf{m}}|$ That is $|H^m| > |R-H^m|$ The finiteness of H^m yields finiteness of R, contradicting R is infinite. Hence R is commutative 2.10 Note :

This generalizes lemma 2.10[4] 2.11 Lemma: (See[6]) If R is a finite ring with $N \subseteq Z$, then R is commutative. 2.12 Remark Inview of lemma 2.11, we assume henceforth that R is finite.

III. Commutativity of Q_{k,m,n} Rings

3.1Theorem If R is any $Q_{k,m,n}$ ring with identity such that |R|>n, then R is commutative. **Proof** : If R is infinite,Commutativity follows from Lemma 2.9.So, assume R is finite. By Lemma 2.11, we need only to show that N \subseteq Z. Since u ε N implies 1+u is invertible,it sufficies to prove that invertible elements are central.

Let x ε R be an invertible element. If x ε Z, there is nothing to prove. Assume x \notin Z,

then $x^m \notin Z^m$. Hence $C_R(x^m)$ is a proper subset of R. Choose $y \in R$ such that $y^m \notin C_R(x^m)$.

Then $y^m x^m \neq x^m y^m$. If H is any (n-1) subset R, which does not contain y, the condition

 $(x^k)^m\!(\{y^m\}\cup H^m\!)\!=\!(\{y^m\}\!\cup H^m\!)\,(x^k)^m$ yields an z $\epsilon\,H$ such that

 $(x^k)^m y^m = z^m (x^k)^m$ (1) Since x is invertible, there is unique z ε R satisfying (1). Thus we have proved that every(n-1) subsets of R contains either y^m or z^m.

But $S = |R-\{y^m, z^m\}|$ does not contain y^m and z^m and $|S| \ge n-1$, a contradiction. This contradiction proves that non – central invertible elements cannot exist. This proves the theorem.

3.2 Remark

This theorem generalizes theorem 3.1[4]

3.3 Theorem

Let $n \ge 4$ and let R be a $Q_{k,m,n}$ ring |R| > 2n - 2 or if n is even and |R| > 2n - 4.

Then $(x^k)^m \varepsilon Z$ for all $x \varepsilon R$.

Proof : le $n \ge 4$ and R be a $Q_{k,m,n}$ ring.

We shall prove that if there exists x \in R such that $(x^k)^m \notin Z$, then $|R| \le 2n - 2$ or $|R| \le 2n - 4$.

Since (n-1) < 2n-4, we may suppose that $|R| \ge n$. Suppose there exists $x \in R$ such that $(x^k)^m \notin Z$, by Lemma 2.8(v), there exists

 $y \in \mathbb{R} \setminus \{A_r(x^k)^m\} \cup C_R(x^k)^m\}.$ If H is any (n-1) subset which doesnot contain y, we have $(x^k)^m(\{y^m\} \cup H^m) = (\{y^m\} \cup H^m) (x^k)^m$. Since $(x^k)^m y^m \neq z^m(x^k)^m$, there exists $z^m \in H$ such that $That (x^k)^m y^m = z^m(x^k)^m$ is $z^m \in L_{x,y,k}$. So $H^m \cap L_{x,y,k} \neq \phi$. Thus we have proved that any (n-1) subset of R must either contain y or intersect L_{x,y,k} This condition cannot hold if $|\mathbf{R} - \mathbf{L}_{x,y,k}| \ge n$. So, $|R-L_{x,y}| \le (n-1)$ That is $|\mathbf{R}| \le |\mathbf{L}_{x,y,k}| + (n-1)$ (1)Now, if w $\epsilon L_{x,y,k}$ then $L_{x,y,k} = w + A_1(x^k)^m$ Hence $|L_{x,v,k}| = |A_1(x^k)^m|$. Again by Lemma 2.8 (v), $A_1(x^k)^m \neq R$. So $|L_{x,y,k}| = \frac{|R|}{p}$ for some $p \ge 2$. Substituting in(1), we get $|\mathbf{R}| \leq \frac{|\mathbf{R}|}{p} + (n-1)$ i.e, $|\mathbf{R}|(1-1/p) \le (n-1)$ i.e, $|\mathbf{R}| \le \frac{p}{p-1} (n-1) \le 2n - 2$ (2)Suppose that n is even, If $(A_1(x^k)^m)$ has index at least 3 in (R,+), the inequality (2) yields $|R| \le \frac{3(n-1)}{2} \le 2n-4$ Thus we may assume that $|A_1(x^k)^m| = \frac{|R|}{2}$ We shall show that $|R| \neq 2n-2$. Suppose |R| = 2n - 2, then $|A_r(x^k)^m| = \frac{2n-2}{2} = (n-1)$. So $|A_l(x^k)^m| = (n-1)$ We note that $A_l(x^k)^m$ is an (n-1) subset not intersecting $L_{x,y,k}$. Hence $y \in A_l(x^k)^m$ Since $y \in \mathbb{R} \setminus \{A_r(x^k)^m \cup C_R(x^k)^m\}$, we see that $y \notin A_r(x^k)^m$. So, $A_{l}(x^{k})^{m} \neq A_{r}(x^{k})^{m}$ and consequently $A_{r}(x^{k})^{m}(x^{k})^{m} \neq 0$. Now, $x^{km}(\{y^m\} \cup A_r(x^k)^m) = (\{y^m\} \cup A_r(x^k)^m)(x^k)^m$ and therefore $A_r(x^k)^m(x^k)^m \subseteq \{(x^k)^m, y^m, 0\}$. Hence $A_r(x^k)^m(x^k)^m = \{0, x^k, y^m\}$ is an additive subgroup of order 2. Hence the map ϕ : $A_r(x^k)^m \rightarrow A_r(x^k)^m$ (x^k)^m given by $\phi(w) = w(x^k)^m$ has kernel of index 2 in $A_r(x^k)^m$. But $|A_r(x^k)^m|$ is odd and so we have a contradiction. Hence $|\mathbf{R}| \leq 2n - 4$.

