Isomorphic Finite Group Automata

Dr.K.Muthukumaran¹, S.Shanmugavadivoo²

¹Associate Professor / Ramanujan Research Center in Mathematics, / Saraswathi Narayanan College, Perungudi, Madurai/Tamil Nadu, India-625022, ²Assistant Professor / Department Of Mathematics/ Madurai Kamaraj University College, Aundipatti, Theni Dt., Tamil Nadu, India.

Corresponding Author: Dr.K.Muthukumaran

Abstract: Let $B = (Q, *, \Sigma, \delta, q_0, F)$ and $B' = (Q', \Delta, \Sigma, \delta', q_0', F')$ be two Finite Group Automata. Then a mapping $\Psi : B \to B'$ is said to be a Finite Group Automata isomorphism or simply FGA isomorphism if 1. Ψ is a FGA homomorphism, 2. Ψ is 1-1 and 3. Ψ is onto. Examples of isomorphic Finite Group Automata are given. If there is a FGA isomorphism from B onto B', there will be a FGA isomorphism from B' onto B. More generally, FGA Isomorphism is an equivalence relation among finite group automata.

Keywords: Finite Group Automata, Finite Group Automata Homomorphism and Finite Group Automata isomorphism

Date of Submission: 13-02-2019

Date of acceptance:28-02-2019

1

I. Introduction

Finite Group Automata, and Finite Subgroup Automata were defined and many results were obtained. Commutative Finite Binary Automata, Associative Finite Binary Automata were defined. AC Finite Binary Automata was also defined. Many useful results were obtained. Now we define an isomorphism on Finite Group Automata. We see that FGA Isomorphism is an equivalence relation among finite group automata.

II. Preliminaries

Definition : Relation : Let A and B be non-empty sets. A subset ρ of A×B is called a relation.from A to B. A subset of A×A is called a relation on A.

If an ordered pair (a,b) $\varepsilon\,\rho,$ then we say a is related to b and we write it as apb

A relation ρ defined on a set A is said to be reflexive if apa, for all $a\varepsilon A$

A relation ρ defined on a set is said to be symmetric if apa, then bpa

A relation ρ defined on a set is said to be transitive if apb and bpc, then apc

A relation is said to be an equivalence relation if it is reflexive, symmetric and transitive.

Definition : Finite Automaton: A finite automaton is a 5–tuple (Q, Σ , δ , q_0 , F), where Q is a finite set of states, Σ is a finite input alphabet, q_0 in Q is the initial state, $F \subseteq Q$ is the set of final states, and δ is the transition function mapping Q x Σ to Q.

That is $\delta(q, a)$ is a state for each state and input symbol a.

Finite Group Automaton: A Finite Group Automaton B is a 6-tuple (Q, *, Σ , δ , q_0 , F), where Q is a finite set of elements called states, Σ is a subset of non-negative integers, $q_0 \in Q$, q_0 is a state in Q called the initial state, F \subseteq Q and the set states (element) of F is said to be the set of final states, $\delta : Q \times \Sigma \rightarrow Q$ is the transition function defined by δ (q, n) = qⁿ = q * q * q **q (n times) and * is a mapping from Q×Q to Q satisfying the following conditions.

(i) p * (q * r) = (p * q) * r, for all p,q,r in Q.

(ii) there exists a state denoted by 0 in Q such that p * 0 = p = 0 * p, for all p in Q (iii) for each state p in Q there exists a state q in Q such that p * q = 0 = q * p. Note : For n = 0, $\delta(q, n) = q^n \Rightarrow \delta(q, 0) = q^0$, it is taken as 0

Definition : If for a state p in Q there exists a state q in Q such that p * q = 0 = q * p, then the state q is called the inverse state and the state p is called a invertible state in Q.

