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Abstract: Practical optimization problems frequently involve nonlinear behaviors that must be taken into 

account. Approaches to nonlinear optimization problems often utilize approximation of complicated functions 

by simpler ones which are easier to calculate, and which show the relations between the variables more clearly. 

In this paper, we obtained an approximate optimal solution to a convex quadratic objective function by 

quadratic approximation. This approach was applied to a real-world numerical example to obtain the optimum 

which is the same as that from the conventional method. 

Keywords: Objective function approximation, Optimal solution, Quadratic approximation, Nonlinear 

optimization programs. 

Contribution/Originality: This study contributes to the existing literature on the use of quadratic approximation 

method. It explicitly provides the values of the parameters in the given quadratic model. Basically, the first time 

applied to obtain the optimum value to a real-world optimization problem. 
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I. Introduction 
1.1 Problem Definition 

 Practical optimization Programs frequently involve nonlinear behavior that must be taken into account. 

There are different types of Nonlinear Optimization Programs (NOPs), depending on the characteristics of the 

objective function  f x and the constraints  ig x functions. Different algorithms are used for the different 

types of NOPs. NOPs arise continuously in a wide range of fields and this creates the need for effective methods 

of solving them. Approaches to NOPs often utilize approximations. 

The fundamental problem of approximation theory is to resolve a possibly complicated function called the 

„target function‟ by simpler easier to compute function called the „Approximant‟. Let  f x
be the 

approximant and  f x the target function. If  f x is continuous and differentiable k times, 1,2, ,k n  , 

then as k  increases the error in approximation reduces. This means the approximating function,  f x

(Approximant) becomes closer to the function  f x being approximated (Target function). That is, for 0 

and very small, we have the error:     , , 1,2, , .k
k n

f x f x or Lim k n  


    

 
 Nonlinear models are inherently much more difficult to optimize especially as it is hard to distinguish a 

local optimum from a global one. We show that, this is only possible when the approximating function is 

assumed convex. In this work, we consider any unconstrained convex quadratic objective function and device an 

approximation approach to obtain the approximate optimal solution of such an objective function. The main idea 

behind the approach is to compare the result obtained to that from calculus and the conventional method. The 

beauty lies in the smooth convergence to the optimum. 

 

1.2 Previous Research  

 Approximation theory has been applied to address various problems in the physical sciences, see for 

example [1], [2], [3], [4], [5], [6], [7] and the references contained therein, and has continued to be a subject of 

particular attention for a number of researchers. [8] provided some theoretical estimates for the approximation 

error required for the learning theory in an interpolation space of the couple  .B,H
 

[9] reviewed the 

approximation error theory  and investigated the interplay between the parameters in optical diffusion 
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tomography.  [10] estimated several kinetic parameters using seven iterative, nonlinear estimation  

methodologies, [11] considered positive approximation  on continuous multi-functions. [12] used the Cesaro 

sub-method to approximate Lipschitz class of functions to obtain sharper estimates (Approximants), [13] 

approximated a new special error function with its CDF in terms of both Chebyshev polynomials and the error 

function. [14] obtained the similarity for the best approximation degree of functions in weighted space and the 

best approximation degree in the same space by trigonometric polynomials, and [15] obtained the degree of 

signals (functions) belonging to the class  , ,Lip p w by the summability method. For more on the 

applications of general approximation theory see [16], [17], [18]. 

Interests have also been centered on the approximations of nonlinear functions. [19] and [20] developed a 

nonlinear approximations of the equation of motion  with respect to problems with mixed boundary conditions,  

and  to the growth of cosmic perturbations respectively. [21] investigated the pL  error of approximation to a 

function by obtaining a linear combination of n exponentials on the d – dimensional torus. Both [22] and [23] 

studied nonlinear n-term approximations in piecewise differentiable polynomials in 
2 from hierarchical 

sequences of stable local basis and those generated by multilevel nested triangulations respectively. [24] focuses 

on nonlinear approximation in pL from regular piecewise polynomials in 
2 . For general nonlinear 

approximation see [25]. 

 The aspect of objective function approximation was treated by [26] and [27]. [26] computed the CM- 

and S-estimates by localizing the global minimum of an objective function with an inequality constraint. [31] 

presented new methods for solving NOPs that will address the difficulties associated with handling nonlinear 

constrained and nonlinear objective functions. The methods obtained good solutions by using Lagrange-

Multiplier-based formulation to handle nonlinear constraints, and by using a new trace-based global search 

method to overcome local minima in the objective functions. [32] proposed a new method to obtain the fuzzy 

optimal solution of the NOPs with linear constraints.  

 All these are the vast applications of approximation theory. However, none of these works have 

specifically considered the optimality of a convex quadratic objective function. The approximation of such a 

function is the focus of this study. The approach is verifiable by a numerical example. 

