Numerical Solutions of Fractional Order Eigen-Value Problems using Bernstein Operational Matrices

Osama H.Mohammed ${ }^{(a)}$,Bashaer M.Abdali ${ }^{(b)}$
${ }^{a, b}$ Al-Nahrain University, college of science, Department of Mathematics, Baghdad, Iraq Corresponding Author: OsamaH. Mohammed

Abstract

In this article, we offer an easy and active computational technique for finding the solution of the fractional order Sturm-Liouville problems (FOSLPs) with variable coefficients using operational matrices of (BPs). The fractional order derivatives (FODs) are characterized in the Caputo sense. The proposed technique transform the fractional order differential equations (FDEs) into a linear system of algebraic equations, then the eigenvalues can be computed by finding the roots of the characteristics polynomials. Some tested problems are given in order to illustrate the effectiveness and efficiency of the method.

Keywords: Fractional order eigen-value problems, Sturm-Liouville problems, Bernstein polynomials.

I. Introduction

(FDEs) are generalized of classical integer order ones which are gained by exchanging integer order derivatives by fractional ones.

Most (FDEs) do not ownanalytic solutions, therefore approximate and numerical techniques must to use [1].
various numerical and approximate technique to solve (FDEs) have been given such asAdomian decomposition method [2],Variationaliteration method [3], Homotopyanalysis method [4],Homotopy perturbation method [5], Collocation method [6], wavelet method [7], finite element method [8] and spectral tau method [9].

The concept of operational matrices (OM) recently were acclimated for solving various types of (FDEs). Using the numerical techniques in combination with (OM) in some orthogonal polynomials, for the solution of (FDEs) on finite and infinite intervals, givesvery accurate solutions for (FDEs) [9].

This article looks for finding the approximate values of the eigenvalues of some classes of the (FOSLPs). Some beforehand works have been published about the (FOSLPs) such as [10]-[19]. The essential feature of this work is to find the eigenvalues of the (FOSLPs) using the(OM) of the (BPs). BPs. play an eminent part in various areas of mathematics, these polynomials have extremely been used in the solution of integral equations, differential equations and approximation theory [20], [21].

The (OM) for (BPs) are introduced in order to solve different types of differential equations among them[20] used the (OM) for (BPs) for solving High Even-Order differentials equations,[21]have been used (OM) of (BPs) for solvingVolterra Integral equations, [22]investigated the solution of the nonlinear Volterra-Fredholm-Hammerstein integral equations using the (OM) of (BPs), while, [23]try to solve the physiology problems by the aid of the (OM) of (BPs). [24]have been used (OM) of (BPs) for solving high order delay differential equations.The (OM) of (BPs) have been used for solving multiterm variable order (FDEs) by [25]. The reminder of the article is ordered as follow. A concise review of the definitions ofthe (FODs) and integrations are offered in part 2. (BPs)have been given in part 3. The proposed method will be presented in part 4. Some numerical results are shown in part 5 , at last a conclusion have been towed.

II. Fractional Order Derivatives and Integrals

In this part we shall give some basic definitions and properties of the (FODs) and integrals [26].
Def. (1):
The Riemann-Liouville (R-L) fractional integral of order $\alpha>0$ is defined as follows:
$\mathrm{I}_{\mathrm{x}}^{\alpha} \mathrm{f}(\mathrm{x})=\frac{1}{\Gamma(\alpha)} \int_{0}^{\mathrm{x}}(\mathrm{t}-\tau)^{\alpha-1} \mathrm{f}(\tau) \mathrm{d} \tau, \mathrm{x}>0, \alpha \in \mathrm{R}^{+}$.