If a state p is invertible in Q and p * q = 0 = q * p, then the state q is also invertible. If Σ^* is the set of strings of inputs, then the transition function δ is extended as follows : For $m \in \Sigma^*$ and $n \in \Sigma$, $\delta': Q \times \Sigma^* \to Q$ is defined by $\delta'(q,mn) = \delta(\delta'(q,m),n)$. If no confusion arises δ' can be replaced by δ .

Definition : Let B = (Q, *, Σ , δ , q_0 , F) and B = (Q', Δ , Σ , δ' , q_0' , F') be two Finite Group Automata. Then a mapping $\Psi: B \to B'$ is said to be a **Finite Group Automata Homomorphism** or simply **FGA**

Homomorphism if

- 1. $\Psi(a*b) = \Psi(a) \Delta \Psi(b)$
- 2. $\Psi(\delta(a,n)) = \delta' (\Psi(a),n)$
- 3. $\Psi(\mathbf{q}_0) = \mathbf{q}_0$
- 4. a \in F if and only if $\Psi(a) \in$ F'.

Definition : Let B = (Q, *, Σ , δ , q_0 , F) and B' = (Q', Δ , Σ , δ' , q_0' , F') be two Finite Group Automata. Then a mapping $\Psi : B \to B'$ is said to be a Finite Group Automata isomorphism or simply FGA isomorphism if Ψ is a FGA homomorphism 1.

- 2. Ψ is 1-1 and
- 3.
- Ψ is onto.

If there is an isomorphism from B onto B', then we write it as $B \approx B'$.

This isomorphism is called Finite Group Automata Isomorphism or simply FGA isomorphism.

Example : Consider the Finite Group Automaton $B = (Q, *, \Sigma, \delta, q_0, F)$, where $Q = \{1, -1, i, -i\}, \Sigma = \{1, 2, 3, 4\}$ $q_0 = i$ is the initial state and F=Q, the set of final states, δ is the transition function mapping from Q× Σ to Q defined by $\delta(q,n) = q^n$, and * is the mapping from Q×Q to Q defined by the following table.

[3] = the equivalence class determined by 3

 $\Sigma = \{1, 2, 3, 4\}$

 \bigoplus : $Z_4 \times Z_4 \rightarrow Z_4$ is defined by the following Table

\oplus	[0]	[1]	[2]	[3]
[0]	[0]	[1]	[2]	[3]
[1]	[1]	[2]	[3]	[0]
[2]	[2]	[3]	[0]	[1]
[3]	[3]	[0]	[1]	[2]

 $\delta: Z_4 \times \Sigma \rightarrow Z_4$ is the transition mapping $q_0' = [1]$ F' = Q'

Clearly B' = (Q', \bigoplus , Σ , δ ', q_0 ', F') is a Finite Group Automaton.

B' = (Q', \bigoplus , Σ , δ ', q_0 ', F'),

Define Ψ : B \rightarrow B' by the following.

- $\Psi(1) = [0]$
- $\Psi(i) = [1]$
- $\Psi(-1) = [2]$
- $\Psi(-i) = [3]$
- $\Psi(\delta(a,n)) = \delta' (\Psi(a),n)$ Then $\Psi : B \to B'$ is an FGA isomorphism.

Example : Consider the Finite Group Automaton $B = (Q, *, \Sigma, \delta, q_0, F)$, where $Q = \{1,-1,i,-i\}$, $\Sigma = \{1,2,3,4\}$ $q_0 = -i$ is the initial state and F=Q, the set of final states , δ is the transition function mapping from $Q \times \Sigma$ to Q defined by $\delta(q,n) = q^n$, and * is the mapping from $Q \times Q$ to Q defined by the following table.