 

II. Nonlinear Optimization Programs (NOPS) 
Nonlinear programming is a technique that deals with optimization programs where the objective functions or 

constraints, or both involve nonlinear mathematical functions. In one general form, the Nonlinear Programming 

Programs (NPPs) or NOPs is to find  1 2, , ,
T

nX x x x  such as to: 

 

 : , , , 1,2, , (1)

0

i i

Optimize f X

Subject to g X or b i m

X




    


 

  

Where : nf   is a continuous (smooth) and differentiable real-valued objective function of the vector

nX  .  1 2, , ,
T

nX x x x  contains all the decision variables of the NOPs/NPPs.  ig X are constraint 

functions of the vector
nX  . 

Some design programs do not have constraints, or the constraints are negligible. Unconstrained NOPs/NPPs 

have many practical applications. The general form of the unconstrained NOPs/NPPs (Free Mathematical 

Programs) is given by: 

 
(2)

: n

Optimize f X

Subject to X




 

 

Where ,X f are already defined in  1 . If  2 is single-variable, the search for the optimum is conducted over 

the entire n  dimensional (Euclidean) space or infinite interval  ,  . If the search is restricted to a finite 

subinterval  ,a b , then the program becomes: 
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(3)
: , ,

Optimize f X

Subject to a X b a b




   
 

Nonlinear Programming algorithms generally are unable to distinguish between a local optima and a global 

optima. In practice, one usually does not know whether a particular objective function  Xf is unimodal over a 

specified interval. When a search procedure is applied in such a situation, there is no assurance it will uncover 

the desired global optimum. In practice, one usually does not know whether a particular objective function 

 f X is unimodal over a specified interval. When a search procedure is applied in such a situation, there is no 

assurance it will uncover the desired global optimum on a search interval except when  f X is unimodal on 

the interval. Exceptions include programs that have convex or concave objective functions. 

 

III. Optimality of Nonlinear Optimization Programs/Nonlinear Programming Programs 
Since the goal of optimization is to locate and find the optimal solution, the notion and theory of  

Optimality is essential. To find the optimal solution of  2 , we find the extremum (local and global) points. An 

extremum of a function  f X  defines either the maximum or minimum of the function  f X . How do we 

know and find the extremum point 
X of a given function : nf   ? 

Mathematically, a feasible solution 
nX  is a globally optimal solution of  Xf if  

   

   

min
(4)

max

n
f X f X global imum

X
f X f X global imum





  
 

  

 
A feasible solution 

nX  is a locally optimal solution of  Xf  if there exists a 0 very small, such 

that:  XX and  XX respectively satisfies: 

   

   
 

min
(5)

max

n
f X f X local imum

X B X
f X f X local imum









  
  

  

Where     B X X X X     

 

It is desired to know the conditions under which any local optima is guaranteed to be a global optima. If a NPP 

has no constraints, the objective function being Concave (Convex), it guarantees that a local maximum 

(minimum) is a global maximum (minimum). Given that, for each pair of values of X , say 

 1 2 1 2,x x I x x  and  0,1 , then    a function of single variable  f X on an interval I  (finite or 

infinite) is: 

 Convex if                   1 2 1 21 1f x x f x f x           

  Concave if                1 2 1 21 1f x x f x f x           

Then the first order necessary condition is, assume  f X  is convex (concave) and differentiable, then the 

local minimum(maximum) X 
 is a global minimize (maximize) of  f X , if and only if   0f X   . That 

is the minimization (maximization) of  f X is equivalent to the solution of the equation   0f X   . Also, 

the second order sufficient condition is that, if  f X is twice differentiable, then  f X is: 

Convex  2 0, nf X X      

Concave   2 0, nf X X    
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IV. Objective Function Approximation 

 

0 0 1 1 2 2,suchthat and       

 
1

1 2

2

2 0 (6 )
2

opt

df
then x x b

dx


 



 
    

 
 

           1 1 2 2 3 3,so that f x f x f x f x and f x f x    
 

 

Then,  

 

 2

0 1 2 2 2 2x x f x     ( )
 

 

 

 0 1 2, , :Solving for and we obtained  
  

 
2 2

1 1 1 1 1 1 1

2 2

2 2 2 2 2 2 2

2 2

3 3 3 3 3 3 3

0 1 22 2 2

1 1 1 1 1 1

2 2 2

2 2 2 2 2 2

2 2 2

3 3 3 3 3 3

1 1

1 1

1 1
, (7)

1 1 1

1 1 1

1 1 1

f x x f x x f

f x x f x x f

f x x f x x f
and

x x x x x x

x x x x x x

x x x x x x

  

     
     
     
            
     
     
     
     
     



 

     