Def. (2):
The Caputo fractional derivative of order $\alpha>0$ is defined as follows:
${ }^{c} D_{x}^{\alpha} f(x)=\left\{\begin{array}{l}\frac{1}{\Gamma(m-\alpha)} \int_{0}^{x} \frac{f^{(m)}(\tau)}{(x-\tau)^{\alpha+1-m}} d \tau, \\ \frac{d^{m}}{d x^{m}(x)} f(x),\end{array}\right.$

$$
\begin{array}{r}
\mathrm{m}-1<\alpha<m \\
\alpha=\mathrm{m}
\end{array}
$$

For $\alpha>0$, we have[1]:
$1-{ }^{c} D_{x}^{\alpha}\left(I_{x}^{\alpha} f(x)\right)=f(x)$.
$2-I_{x}^{\alpha}\left({ }^{c} D_{x}^{\alpha} \mathrm{f}(\mathrm{x})\right)=\mathrm{f}(\mathrm{x})-\sum_{\mathrm{k}=0}^{\mathrm{n}-1} \mathrm{f}^{(\mathrm{k})}\left(0^{+}\right) \frac{\mathrm{x}^{\mathrm{k}}}{\mathrm{k}!}$.
$3-{ }^{c} D_{x}^{\alpha}(c)=0, c \in R$.
$4-{ }^{c} D_{x}^{\alpha}\left(c_{1} f(x)+c_{2} g(x)\right)=c_{1}{ }^{c} D_{x}^{\alpha} f(x)+c_{2}{ }^{c} D_{x}^{\alpha} g(x)$.
Where c_{1} and c_{2} are constants.

III. Bernstein Polynomials (BPs)

The well known (BPs) of degreen [27]are given on [0,1] as:
$b_{i}^{n}(x)=\binom{n}{i} x^{i}(1-x)^{n-i}, i=0,1, \ldots, n \cdots(1)$
Eq. (1) can be also written as:
$b_{i}^{n}(x)=\sum_{j=i}^{n}(-1)^{j-i}\binom{n}{i}\binom{n-i}{j-i} x^{j}, i=0, \ldots, n . \cdots$ (2)The Bernstein vector
$B(x)=\left[b_{0}^{n}(x), b_{1}^{n}(x), \cdots, b_{n}^{n}(x)\right] \cdots$ (3)
Can be prescribed in the form
$\mathrm{B}(\mathrm{x})=\mathrm{AT}_{\mathrm{n}}(\mathrm{x}) \cdots$ (4)
Where
$\mathrm{A}=\left[\begin{array}{cccc}(-1)^{0}\binom{n}{0} & (-1)^{1}\binom{n}{0}\binom{n-0}{1} & \ldots & (-1)^{\mathrm{n}-0}\binom{\mathrm{n}}{0}\binom{n-0}{\mathrm{n}-0} \\ 0 & (-1)^{0}\binom{n}{i} & \cdots & (-1)^{\mathrm{n}-\mathrm{i}}\binom{n}{\mathrm{i}}\binom{n-1}{\mathrm{n}-\mathrm{i}} \\ \vdots & \vdots & \vdots & \vdots \\ 0 & 0 & \cdots & (-1)^{0}\binom{\mathrm{n}}{\mathrm{n}}\end{array}\right]_{(\mathrm{n}+1)(\mathrm{n}+1)}$
and
$T_{n}(x)=\left[\begin{array}{c}1 \\ x \\ x^{2} \\ \vdots \\ x^{n}\end{array}\right] \cdots(6)$

III.I. Function Approximation:

Any $f(x) \in L_{2}(0,1)$, can be decomposed in terms of the (BPs). Hence if $f(x)$ can be decomposed as:
$\mathrm{f}(\mathrm{x})=\sum_{\mathrm{i}=0}^{\mathrm{n}} \mathrm{c}_{\mathrm{i}} \mathrm{b}_{\mathrm{i}}^{\mathrm{n}}(\mathrm{x})=\mathrm{c}^{\mathrm{T}} \mathrm{B}(\mathrm{x}) \cdots$ (7)
Wherec $=\left[c_{0}, c_{1}, \cdots, c_{n}\right]^{T}, B(x)=\left[b_{0}^{n}(x), b_{1}^{n}(x), \cdots, b_{n}^{n}(x)\right]^{T}$.
Then
$c_{i}=\int_{0}^{1} f(x) d_{i}^{n}(x) d x, i=0,1, \ldots, n$.
Where $\mathrm{d}_{\mathrm{i}}^{\mathrm{n}}(\mathrm{x})$ are called the dual basis function to the Bernstein basis of degree n which has been derived in [27] in explicit representation as:
$\mathrm{d}_{\mathrm{i}}^{\mathrm{n}}(\mathrm{x})=\sum_{\mathrm{k}=0}^{\mathrm{n}} \lambda_{\mathrm{jk}} \mathrm{b}_{\mathrm{k}}^{\mathrm{n}}(\mathrm{x}), \mathrm{j}=0,1 \ldots, \mathrm{n}$.
Where

