
IOSR Journal of Mathematics (IOSR-JM) 

e-ISSN: 2278-5728, p-ISSN: 2319-765X. Volume 15, Issue 1 Ser. I (Jan – Feb 2019), PP 50-56 

www.iosrjournals.org  

 

DOI: 10.9790/5728-1501015056                                  www.iosrjournals.org                                           50 | Page 

Finite Subgroup Automata  
 

Dr.K.Muthukumaran 
1
 , S.Shanmugavadivoo 

2
 

1
Associate Professor / Ramanujan Research Center in Mathematics, /  Saraswathi Narayanan College, 

Perungudi,  Madurai/Tamil Nadu, India-625022, 
2
 Assistant Professor /  Department Of Mathematics/ Madurai Kamaraj University College, Aundipatti, Theni 

Dt,, Tamil Nadu, India. 

 

ABSTRACT: Let B= (Q, *, Ʃ, δ, q0, F) be a Finite Monoid Automaton. Let S= (R, *, E, γ, qs, T) be a Finite 

Sub-Binary Automaton such that 0 ϵR. Then S= (R, *, E, γ, qs, T) is a Finite Sub-Monoid Automaton. Let B= (Q, 

*, Ʃ, δ, q0, F) be a Finite Group Automaton. Let S= (R, *, E, γ, qs, T) be a Finite Sub-Binary Automaton of B (as 

a  Finite Binary Automaton). Then S= (R, *, E, γ, qs, T) is a Finite Sub-group Automaton. 
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I. Introduction  
The theory of Automata plays an important role in many fields. It has become a part of computer 

science. It is very useful in electrical engineering. It provides useful techniques in a wide variety of applications 

and helps to develop a way of thinking.  

As the theory of Automata plays an important role in many fields, the theory of  Finite Binary 

Automata, Finite Semigroup Automata, Finite Monoid  Automata, Finite Group Automata, Finite Subgroup 

Automata will also play an important role in these fields.  

 

II. Preliminaries 
Definition : Strings (Or Words):  Letters and digits are examples of frequently used symbols. A string (or 

word) is a finite sequence of symbols juxtaposed. For example, a, b and c, are symbols and abcb is a string. 

They length of a string w, denoted |w|, is the number of symbols composing the string.   

Definition : Alphabets and Languages : An alphabet is a finite set of symbols.  A (formal) language is a set of 

strings of symbols from some one alphabet.   

The empty set, , and the set consisting of the empty string   are languages.  

Note that they are distinct; the latter has a member while the former does not.   

The set of palindromes (string that read the same forward and backward) over the alphabet {0, 1} is an infinite 

language.  Some members of this language are , 0,1,00,11,010 and 1101011.  

Another language is the set of all strings over a fixed alphabet Σ.  We denote this language by Σ
*
.   

For example, if Σ = {a}, then Σ
*
 = { , a,aa,aaa,…}.  

If Σ = {0, 1}, then Σ
*
 = { , 0,1,00,01,10,11,000,…}. 

 

Definition : Finite Automaton:  A finite automaton is a 5–tuple (Q, Σ, δ, q0, F), where Q is a finite set of states, 

Σ is a finite input alphabet, q0 in Q is the initial state, FQ is the set of final states, and δ is the transition 

function mapping Q x Σ to Q.   

That is δ(q, a) is a state for each state  and input symbol a.  

Finite Binary Automaton: A Finite Binary Automaton B is a 6-tuple (Q, *, Ʃ, δ, q0, F), where Q is a finite set 

of states, * is a mapping from Q×Q to Q, Σ is a finite set of integers, q0 in Q is the initial state and F⊆Q is the set 

of final states and δ is the transition function mapping from Q×Σ to Q defined by δ(q,n) = q
n
.  

If Σ* is the set of strings of inputs, then the transition function δ is extended as follows : 

For m ϵ Σ* and n ϵ Σ,  δ’: Q×Σ* → Q is defined by δ’(q,mn) = δ(δ’(q,m),n). 

If no confusion arises δ’ can be replaced by δ. 

Finite Semi-group Automaton : A Finite Binary Automaton B = (Q, *, Ʃ, δ, q0, F) is said to be a Finite 

Semigroup Automaton if it is an Associative Finite Binary Automaton.    

Proposition  :  If B1 = (Q1, Δ1, Ʃ, δ1, p0, F1) and B2 = (Q2, Δ2, Ʃ, δ2, q0, F2) are any two Finite Semi-group  

Automata,  then B1×B2 is also a finite Semi-group automaton. 