*	1	-1	i	-i
1	1	-1	i	-i
-1	-1	1	-i	i
i	i	-i	-1	1
-i	-i	i	1	-1

DOI: 10.9790/5728-1501020411

www.iosrjournals.org

 $B=(Q, *, \Sigma, \delta, q_0, F)$

Let B' = (Q', \bigoplus , Σ , δ ', q_0 ', F'), where Q' = Z₄ = { {[0],[1],[2],[3]} \bigoplus ₄ is the operation of addition modulo 4

- [0] = the equivalence class determined by 0
- [1] = the equivalence class determined by 1
- [2] = the equivalence class determined by 2 [3] = the equivalence class determined by 3
- $\Sigma = \{1, 2, 3, 4\}$
- $\oplus: Z_4 \times Z_4 \rightarrow Z_4$ is defined by the following Table

\oplus	[0]	[1]	[2]	[3]
[0]	[0]	[1]	[2]	[3]
[1]	[1]	[2]	[3]	[0]
[2]	[2]	[3]	[0]	[1]
[3]	[3]	[0]	[1]	[2]

 $\delta: Z_4 \times \Sigma \to Z_4$ is the transition mapping $q_0' = [3], F' = Q'$

Clearly B' = $(Q', \bigoplus, \Sigma, \delta', q_0', F')$ is a Finite Group Automaton. Define $\Psi : B \rightarrow B'$ by the following. $\Psi(1) = [0]$ $\Psi(i) = [1]$ $\Psi(-1) = [2]$ $\Psi(-i) = [3]$ $\Psi(\delta(a,n)) = \delta' (\Psi(a),n)$ Then $\Psi : B \rightarrow B'$ is an FGA isomorphism. **Example :** Let $B = (Z_n, \bigoplus, \Sigma, \delta, q_0, F)$, where $Z_n = \{[0], [1], [2], [3], \dots, [n-1]\}$ \bigoplus_n is the operation of addition modulo n [0] = the equivalence class determined by 0 [1] = the equivalence class determined by 1 [2] = the equivalence class determined by 2 [n-1] = the equivalence class determined by n-1, $\Sigma = \{1, 2, 3, \dots, n\},\$ $\delta: Z_n \times \Sigma \to Z_n$ is the transition mapping, $q_0 = 0$, $\mathbf{F} = \mathbf{Z}_{n}$. Then $B = (Z_n, \bigoplus_{n}, \Sigma, \delta, q_0, F)$ is a Finite Group Automaton. Let B' = $(Q', .., \Sigma, \delta', q_0', F')$ where Q'= the set of all n th roots of unity, that is, Q' = { 1, ω , ω^2 , ω^3 ,..., ω^{n-1} }, where $\omega^n = 1$, . is the multiplication, $\delta': Q' \times \Sigma \rightarrow Q'$ is the transition mapping, $q_0' = \omega$ $\overline{F}' = Q'$ $B' = (Q', .., \Sigma, \delta', q_0', F')$ is a Finite Group Automaton. Define $\Psi : B \to B'$ by $\Psi([k]) = \omega^k$. 1. Ψ is a homomorphism (i) $\Psi(\mathbf{m} \bigoplus_{n} \mathbf{k}) = \omega^{\mathbf{m}} \bigoplus_{n} \mathbf{k}$ $= \omega^{r} \qquad \dots \qquad (\#)$ $\Psi(m).\Psi(k) = \omega^m . \omega^k$ $= \omega^{m+k}$ $= \widetilde{\omega}^{qn+r}$ $= \omega^{qn} \omega^r$ $= (\omega^n)^q \omega^r$ $= 1^{q}.\omega^{r}$ $= 1.\omega^{r}$ $= \omega^{r} \dots (\#\#)$ From (#) and (##) we have $\Psi(m \bigoplus_n k) = \omega^r = \Psi(m).\Psi(k)$ Therefore $\Psi(m \bigoplus_{n} k) = \Psi(m) \cdot \Psi(k)$ (ii) $\Psi(\delta([m],k)) = \Psi([m]^k)$ $=\Psi([m] \bigoplus_{n} [m] \bigoplus_{n} [m] \bigoplus_{n} \dots \dots \bigoplus_{n} [m])$ (k times) $= \Psi([m])\Psi([m])\Psi([m]) \dots \Psi([m])$ (k times) $=\omega_{\mu}^{m}\omega_{\mu}^{m}\omega_{\mu}^{m}.....\omega_{\mu}^{m}$ $= \omega^{km}$ (\$) Now $\delta'(\Psi([m]),k) = \delta'(\omega^m, k)$ $= (\omega^m)^{k}$ $= \omega^{mk}$(\$\$) From (\$) and (\$\$) we have $\Psi(\delta([m],k)) = \omega^{mk} = \delta' (\Psi([m]),k)$ Therefore $\Psi(\delta([m],k)) = \delta' (\Psi([m]),k)$ $\Psi(q_0) = \Psi([1]) = \omega^1$ (iii) =ω $= q_0$ [m] \in F if and only if $\Psi([m]) = \omega^m \in \mathbb{Z}_n = F'$ (iv)