$$
\begin{equation*}
\lambda_{j k}=\frac{(-1)^{j+k}}{\binom{n}{j}\binom{n}{k}} \sum_{i=0}^{\min (7, k)}(2 i+1)\binom{n+i+1}{n-j}\binom{n-i}{n-j}\binom{n+i+1}{n-k}\binom{n-i}{n-k} \tag{8}
\end{equation*}
$$

For $\mathrm{j}, \mathrm{k}=0,1, \ldots, \mathrm{n}$.

III.II.The(OM) of the derivatives:

The derivative of the vector $\mathrm{B}(\mathrm{x})$ can be written as:
$\frac{\mathrm{d}}{\mathrm{dx}} \mathrm{B}(\mathrm{x})=\mathrm{D}^{(1)} \mathrm{B}(\mathrm{x})$
Where $D^{(1)}$ is handled by:
$\mathrm{D}^{(1)}=\mathrm{AVB}^{*} \quad \cdots(10)$
Where
$\mathrm{V}=\left(\begin{array}{ccccc}0 & 0 & 0 & \cdots & 0 \\ 1 & 0 & 0 & \cdots & 0 \\ 0 & 2 & 0 & \cdots & 0 \\ \vdots & \vdots & \vdots & \vdots & \vdots \\ 0 & 0 & 0 & \cdots & \mathrm{n}\end{array}\right)_{(\mathrm{n}+1)(\mathrm{n})} \quad$ andB ${ }^{*}=\left(\begin{array}{c}\mathbf{A}_{[1]}^{-1} \\ \mathrm{~A}_{[2]}^{-1} \\ \mathbf{A}_{[3]}^{-1} \\ \vdots \\ \vdots \\ \mathbf{A}_{[\mathrm{n}]}^{-1}\end{array}\right)_{(\mathrm{n})(\mathrm{n}+1)}$
Where $A_{[k]}^{-1}$ is the $k^{\text {th }}$ row of A^{-1} for $k=1,2, \ldots, n$.
Employ Eq. (9), it is obvious that
$\frac{\mathrm{d}^{\mathrm{n}} \mathrm{B}(\mathrm{x})}{\mathrm{dx}^{\mathrm{n}}}=\left(\mathrm{D}^{(1)}\right)^{\mathrm{n}} \mathrm{B}(\mathrm{x}), \quad n \in \mathbb{N}$

$$
\begin{equation*}
D^{(n)}=\left(D^{(1)}\right)^{n} \quad n=1,2 \tag{12}
\end{equation*}
$$

In the following theorem the (OM) of the (FODs) of the (BPs) will be offered.
Theorem (1)[27]: Let $B(x)$ be a Bernstein vector and $\alpha>0$ then

$$
{ }^{c} \mathrm{D}_{\mathrm{x}}^{\alpha} \mathrm{B}(\mathrm{x}) \approx \mathrm{D}^{(\alpha)} \mathrm{B}(\mathrm{x}) \cdots(13)
$$