Proof : By Proposition 2.4.2 if B1 = (Q1, Δ1, Ʃ, δ1, p0, F1) and B2 = (Q2, Δ2, Ʃ, δ2, q0, F2) are any two Associative 

Finite Binary Automatons, then B1×B2 is also an associative finite binary automaton. 
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That is , B1×B2 is a  finite Semi-group automaton. 

Finite Monoid Automaton : A Finite Binary Automaton B = (Q, *, Ʃ, δ, q0, F) is said to be a Finite Monoid 

Automaton if  (i) p * (q * r) = (p * q) * r  ,  for all p,q,r in Q. 

         (ii) there exists a state denoted by 0 in Q such that p * 0 = p  = 0 * p  ,  for all p in Q. 

If such a state exists in Q, then the state 0 is called the identity state of Q.  

Proposition  :  If B1 = (Q1, Δ1, Ʃ, δ1, p0, F1) and B2 = (Q2, Δ2, Ʃ, δ2, q0, F2) are any two Finite Monoid  

Automata,  then B1×B2 is also a finite monoid automaton. 

Finite Sub-Binary Automaton: Let B= (Q, *, Ʃ, δ, q0, F) be a Finite Binary Automaton, where Q is a finite set 

of states, * is a mapping from Q×Q to Q, Σ is a finite set of integers, q0 in Q is the initial state and F⊆Q is the set 

of final states and δ is the transition function mapping from Q×Σ to Q defined by δ(q,n) = q
n
. A Finite Sub-

Binary Automaton S of B is a 6-tuple (R,*, E, γ, qs, T), where R⊆Q , for all p,q ϵ R,  p * q ϵ R , qs ϵ R is the 

initial state where qs = q0 or qs = δ(q0,n) for some nϵ∑, E is the set of all n in Σ such that n ≤ m for some m ϵ Σ,             

ie , E = {n ϵ Σ / n ≤ m, for some m ϵ Σ }, γ is the restriction function of δ restricted to R×E→R, and T⊆R. 
If no confusion arises γ can be replaced by δ. 

Proposition : Let B= (Q, *, Ʃ, δ, q0, F) be an Associative Finite Binary Automaton. Let S= (R, *, E, γ, qs, T) be 

a Finite Sub-Binary Automaton. Then                S= (R, *, E, γ, qs, T) is an Associative Finite Sub-Binary 

Automaton. 

Proposition : Let B= (Q, *, Ʃ, δ, q0, F) be a Commutative Finite Binary Automaton. Let S= (R, *, E, γ, qs, T) be 

a Finite Sub-Binary Automaton. Then             S= (R, *, E, γ, qs, T) is a Commutative Finite Sub-Binary 

Automaton. 

Proposition : Let B= (Q, *, Ʃ, δ, q0, F) be an AC Finite Binary Automaton. Let S= (R, *, E, γ, qs, T) be a Finite 

Sub-Binary Automaton. Then S= (R, *, E, γ, qs, T) is an AC Finite Sub-Binary Automaton. 

Finite Sub-Semigroup Automaton: Let B= (Q, *, Ʃ, δ, q0, F) be a Finite Semigroup Automaton, where Q is a 

finite set of states, * is a mapping from Q×Q to Q, Σ is a finite set of integers, q0 in Q is the initial state and F⊆Q 

is the set of final states and δ is the transition function mapping from Q×Σ to Q defined by δ(q,n) = q
n
. A Finite 

Sub-Semigroup Automaton S of B is a 6-tuple (R, *, E, γ, qs, T), where R⊆Q for all p,q ϵ R,  p * q ϵ R, qs ϵ R is 

the initial state where qs = q0 or qs = δ(q0,n) for some nϵ∑, E is the set of all n in Σ such that n ≤ m for some m ϵ 

Σ, ie , E = {n ϵ Σ / n ≤ m, for some m ϵ Σ }, γ is the restriction function of δ restricted to R×E→R, q0 in R is the 

initial state and T⊆R and T⊆F.  
Proposition : Let B= (Q, *, Ʃ, δ, q0, F) be a Finite Semi-group Automaton. Let S= (R, *, E, γ, qs, T) be a Finite 

Sub-Binary Automaton of B (as a  Finite Binary Automaton) . Then S= (R, *, E, γ, qs, T) is a Finite Subsemi-

group Automaton. 