$$\begin{split} & [m] \in F \text{ if and only if } \Psi([m]) \in F' \\ & \text{Therefore } \Psi : B \to B' \text{ defined by } \Psi([k]) = \omega^k \text{ is a FGA homomorphism.} \\ & 2. \qquad \Psi \text{ is } 1\text{-}1 \\ & \text{Let } [m] \text{ , } [k] \in Z_n \\ & \text{Suppose } \Psi([m]) = \Psi([k]) \\ & \omega^m = \omega^k \\ & [m] = [k] \\ & 3. \qquad \Psi \text{ is onto.} \\ & \text{Let } \omega^k \in Q' = \{1, \omega, \omega^2, \omega^3, \dots, \omega^{n-1}\} \text{ , for some } k = 1, 2, 3, \dots, n. \\ & \text{Clearly } \Psi(k) = \omega^k \\ & \text{Therefore } \Psi \text{ is onto.} \\ & \text{Hence } \Psi : B \to B' \text{ defined by } \Psi([k]) = \omega^k \text{ is a FGA isomorphism.} \end{split}$$

Theorem : If there is a FGA isomorphism from B onto B', there will be a FGA isomorphism from B' onto B. More generally, we have the following theorem.

Theorem : FGA Isomorphism is an equivalence relation among finite group automata.

Proof : Let $B = (Q, *, \Sigma, \delta, q_0, F)$ be a Finite Group Automaton. Define I : $B \rightarrow B$ by I(a) = a for all a $\in Q$ Clearly 1) I(a*b) = a*b=I(a)*I(b) $I(\delta(a,n)) = \delta(a,n)$ 1) $=\delta(I(a),n)$ 2) $I(q_0) = q_0$ 3) For each $a \in F$, $I(a) = a \in F$ ie $a \in F$ if and only if I(a) $\in F$ Therefore, I: $B \rightarrow B$ is a FGA isomorphism. ie $B \approx B$ Hence, \approx is reflexive. Let $B = (Q, *, \Sigma, \delta, q_0, F)$ and $B' = (Q', \Delta, \Sigma, \delta', q_0', F')$ be two Finite Group Automata. Assume $B \approx B'$ Suppose $\Psi : B \to B'$ is a FGA isomorphism. Then 1. Ψ is a homomorphism 2. Ψ is 1-1 and 3. Ψ is onto. Since Ψ is 1-1 and onto, Ψ^{-1} exists. Consider Ψ^{-1} : B' \rightarrow B Since Ψ is 1-1 and onto, Ψ^{-1} is also 1-1 and onto. Since Ψ is a homomorphism, (i) $\Psi(a*b) = \Psi(a) \Delta \Psi(b)$ $\Psi(\delta(a,n)) = \delta'(\Psi(a),n)$ (ii) $\Psi(q_0) = q_0'$ (iii) a \in F if and only if $\Psi(a) \in$ F' (iv) Now, let a', b' $\in Q$ Since Ψ is onto, there exist elements a and b in Q such that $\Psi(a) = a'$ and $\Psi(b) = b'$ \Rightarrow a = $\Psi^{-1}(a')$ and b = $\Psi^{-1}(b')$ (i)' $\Psi^{-1}(a' \Delta b') = \Psi^{-1}(\Psi(a) \Delta \Psi(b))$ $= \Psi^{-1}(\Psi(a*b))$ (by(i)) = a*b $= \Psi^{-1}(a') * \Psi^{-1}(b')$ (ii)' Let a' \in Q' and n $\in \Sigma$ There exists an element a in Q such that $\Psi(a) = a'$. $\Rightarrow a = \Psi^{-1}(a')$ $\delta'(a', n) = \delta'(\Psi(a), n)$ $= \Psi(\delta(a, n))$ (by (ii)) $\Rightarrow \Psi^{-1}(\delta'(a', n)) = \delta(a, n)$ $(since a = \Psi^{-1}(a'))$ $=\delta(\Psi^{-1}(a'), n)$ Now, clearly $\Psi(q_0) = q_0' \implies \Psi^{-1}(q_0') = q_0$