Where
$D^{(\alpha)}=\left(\begin{array}{cccc}\sum_{\mathrm{j}=[\alpha]}^{\mathrm{n}} \omega_{0, \mathrm{j}, 0} & \sum_{\mathrm{j}=[\alpha]}^{\mathrm{n}} \omega_{0, \mathrm{j}, 1} & \ldots & \sum_{\mathrm{j}=[\alpha]}^{\mathrm{n}} \omega_{0, \mathrm{j}, \mathrm{n}} \\ \vdots & \vdots & \vdots & \vdots \\ \sum_{\mathrm{j}=[\alpha]}^{\mathrm{n}} \omega_{\mathrm{i}, \mathrm{j}, 0} & \sum_{\mathrm{j}=[\alpha]}^{\mathrm{n}} \omega_{\mathrm{i}, \mathrm{j}, 1} & \cdots & \sum_{\mathrm{j}=[\alpha]}^{\mathrm{n}} \omega_{\mathrm{i}, \mathrm{n}, \mathrm{n}} \\ \vdots & \vdots & \vdots & \vdots(14) \\ \sum_{\mathrm{j}=[\alpha]}^{\mathrm{n}} \omega_{\mathrm{n}, \mathrm{j}, 0} & \sum_{\mathrm{j}=[\alpha]}^{\mathrm{n}} \omega_{\mathrm{n}, \mathrm{j}, 1} & \cdots & \sum_{\mathrm{j}=[\alpha]}^{\mathrm{n}} \omega_{\mathrm{n}, \mathrm{j}, \mathrm{n}}\end{array}\right)$.
Here $\omega_{\mathrm{i}, \mathrm{j}, \mathrm{l}}$ is given by

$$
\begin{equation*}
\omega_{\mathrm{i}, \mathrm{j}, \mathrm{l}}=(-1)^{\mathrm{j}-\mathrm{i}}\binom{\mathrm{n}}{\mathrm{i}}\binom{\mathrm{n}-\mathrm{i}}{\mathrm{j}-\mathrm{i}}\left(\frac{\Gamma(\mathrm{j}+1)}{\Gamma(\mathrm{j}+1-\alpha)}\right) \sum_{\mathrm{k}=0}^{\mathrm{n}} \lambda_{\mathrm{lk}} \mu_{\mathrm{kj}} \tag{15}
\end{equation*}
$$

Where λ_{lk} is given in Eq. (8) and μ_{kj} is represented by:

$$
\begin{equation*}
\mu_{\mathrm{kj}}=\sum_{\mathrm{s}=\mathrm{k}}^{\mathrm{n}}(-1)^{\mathrm{s}-\mathrm{k}}\binom{\mathrm{n}}{\mathrm{k}}\binom{\mathrm{n}-\mathrm{k}}{\mathrm{~s}-\mathrm{k}} \frac{1}{\mathrm{j}-\alpha+\mathrm{s}+1} \cdots \tag{16}
\end{equation*}
$$

IV. The Proposed Method

Given the following fractional order Sturm-Liouvilleproblem:
${ }^{c} \mathrm{D}_{\mathrm{x}}^{\alpha} \mathrm{y}(\mathrm{x})+\mathrm{q}(\mathrm{x}) y^{(1)}(\mathrm{x})=\lambda \mathrm{H}(\mathrm{x}) \mathrm{y}(\mathrm{x}), a \leq \mathrm{x} \leq \mathrm{b}, \mathrm{m}-1<\alpha \leq m . \quad \cdots$ (17)With the (BCs):
$\mathrm{d}_{11} \mathrm{y}(a)+\mathrm{d}_{12} y^{(1)} \quad(a)=0 \ldots(18)$
$\mathrm{d}_{21} y \quad(b)+\mathrm{d}_{22} y^{(1)}(b)=0 \ldots(19)$
Where $\mathrm{d}_{11}, \mathrm{~d}_{12}, \mathrm{~d}_{21}$ and d_{22} are constants, and $\mathrm{q}(\mathrm{x}), \mathrm{H}(\mathrm{x})$ aregiven functions. We suppose that the solution $\mathrm{y}(\mathrm{x})$ can be approximated by using the (BPs) as follows:
$\mathrm{y}(\mathrm{x}) \approx \sum_{i=0}^{\mathrm{n}} \mathrm{c}_{\mathrm{i}} \mathrm{b}_{\mathrm{i}}^{\mathrm{n}}(\mathrm{x})=\mathrm{c}^{\mathrm{T}} \mathrm{B}(\mathrm{x}) \cdots(20)$
Where $\mathrm{c}=\left[\mathrm{c}_{0}, \mathrm{c}_{1}, \ldots, \mathrm{c}_{\mathrm{n}}\right]^{\mathrm{T}}$ and $\mathrm{B}(\mathrm{x})=\left[\mathrm{b}_{0}^{\mathrm{n}}(\mathrm{x}), \mathrm{b}_{1}^{\mathrm{n}}(\mathrm{x}), \ldots, \mathrm{b}_{\mathrm{n}}^{\mathrm{n}}(\mathrm{x})\right]^{\mathrm{T}}$
The basic thought is to basically get a homogenous system of equations in theunknowns $c_{i}, 0 \leq i \leq \mathrm{n}$, the roots of whose characteristic equationcomprise the eigenvalues of the problem.Using Eq.(13) and Eq.(20) we have:

$$
{ }^{c} D_{x}^{\alpha} y(x) \approx c^{T} \quad D^{(\alpha)} B(x) \cdots(21)
$$

To begin we apply the (BCs) Eq.(18) and Eq.(19) using Eqs. (20) and (9), so we obtain the following twoequations for the unknown coefficients c_{i} :

$$
\left\{\begin{array}{l}
\mathrm{d}_{11} \mathrm{c}^{\mathrm{T}} \mathrm{~B}(a)+\mathrm{d}_{12} \mathrm{c}^{\mathrm{T}} \mathrm{D}^{(1)} \mathrm{B}(a)=0 \tag{22}\\
\mathrm{~d}_{21} \mathrm{c}^{\mathrm{T}} \mathrm{~B}(b)+\mathrm{d}_{22} \mathrm{c}^{\mathrm{T}} \mathrm{D}^{(1)} \mathrm{B}(b)=0
\end{array}\right.
$$

Or
$\left\{\begin{array}{l}\mathrm{c}^{\mathrm{T}} \Gamma_{a} \\ \mathrm{c}^{\mathrm{T}} \Gamma_{b}\end{array}\right.$
Where
$\Gamma_{a}=\mathrm{d}_{11} \mathrm{~B}(a)+\mathrm{d}_{12} \mathrm{D}^{(1)} \mathrm{B}(a)$
and
$\Gamma_{b}=\mathrm{d}_{21} \mathrm{~B}(b)+\mathrm{d}_{22} \mathrm{D}^{(1)} \mathrm{B}(b)$
Next, substituting Eqs.(9),(20)and(21)into Eq.(17) and by using the linearity property, we obtain:
$c^{T} D^{(\alpha)} B(x)+c^{T} q(x) D^{(1)} B(x)=\lambda H(x) c^{T} B(x)$

Recall that we have $\mathrm{n}+1$ unknown coefficients $c_{i}, \mathrm{i}=0,1, \ldots, \mathrm{n}$, and only two equations from the (BCs) so we require an additional $n-1$ equations. To get like equations we collocate Eq.(24) at $n-1$ points and for appropriate collocation points we use
$x_{i}=\left(\frac{1}{2}\right)\left(\cos \left(\frac{i \pi}{n}\right)+1\right) i=1, \ldots, n-1 . \cdots(25)$
So we have :
$c^{T} D^{(\alpha)} B\left(x_{i}\right)+c^{T} q\left(x_{i}\right) D^{(1)} B\left(x_{i}\right)=\lambda H\left(x_{i}\right) c^{T} B\left(x_{i}\right), i=1, \ldots, n-1 . \cdots(26)$
Or
$c^{T} \Gamma_{i, \alpha}+c^{T} q\left(x_{i}\right) \Gamma_{i, 1}-\lambda H\left(x_{i}\right) c^{T} \Gamma_{i, 0}=0$
Where
$\Gamma_{\mathrm{i}, \alpha}=\mathrm{D}^{(\alpha)} \mathrm{B}\left(\mathrm{x}_{\mathrm{i}}\right)$ and $\Gamma_{\mathrm{i}, \mathrm{j}}=\mathrm{D}^{(\mathrm{j})} \mathrm{B}\left(\mathrm{x}_{\mathrm{i}}\right), \mathrm{j}=0,1$.
Combining Eqs.(23)and(27), we get a complete system of $n+1$ equations which can be written after some simplifications as
$(\mathrm{A}-\lambda \mathrm{K}) \mathrm{c}=0$,
Where
$\mathrm{A}=\left[\begin{array}{c}\left(\Gamma_{\mathrm{i}, \alpha}+\mathrm{q}\left(\mathrm{x}_{\mathrm{i}}\right) \Gamma_{\mathrm{i}, 1}\right)^{\mathrm{T}} \\ \Gamma_{a}^{\mathrm{T}} \\ \Gamma_{\mathrm{b}}{ }^{\mathrm{T}}\end{array}\right]_{(\mathrm{n}+1) \times(\mathrm{n}+1)} \quad$ and $\mathrm{K}=\left[\begin{array}{c}\left(\mathrm{H}\left(\mathrm{x}_{\mathrm{i}}\right) \Gamma_{\mathrm{i}, 0}\right)^{\mathrm{T}} \\ 0\end{array}\right]_{(\mathrm{n}+1) \times(\mathrm{n}+1)}$
At last,for getting a nontrivial solution Eq.(28) should possess a nonzero solution which means that $\operatorname{det}(\mathrm{A}-\lambda \mathrm{K})=0$
Where $\operatorname{det}(A-\lambda K)$ is a polynomial of degree $n-2 i n \lambda$, the eigenvalues of problem(17)-(19) should be those that satisfy Eq.(29).