3.4 Lemma (Theorem 5|5|)

Suppose the ring R is such that $x^{n(x)} \in Z$, the centre of R, for all $x \in R$. Then if R has no non – zero nilideals, it must be commutative.

3.5 Theorem

Let $n \ge 4$ and R be a $Q_{k,m,n}$ ring. If |R| > 2n - 2 or if n is even and |R| > 2n - 4, then R is commutative, provided R has no non-zero nilideals.

Proof: Follows from Theorem 3.3 and Lemma 3.4.

3.6 Theorem

Let $n \ge 4$ and let R be a $Q_{k,m,n}$ ring with $|R| > \frac{3}{2}(n-1)$. Then R is commutative, if one the following is satisfied

- i. |R| is odd.
- ii. (R,+) is not the union of three proper subgroups.
- iii. N is commutative.
- iv. $R^3 \neq \{0\}$.

Proof: (i) Assume |R| is odd. Suppose that R is not commutative. Since, $|\mathbf{R}| > \frac{3}{2}$ (n-1)> n The arguments in the proof of throrem 3.3 gives $|A_{r}(x^{k})^{m}| = |A_{r}(x^{k})^{m}| = |R|/2$ This is impossible. So, R must be commutative. (ii) Assume (R,+) is not the union of three proper subgroups. Suppose that R is not commutative. Then by (i), |R| is even. By applying the first isomorphism throrem of groups: $|(x^{k})^{m}R| = |R(x^{k})^{m}| = 2.$ Hence for any $u \in R \setminus A_r(x^k)^m$, $(x^k)^m R = \{0, (x^k)^m u\}$ and for any $v \in R \setminus A_r(x^k)^m$ $R(x^{k})^{m} = \{0, v(x^{k})^{m}\}$ By Lemma 2.8(i), $(\mathbf{x}^{k})^{m} \mathbf{R} = \mathbf{R}(\mathbf{x}^{k})^{m}$. If $y \in \mathbb{R} \setminus A_1(x^k)^m \cup A_r(x^k)^m$ then $\{0, (x^k)^m y\} = (x^k)^m R = R(x^k)^m = \{0, y(x^k)^m\}$ Hence $v \in C_R(x^k)^m$ Thus $R = A_1(x^k)^m \cup A_r(x^k)^m \cup C_R(x^k)^m$ which is a contradiction to our assumption that (R,+) is not the union of three proper subgroups. (iii) Assume N is commutative. Suppose R is not commutative. Then by throrem 3.1, if R is any $Q_{k,m,n}$ ring with 1 such that $|\mathbf{R}| > \mathbf{n}$, then R is commutative. Now, R doesnot have 1. Hence, R = D fro R is finite. If $(x^k)^m \notin N$, some power of $(x^k)^m$ is an idempotent zero divisor $e \neq 0$. Since, $A_r(x^k)^m \subseteq A_1(e)$ and $A_1(e) \neq R$, We must have $A_1(x^k)^m = A_1(e)$ And similarly $A_r(x^k)^m = A_r(e)$ By lemma 2.8 (ii),e is central. Hence, $A_l(x^k)^m = A_r(x^k)^m = A(x^k)^m \subseteq C_R(x^k)^m$. Thus if $y \notin A(x^k)^m$ then $y \notin A_l(x^k)^m$ and $y \notin A_r(x^k)^m$. $Y \notin A_l(x^k)^m \rightarrow y \in R \setminus A_l(x^k)^m$. $\rightarrow \{0, (x^k)^m y\} = (x^k)^m R = R(x^k)^m = \{0, y(x^k)^m\}$ Hence $y \in C_R(x^k)$ ^mwhich is the contradiction to the assumption that $(x^k)^m \notin Z$. Hence $(x^k)^m$ is a non – central element. If there exits two non – commutative elements, which is a contradicton to the assumption that N is commutative. (iv) Assume $R^3 \neq 0$. Suppose R is not commutative. Then there exists x ε R such that x \notin Z. the fact that (x^k) ^m ε N yields Suppose $A_r(x^k)^m \supseteq A_r(x^k)^m$ So, $A_r(x^k)^m = R$ Hence, $(x^{k+1})^m R = R(x^{k+1})^m = (0)$ Choose $y \in R \setminus A_r(x^k)^m \cup C_R(x^k)^m$ and $w \in R \setminus A_r(x^k)^m \cup C_R(x^k)^m$)) Then $y^{k+1}R = Ry^{k+1}$ More over, $\{0, (x^k)^m y\} = (x^k)^m R = R(x^k)^m = \{0, w(x^k)^m\}$ so that $(x^k)^m y = w(x^k)^m$