     

2 2 2 2 2

1 3 2 3 2 1 3 2 3 2 1 3 2 3 2

0 2 2 2 2 2

3 2 3 2 1 3 2 1 3 21 .1 1. .1 1.

f x x x x x x f f x x x f f x

x x x x x x x x x x


    


    

 

     

     

2 2 2 2 2

1 3 2 3 2 1 3 2 3 2 1 3 2 3 2

2 2 2 2 2

3 2 3 2 1 3 2 1 3 2

(8)
f x x x x x x f f x x x f f x

x x x x x x x x x x

    


    

 

     

     

2 2 2 2 2

3 2 3 2 1 3 2 1 3 2

1 2 2 2 2 2

3 2 3 2 1 3 2 1 3 2

1 .1 1. .1 1.

1 .1 1. .1 1.

x f f x f x x x f f

x x x x x x x x x x


    


    
 

     

     

2 2 2 2 2

3 2 3 2 1 3 2 1 3 2

2 2 2 2 2

3 2 3 2 1 3 2 1 3 2

.
9

x f f x f x x x f f

x x x x x x x x x x

    


    
( )

 

     

     
3 2 3 2 1 3 2 1 3 2

2 2 2 2 2 2

3 2 3 2 1 3 2 1 3 2

1 .1 1. .1 1.

1 .1 1. .1 1.

f x x f x f f f x x

x x x x x x x x x x


    


    
 

 

   2 2

0 1 2 0 1 2 (6 )Let f x x x be approximated by f x x x a          

 1 2 3, intLet x x and x be po s on f x

 2

0 1 1 2 1 1x x f x     ( )

 2

0 1 3 2 3 3x x f x     ( )
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3 2 3 2 1 3 2 1 3 2

2 2 2 2 2

3 2 3 2 1 3 2 1 3 2

10
f x x f x f f f x x

x x x x x x x x x x

    


    
( )

 

 

(9) (10) int (6), :Plugging and o we obtain

 

 

     

     

     

     

2 2 2 2 2

3 2 3 2 1 3 2 1 3 2

2 2 2 2 2

3 2 3 2 1 3 2 1 3 2
1

2
3 2 3 2 1 3 2 1 3 2

2 2 2 2 2

3 2 3 2 1 3 2 1 3 2

2
2

opt

x f f x f x x x f f

x x x x x x x x x x
x x

f x x f x f f f x x

x x x x x x x x x x







     
 

         
     
 

         

   

   

   

   

2 2 2 2 2 2 2 2 2 2

3 2 3 2 1 3 2 1 3 2 3 2 3 2 1 3 2 1 3 2

2 2 2 2 2
3 2 2 3 1 3 2 1 3 23 2 3 2 1 3 2 1 3 2

2

x f f x f x x x f f x x x x x x x x x x

f x f x x f f f x xx x x x x x x x x x

          
 

           

 

   

   

2 2 2 2 2

3 2 3 2 1 3 2 1 3 2

3 2 3 2 1 3 2 1 3 2

(11)
2

x f f x f x x x f f

f x x f x f f f x x

     


      

 

 

1 2 3 2, (11)Now simplifying by letting x x and x x    
 

 

        

      

2 2 22 2

2 2 3 2 2 2 2 2 3 2

3 2 2 2 2 3 2 1 2 22
Opt

x f f x f x x x f f
x

f x f x x f f f x x

  

  

        


         
 

      
 

 

2 2

2 2 1 2 1 2 3 2 2 3

2 3 2 1

2 2 2 2

2
Opt

x f f x f x f x f f
x

f f f f

     

   

     


   
 

 

   

 
1 2 2 2 3 2

1 2 3

2 4 2

2 2
Opt

f x x f f x
x

f f f

    



   


 
 

 

   

 
1 2 2 2 3 2

1 2 3

2 4 2
(12)

2 2
Opt

f x f x f x
X x

f f f

 


   
   

 

   

V. Numerical Example 
 The number of bacteria in a refrigerated food is given by: 

   220 20 120N T T T   , for 2 14 (13)T    

and where T  is the temperature of the food in Celsius. At what temperature will the number of bacteria be 

minimal? 

 

5.1.  Conventional Approach 

5.1.1. By Calculus 

 From (13)   
 

40 20
dN T

T
dT

  .  But the minimum is at: 
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  01

0 40 20 0 (14)
2

dN T
T T c

dT

       

 

5.1.2. Approximation 

Let (13) be approximated by  

    2

2 1 0 (15)N T T T       

 
   2

2 1 22
2 2 (16)

dN T d N T
T and

dT dT
  

 

    .  