V. Numerical Results

In this section some Sturm-Liouville problems have been considered in order to find the approximate results of its eigenvalues using the proposed approach given in section 4.
Example1:Consider the following fractional order eigenvalue problem.

$$
\begin{equation*}
{ }^{c} D_{x}^{\alpha}[y(x)]+y^{(1)}(x)+\lambda y(x)=0, \quad x \in(0,1) \cdots(30) \tag{31}
\end{equation*}
$$

S.t.: $y^{(1)}(0)=0, y(1)=0, \quad$ where $1<\alpha \leq 2$.

Following tables 1 and 2 represent the approximate values of the $1^{\text {st }}$ three eigenvalues of problem(30)-(31) compared with the results obtained by [17] when $\alpha=2$.

Table1:The approximate values of the $1^{\text {st }}$ three eigenvalues of theproblem (30)-(31)compared with the results obtained by [17] for distinct values of α.

λ_{k}	$\alpha=1.85 \mathrm{n}=8$	$\alpha=1.85 \mathrm{n}=20[17]$	$\alpha=1.95 \quad \mathrm{n}=8$	$\alpha=1.95$ $\mathrm{n}=20[17]$	$\alpha=2$ $\mathrm{n}=8$	$\alpha=2 \mathrm{n}=20[17]$
λ_{1}	3.688684	3.681348	3.631415	3.628756	3.623089	3.623089
λ_{2}	20.476917	20.429199	22.236499	22.217377	23.441949	23.442337
λ_{3}	49.231315	49.087410	57.690948	57.581008	62.996286	62.929723

Table 2:The approximate values of the $1^{\text {st }}$ three eigenvalues of theproblem (30)-(31) for distinct values of n with $\alpha=1.75 . /$

λ_{k}	$\alpha=1.75$					
	$\mathrm{n}=6$	$\mathrm{n}=8$	$\mathrm{n}=10$	$\mathrm{n}=12$	$\mathrm{n}=14$	$\mathrm{n}=16$
λ_{1}	3.8153558	3.8039381	3.800443	3.797901	3.797529	3.7977257
λ_{2}	19.721111	19.588887	19.563639	19.553688	19.550035	19.629812
λ_{3}	41.760745	42.966502	42.974090	42.906804	42.736823	42.698857

Example 2: Consider the singular fractional eigenvalue problem.
${ }^{c} D_{x}^{\alpha}[y(x)]+\left(\frac{1}{x}+\lambda\right) y(x)=0, \quad x \in(0,1) \cdots(32)$
S.t.: $y(0)=0, y^{(1)}(1)=0 \cdots(33)$

Following table3 represent the approximate values of the $1^{\text {st }}$ three eigenvaluesof problem (32)-(33)compared with the results obtained by[11] when $\alpha=2$.