Finite Sub-Monoid Automaton: Let B= (Q, *, Ʃ, δ, q0, F) be a Finite Monoid Automaton, where Q is a finite 

set of states, * is a mapping from Q×Q to Q, Σ is a finite set of integers, q0 in Q is the initial state and F⊆Q is the 

set of final states and δ is the transition function mapping from Q×Σ to Q defined by                      δ(q,n) = q
n
. A 

Finite Sub-Monoid Automaton S of B is a 6-tuple (R, *, E, γ, qs, T), where R⊆Q for all p,q ϵ R,  p * q ϵ R, qs ϵ R 

is the initial state where qs = q0 or qs = δ(q0,n) for some nϵ∑, and   0ϵR  ,  E is the set of all n in Σ such that n ≤ 

m for all some m ϵ Σ, ie , E = {n ϵ Σ / n ≤ m, for some m ϵ Σ }, γ is the restriction function of δ restricted to 
R×E→R and T⊆R and T⊆F.  
Proposition : Let B= (Q, *, Ʃ, δ, q0, F) be a Finite Monoid Automaton. Let S= (R, *, E, γ, qs, T) be a Finite Sub-

Binary Automaton such that 0 ϵR. Then S= (R, *, E, γ, qs, T) is a Finite Sub-Monoid Automaton. 

Finite Group Automaton:   A  Finite  Group Automaton B is a 6-tuple (Q, *, Ʃ, δ, q0, F),  where Q is a finite 

set of elements called states, Σ is a subset of non-negative integers, q0 ϵ Q,  q0 is a state in Q called the initial 

state, F⊆Q and the set states (element) of F is said to be the set of final states, QQ :  is the transition 

function defined by δ (q, n) = q
n
 = q * q *q *.......*q  (n times) and * is a mapping from Q×Q to Q satisfying the 

following conditions. 

(i) p * (q * r) = (p * q) * r  ,  for all p,q,r in Q. 

(ii) there exists a state denoted by 0 in Q such that p * 0 = p = 0 * p  ,  for all p in Q 

(iii) for each state p in Q there exists a state q in Q such that p * q = 0 = q * p. 

Note : For n = 0, δ (q, n) = q
n
 => δ (q, 0) = q

0
 , it is taken as 0 

Definition : If for a state p in Q there exists a state q in Q such that p * q = 0 = q * p, then the state q is called 

the inverse state and the state p is called a invertible state in Q.  

If a state p is invertible in Q and p * q = 0 = q * p, then the state q is also invertible. 

If Σ* is the set of strings of inputs, then the transition function δ is extended as follows : 

For m ϵ Σ* and n ϵ Σ,  δ’: Q×Σ* → Q is defined by δ’(q,mn) = δ(δ’(q,m),n). 

If no confusion arises δ’ can be replaced by δ. 

Example : Consider the Finite Binary Automaton B= (Q, *, Ʃ, δ, q0, F),  where Q = {1,-1,i,-i},  Σ = {1,2,3,4} q0  

= i is the initial state and F=Q  the set of final states , δ is the transition function mapping from Q×Σ to Q 

defined by δ(q,n) = q
n
, and * is the mapping from Q×Q to Q defined by the following table. 
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Then the Finite Binary Automaton B= (Q, *, Ʃ, δ, q0, F) is a Finite Group Automaton. 

Example : Consider the Finite Binary Automaton B= (Q, *, Ʃ, δ, q0, F),  where Q = {1,-1,i,-i}, Σ = {1,2,3,4} q0  

= -i is the initial state and F=Q  the set of final states , δ is the transition function mapping from Q×Σ to Q 

defined by δ(q,n) = q
n
, and * is the mapping from Q×Q to Q defined by the following table. 

 

 
 

Therefore, the Finite Binary Automaton B= (Q, *, Ʃ, δ, q0, F) is a Finite Group Automaton. 

Example : Consider the Finite Binary Automaton B= (Q, *, Ʃ, δ, q0, F),                          where Q = {1,ω,ω
2
}, 

Σ={1.2.3},  q0  = ω is the initial state and F=Q  the set of final states , δ is the transition function mapping from 

Q×Σ to Q defined by δ(q,n) = q
n
, and * is the mapping from Q×Q to Q defined by the following table. 
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Therefore, the Finite Binary Automaton B= (Q, *, Ʃ, δ, q0, F) is a Finite Group Automaton. 