But the minimum temperature occurs at: 

 
1

2 1

2

0 2 0 (17)
2

dN T
T T

dT


 





 
       

 

   2

2
(13) 40 20 40 (18)

dN T d N T
From T and

dT dT
  

 

   
       2 2

2 2
,

dN T dN T d N T d N T
But N T N T and

dT dT dT dT

 

    

 

 
 1 2 2,14 , :Therefore at T we have    

           
2 2

2 1 02 2 20 2 20 2 120 2 2N N           

 

 

 

 
2 1 0160 4 2 (19)       

 

 

   
   2 1

2 2
, 40 2 20 2 2

dN dN
Also

dT dT
 



    
 

 

 

  
2 160 4 (20)   

  

   2 2

2 22 2

2 2
, 40 2 20 (21)

d N d N
Again

dT dT
 



    
 

 

 

 
    1 120 , 60 4 20 20 (22)Hence becomes     

 
 

      0 019 , 160 4 20 2 20 120 (23)becomes       
 

 

 
  220 20 120 (24)N T T T   

 
 

     

 

 
01

2

20 1
(17), (25)

2 2 20 2
and from T c
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5.1.3. Our Approach 

 From (6 )a and (13) , letting , 1,2,3.i i i if N so that x T i    

  

 1 1 2 2 3 31 160, 4 360 9 1560, 2,14 :Then for T N T N and T N T we have            

 

 

     

   

2 2 2 2 2

1 3 2 3 2 1 3 2 3 2 1 3 2 3 2

0 2 2 2 2 2

3 2 3 2 1 3 2 1 3 2

N T T T T T T N N T T T N N T

T T T T T T T T T T


    


    
 

 

 

        

      

22 2 2 2

0 22 2 2 2

160 9 4 9 4 1 9 360 1560 4 1 9 360 1560 4

9 4 9 4 1 9 4 1 9 4


      


      

     

 
 

 

 

 

0

160 180 4200 3000 30000
120 (26)

324 70 144 250


 
  

 



 
 

 

   

   

2 2 2 2 2

3 2 3 2 1 3 2 1 3 2

1 2 2 2 2 2

3 2 3 2 1 3 2 1 3 2

T N N T N T T T N N

T T T T T T T T T T


    


    
 

 

 

     

      

22 2 2 2

1 22 2 2 2

9 360 1560 4 160 9 4 1 1560 360

9 4 9 4 1 9 4 1 9 4


     


      

 

 
 

 

1

4200 1200 10400 5000
20 (27)

324 70 144 250


  
   

 

 

 

 

   

   
3 2 3 2 1 3 2 1 3 2

2 2 2 2 2 2

3 2 3 2 1 3 2 1 3 2

N T T N T N N N T T

T T T T T T T T T T


    


      

 

 

    

      
2 22 2 2 2

1560 4 9 360 1 1560 360 160 9 4

9 4 9 4 1 9 4 1 9 4


     


      

 

   

 

2

3000 1200 800 5000
20 (28)

324 70 144 250
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2 2 2 2 2

3 2 3 2 1 3 2 1 3 21

2 3 2 2 3 1 3 2 1 3 2

(11),
2 2

Min

T N N T N T T T N N
From T t

N T N T T N N N T T






     

  
        

 

 

     

    

22 2 2 29 360 1560 4 160 9 4 1 1560 360

2 1560 4 360 9 1 1560 360 160 9 4
MinT t

      
 

       

 

   

 

 

   
0

29160 24960 160 65 1 1200 35360 30360 500 1
(29)

2 6240 3240 1200 800 2 8240 3240 1000 2
MinT t c

    
    

   



 

1 2 3 2, , 5 ( ), : (20)Given that T T and T T for Simplifying Parameter we have      

 

  

   

 
1 2 2 2 3 2

1 2 3

2 4 2

2 2
Min

N T N T N T
T t

N N N

 


   
 

   

 

 

   

   
0

160 5 2 4 4 360 4 1560 2 4 5 2080 5760 4680 1000 1
(30)

2 160 2 360 1560 2 1000 2000 2
MinT t c

     
    

 

   



 

VI. Conclusion 
 Nonlinear models are inherently much more difficult to optimize especially as it is hard to distinguish a 

local optimum from a global optimum. We showed that this is only possible when the approximating function is 

convex. In this paper, we have been able to obtain the approximate optimal solution of an unconstrained convex 

quadratic objective function by quadratic approximation. The optimal solution to a real-life numerical problem 

is obtained first by calculus, second by the usual conventional approximation method, and thirdly by this study‟s 

approach. Comparing the parameters of the convex quadratic model 0 1 2, and   in equations:  21 and

 28 ,    22 27and , and    23 26and , and also the optimal (minimum) solution in the conventional 

   14 25and , and    29 30and based on our approach shows they are the same.  However, this 

programs can also be looked upon under policy constraints as further study. 
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