Thus $(x^k)^m R^2 = (x^k)^m yR = w(x^k)^m R = \{w (x^k)^m y, 0\} = \{xy^{k+1}, 0\} = (0)$ If $z \in Z$ then $(x^k)^m + Z \notin Z$ so that $(x+Z)R^2 = \{0\}$ Hence $R^3 = \{0\}$, which is a contradiction to the fact that $R^3 \neq \{0\}$. Hence R is commutative.

IV. Further Results for Small n

4.1 Theorem

If $n \le 8$, then every $Q_{k,m,n}$ ring with 1 is commutative.

Proof: Let R be any $Q_{k,m,n}$ ring with identity. Suppose R is not commutative.

We any assume that n=8.

Then by theorem 3.1, $|\mathbf{R}| \le 8$.

Since all rings with 1 having fewer than 8 elements are commutative, $|\mathbf{R}| = 8$ and R is indecomposable. Since idempotents are central, we must have no idempotents except 0 and 1. Hence every element is either nilpotent or invertible. Since $u \in N, 1+u$ is invertible. If follows from lemma 2.12, there exists a pair x^m, y^m of non- commuting invertible elements. The groups of units is not commutative and has almost 7 elements, hence is isomorphic to S₃. Thus, there exists a unique non – zero nilpotent element u which by Lemma 2.12 is not central. Hence there is an invertible element w such that $u(w^k)^m \neq (w^k)^m$ u. By Lemma 2.8(iii), $(w^k)^m$ and $u(w^k)^m$ are non-zero nilpotents. This gives a contradiction.

So, R is ccommutative.

References

- [1]. H.E.Bell: A.Setwise commutativity Property for Rings, Comm.Algebra 25 No.3,(1997),989-998.
- [2]. H.E.Bell: A.A.Klein: A Combinatorial commutativity Property for Rings, VMMS 29-9, (2002), 525-530.
- [3]. B.Corbas: Rings With Few ZeroDivisors, Math.Ann.181,(1969),1-7.
- [4]. Dr.G.Gopalakrishnamoorthy:S.Anitha,On Commutativity Property of $Q_{k,n}$, $Q_{k,\infty}$, $P_{k,n}$, P_{∞} and Q_{∞} Rings ,Jour.of.Inst.Of Mathematics and computer Science(Mathematics Series) Vol.23,No.2(2010)63-70.
- [5]. I.N.Herstein: A Theorem on Rings, Canad J.Maths.5, (1953), 238-241.
- [6]. I.N.Herstein: A Note on Rings With Central Nilpotent Elements, Proc.Amer.Math.Soc.5 (1954),620.

G.Gopalakrishnamoorthy. " On Commutativity Property Of Q_(k,m,n),P_(k,m,n),P_(k,m, ∞)And Q_(k.m, ∞) Rings." IOSR Journal of Mathematics (IOSR-JM) 15.1 (2019): 29-34.