When  q0' = ω
2
   

 
         
FINITE SUB-GROUP AUTOMATA 
Finite Sub-group Automaton: Let B= (Q, *, Ʃ, δ, q0, F) be a Finite Group Automaton, where Q is a finite set 

of states, * is a mapping from Q×Q to Q, Σ is a finite set of integers, q0 in Q is the initial state and F⊆Q is the set 

of final states and δ is the transition function mapping from Q×Σ to Q defined by δ(q,n) = q
n
. A Finite Sub-

group Automaton S of B is a 6-tuple (R, *, E, γ, qs, T), where R⊆Q for all p,q ϵ R,  p * q ϵ R, qs ϵ R is the initial 

state where qs = q0 or qs = δ(q0,n) for some nϵ∑, ,  E is the set of all n in Σ such that n ≤ m for all m ϵ Σ, ie , E = 

{n ϵ Σ / n ≤ m, for some m ϵ Σ }, γ is the restriction function of δ restricted to R×E→R, q0 in R is the initial state 

and T⊆R and T⊆F.  
Example : Consider the Finite Binary Automaton B= (Q, *, Ʃ, δ, q0, F), where Q = {1,-1,i,-i},  Σ = {1,2,3,4} q0  

= i is the initial state and F=Q  the set of final states , δ is the transition function mapping from Q×Σ to Q 

defined by δ(q,n) = q
n
, and * is the mapping from Q×Q to Q defined by the following table.  
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Therefore, the Finite Binary Automaton B= (Q, *, Ʃ, δ, q0, F) is a Finite Group Automaton. 

1) Let S = (R, *, E, γ, q0, T), where R = { 1,-1}, E = {1,2}, qs = -1, F = {1,-1}  

qs = (q0)
2 
= (i)

2
 = -1            

 

 
        

      

Then S = (R, *, E, γ, q0, T) is a Finite Subgroup Automaton of the Finite group Automaton B= (Q, *, Ʃ, δ, q0, F).  

2. Let S = (R, *, E, γ, q0, T), where R = { 1}, E = {1}, qs = 1, F = {1}  

qs = (q0)
1 
= (1)

1
 = 1   

  

 

 
               

Then S = (R, *, E, γ, q0, T) is a Finite Subgroup Automaton of the Finite group Automaton B= (Q, *, Ʃ, δ, q0, F).  

Example : Consider the Finite Binary Automaton B= (Q, *, Ʃ, δ, q0, F), where Q = {1,ω,ω
2
}, Σ={1.2.3},  q0  = 

ω is the initial state and F=Q  the set of final states , δ is the transition function mapping from Q×Σ to Q defined 

by δ(q,n) = q
n
, and * is the mapping from Q×Q to Q defined by the following table. 
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* 1 ω ω
2
 

1 1 ω ω
2
 

ω ω ω
2
 1 

ω
2
 ω

2
 1 ω 

 

When  q0 = ω 

 

 
 
 

Therefore, the Finite Binary Automaton B= (Q, *, Ʃ, δ, q0, F) is a Finite Group Automaton. 

Let S = (R, *, E, γ, q0, T), where R = { 1}, E = {1}, qs = 1, F = {1}  

qs = (q0)
1 
= (1)

1
 = 1      

                    

 
 

Therefore,  S = (R, *, E, γ, q0, T) is a Finite Subgroup Automaton of the Finite group Automaton                                             

B= (Q, *, Ʃ, δ, q0, F).  

Proposition : Let B= (Q, *, Ʃ, δ, q0, F) be a Finite Group Automaton. Let S= (R, *, E, γ, qs, T) be a Finite Sub-

Binary Automaton of B (as a  Finite Binary Automaton). Then S= (R, *, E, γ, qs, T) is a Finite Sub-group 

Automaton. 

Proof : Let B= (Q, *, Ʃ, δ, q0, F) be a Finite Group Automaton.  

Let S= (R, *, E, γ, qs, T) be a Finite Sub-Binary Automaton of B (as a Finite Binary Automaton).  

Then R⊆Q , for all p,q ϵ R,  p * q ϵ R , qs ϵ R is the initial state where qs = q0 or qs = δ(q0,n) for some nϵ∑,   E is 
the set of all n in Σ such that n ≤ m for some m ϵ Σ,             ie , E = {n ϵ Σ / n ≤ m, for some m ϵ Σ }, γ is the 

restriction function of δ restricted to R×E→R, and T⊆R and T⊆F.  
Let a ϵ R 

Then a, a ϵR => a * a ϵ R 

Therefore, a , a
2
,a

3
, … are states (ie elements) of R. 

Since R is a finite set, a
j
 = a

k
.  

With out loss of generality we may assume that j < k. 

a
j
 = a

k
    => a

k-j
 = 0  

Therefore, a
k-j

 = 0 ϵ R. 

Therefore a
m
 = 0 for some m ϵ Z. 

Now a
m
 = a * a

m-1
 = 0 

a
-1

 = a
m-1

 ϵ R  

Hence S= (R, *, E, γ, qs, T) is a Finite Sub-group Automaton. 
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III. Conclusion  
As the theory of Automata plays an important role in many fields, the theory of  Finite Subgroup Automata will 

also play an important role in these fields.  
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