Table 3: The approximate values of the $1^{\text {st }}$ three eigenvalues of theproblem(32)-(33)for distinct values of α.

λ_{k}	$\mathrm{n}=8$				$\alpha=1.9$	$\mathrm{n}=20,[11]$
	$\alpha=1.75$	$\alpha=1.85$	0.82720	0.80003	0.78043	0.7805164
λ_{1}	1.00229	0.86995	15.41115	16.54381	17.85569	19.35869
λ_{2}	13.6593	42.74263	47.29187	52.46612	58.35406	58.3367236
λ_{3}	35.19086	42502				

Example 3: Consider the following fractional order eigenvalue problem.

$$
{ }^{\mathrm{c}} \mathrm{D}_{\mathrm{x}}^{\alpha}[y(x)]+\lambda y(x)=0 . \cdots(34)
$$

Subject to: $\quad y^{(1)}(0)=0, y(1)=0 . \cdots(35)$
Following table4 represent the approximate values of the $1^{\text {st }}$ three eigenvalues of problem (34)-(35)for distinct values of α.

Table 4:The approximate valuesof the $1^{\text {st }}$ three eigenvaluesof the problem(34)-(35) for distinct values of α.

λ_{k}	$\mathrm{n}=8$					$\alpha=1.85$
$\alpha=1.9$	$\alpha=1.95$	$\alpha=2$				
	$\alpha=1.5$	$\alpha=1.75$	2.27997	2.335089	2.39747	2.46740
λ_{1}	2.12365	2.19259	17.97726	19.21322	20.61774	22.20532
λ_{2}	13.83558	15.96978	36.04442	50.61589	55.81253	61.4169
λ_{3}	24.28174	38.45971				

VI. Conclusions

This article presents powerful technique for calculating the eigenvalues of the fractional order Sturm Liouvilleproblems. The proposed technique is easy in that it is based on using the operational matrices ofthe (BPs) in order to convert the (FDEs) into a linear system of algebraic equations, then the eigenvalue may be computed by finding the roots of the characteristics polynomials. The proposed method is simple to execute, efficient and yields precise outcomes when its compared with the existing methods.

Acknowledgements

The author would like to express their appreciation and thanks for the supported of college of science at AlNahrain University and the head of Mathematics Dr. Osama Hameed.