Let a' \in F' There exists an element a in Q such that $\Psi(a) = a'$. Clearly $\Psi(a) \in Q$ By (iv) we have $a \in F$ if and only if $\Psi(a) \in F'$ Therefore a \in F But $a = \Psi^{-1}(\Psi(a))$ Therefore $a = \Psi^{-1}(\Psi(a)) \in F$ That is, $a = \Psi^{-1}(a^{\prime}) \in F$ Therefore, a' \in F' if and only if $\Psi^{-1}(a) \in$ F Hence Ψ^{-1} : B' \rightarrow B is a homomorphism. Ψ^{1} is a bijective homomorphism of B onto B' and hence is a FGA isomorphism . Therefore. B' \approx B. Hence \approx is symmetric. Suppose $B \approx B'$ and $B' \approx B''$. Then there exist FGA isomorphisms $f: B \rightarrow B'$ and $g: B' \rightarrow B''$. Since f is a FGA isomorphism, (i) $f(a*b) = f(a) \Delta f(b)$ $f(\delta(a,n)) = \delta'(f(a),n)$ (ii) (iii) $f(q_0) = q_0'$ $a \in F$ if and only if $f(a) \in F'$ (iv) and Since g is a FGA isomorphism, (i) $g(a' \Delta b') = g(a') \theta g(b')$ $g(\delta'(a',n)) = \delta''(g(a'),n)$ (ii) $g(q_0') = q_0''$ (iii) a' \in F' if and only if g(a') \in F'' (iv) Consider g o f : $B \rightarrow B''$ Let $\Psi = g \circ f$ let a, b \in Q 1. $\Psi(a*b) = (g \circ f) (a*b)$ $= g (f(a) \Delta f(b))$ $= g(f(a)) \theta g(f(b))$ = (g o f)(a) θ (g o f)(b) $= \Psi(a) \theta \Psi(b)$ 2. $\Psi(\delta(a,n)) = (g \circ f) (\delta(a,n))$ $= g(f(\delta(a,n)))$ $= g(\delta'(f(a),n))$ $=\delta''((g(f(a)),n))$ $=\delta''((g \circ f)(a),n))$ $=\delta''(\Psi(a).n)$ Let q_0 , q_0 ' and q_0 '' be the initial states of Q, Q' and Q'' respectively. We have $f(q_0) = q_0$ ' and $g(q_0) = q_0$ '' $\Psi(q_0) = (g \circ f) (q_0)$ $= g(f(q_0))$ $= g(q_0')$ $= q_0'$ We have $a \in F$ if and only if $f(a) \in F'$ and $a' \in F'$ if and only if $g(a') \in F''$ That is, $a \in F$ if and only if $f(a) = a' \in F'$ and $f(a) = a' \in F'$ if and only if $g(f(a)) \in F''$ That is, $a \in F$ if and only if $f(a) = a' \in F'$ and $f(a) = a' \in F'$ if and only if $(g \circ f) (a) \in F''$ That is, $a \in F$ if and only if $f(a) = a' \in F'$ and $f(a) = a' \in F'$ if and only if $(\varphi \circ f) (a) \in F''$ Therefore, a \in F if and only if Ψ (a) \in F' Hence $\Psi = g \circ f : B \rightarrow B$ " is a homomorphism. Since $f: B \to B'$ and $g: B' \to B''$ are bijections, $\Psi = g \circ f: B \to B''$ is also a bijection. Therefore, $\Psi = g \circ f : B \rightarrow B''$ is a FGA isomorphism. Therefore, $B \approx B$ " That is, $B \approx B'$ and $B' \approx B'' \implies B \approx B''$ Therefore, \approx is transitive. Therefore, \approx is an equivalence relation. Hence, FGA Isomorphism is an equivalence relation among finite group automata.

Theorem : Let $B = (Q, *, \Sigma, \delta, q_0, F)$ and $B' = (Q', \Delta, \Sigma, \delta', q_0', F')$ be two Finite Group Automata. Let $f : B \rightarrow B'$ be a FGA isomorphism. If S' is a Finite Subgroup Automaton of B', then $f^1(S')$ is a Finite Subgroup Automaton of B.

Proof : Let $B = (Q, *, \Sigma, \delta, q_0, F)$ and $B' = (Q', \Delta, \Sigma, \delta', q_0', F')$ be two Finite Group Automata. Let $f: B \rightarrow B'$ be a FGA isomorphism. Let S' be a Finite Subgroup Automata of B'.

Therefore, $f^{1}(S')$ is a Finite Subgroup Automata of B.

III. Conclusion :

The theory of Finite Group Automata, isomorphism on Finite Group Automata will be useful in many areas. Further research can be done in this area.

References :

- [1]. Dr.K.Muthukumaran And S.Shanmugavadivoo, "Finite Sub-Group Automata" Accepted In "Iosr Journal Of Mathematics", A Journal Of "International Organization Of Scientific Research"
- [2]. Dr.K.Muthukumaran And S.Shanmugavadivoo, "Finite Abelian Automata" Volume 14, Issue 2, Ver.Ii (March April 2018), "Iosr Journal Of Mathematics", A Journal Of "International Organization Of Scientific Research"
- [3]. S.Shanmugavadivoo And Dr.K.Muthukumaran , "Ac Finite Binary Automata" Volume 14, Issue 1, Ver.lii (Jan. Feb. 2018) , "Iosr Journal Of Mathematics", A Journal Of "International Organization Of Scientific Research"
- [4]. S.Shanmugavadivoo And Dr. M.Kamaraj, "Finite Binary Automata" "International Journal Of Mathematical Archive", 7(4),2016, Pages 217-223.
- [5]. S.Shanmugavadivoo And Dr. M.Kamaraj, "An Efficient Algorithm To Design Dfa That Accept Strings Over The Input Symbol A,B,C Having Atmost X Number Of A, Y Number Of B, & Z Number Of C" "Shanlax International Journal Of Arts, Science And Humanities" Volume 3, No. 1, July 2015, Pages 13-18
- [6]. John E. Hopcroft, Jeffery D.Ullman, Introduction To Automata Theory, Languages, And Computation, Narosa Publising House,.
- [7]. Zvi Kohavi, Switching And Finite Automata Theory, Tata Mcgraw-Hill Publising Co. Lid.
- [8]. John T.Moore, The University Of Florida /The University Of Western Ontario, Elements Of Abstract Algebra, Second Edition, The Macmillan Company, Collier-Macmillan Limited, London, 1967.
- [9]. J.P.Tremblay And R.Manohar, Discrete Mathematical Structures With Applications To Computer Science, Tata Mcgraw-Hill Publishing Company Limited, New Delhi, 1997.

Dr.K.Muthukumaran. " Isomorphic Finite Group Automata." IOSR Journal of Mathematics (IOSR-JM) 15.1 (2019): 04-11.