References

[1]. Mohammed. OH., "A Direct Method for Solving Fractional Order Variational Problems by Hat Basis Functions", Ain Shams Eng. J. http://dx.doi.org/10.1016/j.asej.2016.11.006. (2016).
[2]. Momani. S, and Shawagfeh. N, "Decomposition Method for Solving Fractional Riccati Differential Equations", Appl. Math. Comput; 182: 1083-92, (2006).
[3]. Sweilam. NH, Khader. MM. and Al-Bar. RF, "Numerical Studies for a Multi-Order Fractional Differential Equation", Phys. Lett. A; 371: 26-33. (2007).
[4]. Tan. Y, Abbasbandy. S, "Homotopy Analysis Method for Quadratic Riccati Differential Equation", Commun. Nonlinear Sci. Num. Simul.; 13(3): 539-46, (2008).
[5]. Khader, MM, Introducing an efficient modification of the homotopy perturbation method by using Chebyshev polynomials, Arab J. Math. Sci. 18, 61-71. (2012).
[6]. Bhrawy. AH, Baleanu. D, and Assas. L, "Efficient Generalized Laguerre Spectral Methods for Solving Multi-Term Fractional Differential Equations on the Half Line", J. Vib. Control; 20:973-85, (2013).
[7]. Heydari. MH, Hooshmandasl. MR, Mohammadi. F,Cattani. C., Wavelets method for solving systems of nonlinear singular fractional volterraintegro differential equations. Commun. Nonlinear. Sci. Num. Simul. 19 (1), 37-48. (2014).
[8]. Ma. J, Liu. J, and Zhou. Z, "Convergence Analysis of Moving Finite Element Methods for Space Fractional Differential Equations", J. Comput. Appl. Math.; 255:661-70. (2014).
[9]. Bhrawy. AH, Doha. EH, Ezz-Eldien. SS, and abdelkawy. MA, A numerical technique based on the shifted Legendre polynomials for solving the time-fractional coupled KdV equations, Springer-Verlag Italia .DOI 10.1007/s10092-014-0132-x. (2015).
[10]. Al-Mdallal. QM, An efficient method for solving fractional Sturm-Liouville problems, Chaos Solitons Fractals 40 (2009), pp. 183189.
[11]. Al-Mdallal. QM, On the numerical solution of fractional Sturm-Liouville problems, Int. J. Comput. Math. 87 (12) (2010) 28372845.
[12]. Abbasbandy. S, Shirzadi. A, Homotopy analysis method for multiple solutions of the fractional Sturm-Liouville problems, Numer. Algorithms 54 (4) (2010) 521-532.
[13]. Klimek. M, Odzijewicz. T, Malinowska. AB, Variational methods for the fractional Sturm-Liouville problem, Journal of Mathematical Analysis and Applications, 416, no. 1 (2014) 402-426.
[14]. Khosravian-Arab, H, Dehghan. M,fractional Sturm-Liouville boundary value problems in unbounded domains: Theory and applications, J. Comput. Phys. App. https://doi.org/10.1016/j.jcp.06.030 . (2015).
[15]. Klimek. M, Agrawal. OP, Regular fractional Sturm-Liouville problem with generalized derivatives of order in (0,1), Frac. Diff. and its Appl. 6 (1), 149-154. (2013).
[16]. Bas. E, Metin. F, Spectral properties of fractional Sturm-Liouville problem for diffusion operator, arXiv: 1212. 4761, (2012).
[17]. Hajji. MA, Al-Mdallal. QM, Allan. FM, " An efficient algorithm for solving higher-order fractional Sturm-Liouville eigenvalue problems " Journal of Computational Physics, 272 (2014) 550-558.
[18]. Klimek. M, Agrawal. OP, Fractional Sturm-Liouville problem, Computers and Mathematics with applications. 66 (5), $795-812$. (2013).
[19]. Neamaty. A, Darzi. R, The solutions of fractional Sturm-Liouville problems with α-ordinary and singular points, in: Proceedings of the Fifth International Conference, Finite Difference Methods: Theory and Applications, June 28-July 2, 2010, Lozenetz, Bulgaria, p. 147. (2010).
[20]. Doha. EH, Bhrawy. AH. andSaker. MA, "Integrals of Bernstein Polynomials an Application for the Solution of High Even-Order Differential Equations", Appl. Math. 559-565, Lett. 24 (2011).
[21]. Maleknejad. K, Hashemizadeh. E, and Ezzati. R, "A New Approach to the Numerical Solution of Volterra Integral Equations by Using Bernstein Approximation", Commun. Nonlinear Sci. Numer. Simul. 647-655, 16 (2011).
[22]. Maleknejad. K, Hashemizadeh. E, and Basirat. B, "Computational Method Based on Bernstein Operational Matrices for Nonlinear Volterra-FredholmHammerste in Integral Equations", Commun. Nonlinear Sci. Numer. Simul. 17(1) 52-61, (2012).
[23]. Hashemizadeh. E, Maleknejad. K, and Moshsenyzadeh. M, "Bernstein operational matrix method for solving physiology problems", Department of Mathematics, Karaj Branch, Islamic Azad University, Karaj, Iran, 34 A34: 92 C 30, (2013)
[24]. Bataineh. A, Isik. O, Aloushoush. N, and Shawagfeh. N, "Bernstein Operational Matrix with Error Analysis for Solving High Order Delay Differential Equations", J. Appl. Comput. Math doi: 10. 1007/s40819-016-0212-5, (2016).
[25]. Mohammed. OH, Omar.ASh,Bernstein operational matrices for solving multiterm variable order fractional differential equations. InternationalJournal of Current Engineering and Tecnology.Vol.7, No.1. (2017).
[26]. Podlunny I., "Fractional Differential Equations", Academic Press, (1999).
[27]. Saadatmandi. A, "Bernstein Operational Matrix of Fractional Derivatives and its Applications", Appl. Math. Modeling38 13651372. (2014).

