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Abstract: The generalized multiquadrics radial basis function (GMQ-RBF) methods are numerical methods 

which are used independently or combined with other numerical methods to develop hybrid numerical methods 

for approximating partial differential equations (PDEs), integral equations (IQs), integro-differential equations 

(IDEs) and interpolation problems. The standard GMQ-RBFs are well known and are commonly applied for 

approximating the solutions of some mathematical problems, however, GMQ-RBFs having non-standard 

exponents appear in literature but are not commonly used. In this paper, two GMQ-RBFs with non-standard 

exponentsare used for the space discretization of some time-dependent PDEs and combined with the fourth 

order Runge-Kutta method which is used as a time-stepping method to propose two radial basis function method 

of lines (RBF-MOLs).Theproposed methods are implemented in MATLAB and applied to approximate the 

solution of some time-dependent PDEs in one space dimension. Our proposed methods compared favourably 

with some numerical results obtained from some standard generalized RBF-MOLs. 

Keywords: Radial Basis Functions, Generalized Multiquadric Radial Basis Functions, Radial Basis Function 

Method of Lines. 
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I. Introduction 
A radial basis function (RBF) is a real valued function 𝜙:ℝ𝑑 ⟶ ℝ, whose values depends only on 

distance 𝑥 ∈ ℝ𝑑  and some fixed point 𝑥𝑗 ∈ ℝ𝑑 , 𝑗 = 1,2,… ,𝑁 (centres) such that  

𝜙 𝑥, 𝑥𝑗  = 𝜙  𝑥 − 𝑥𝑗  = 𝜙 𝑟                                                                (1.1) 

where 𝑟 is generally the Euclidean distance. Radial basis function (RBF) methods were derived for the 

purpose of multivariate scattered interpolation, but in recent times they are applied in different areas of 

mathematical sciences and engineering such as PDEs etc.
1
. Hardy

2
, introduced the multiquadric (MQ) RBF 

method, his work was primarily concerned with application of scattered data interpolation in geodesy and 

mapping
3
. Other RBFs such as the thin plate splines (TPS) and the surface splines were later introduced by

4, 5
. 

Franke
6
, compared different interpolation methods and rated MQ and TPS as the best in terms of the ease of 

implementation, storage accuracy and visual pleasantness of the surface. This discovery paved way for the 

application of RBFs in different scientific computing communities, especially the MQ RBF.  

Kansa,
7,8

was the first to develop an RBF collocation scheme for approximating the solutions of the 

elliptic, parabolic and hyperbolic PDEs using the MQ RBF. Kansa’s breakthrough lead to the application of 

RBFs for approximating the solutions of integral equations, integro-differential equations etc. in different 

mathematical and engineering disciplines
9
. 

A generalized version of the MQ RBF (GMQ) is given by  

𝜙 𝑟, 𝜀 =  1 + 𝜀2𝑟2 𝛽                                                                                    (1.2) 

where the exponent 𝛽 may be any real number except non-negative integers
10

. Equation (1.2) is 

referred to as MQ RBF, inverse multiquadric (IMQ), inverse quadratic (IQ), generalized inverse multiquadric 

(GIMQ) if 𝛽 =
1

2
,−  

1

2
,−1 and − 2 respectively.The GMQ-RBF is strictly positive definite if 𝛽 < 0 and 

conditionally positive definite of order  𝛽  if 𝛽 > 0 3. Positive definite RBFs do not require a polynomial term 

to be appended to its interpolation matrix to make it invertible, while the interpolation matrix of conditionally 

positive are appended with a polynomial term, however, many researchers have used conditionally positive 

definite RBFs without appending the polynomial term, yet good approximations were obtained
10

.  
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The MQ RBF and the IMQ have been applied to solve many PDEs and integral equations see
10, 11, 

12
etc., while the IQ and GIMQ-RBFs were utilize by

13, 14
 to approximate some time-dependent PDEs. The 

GMQ-RBFs with the value of the exponent 𝛽 =
3

2
,

5

2
,

7

2
,… are in recent times explored by

9
 in conjunction with 

the advanpix software for approximating PDEs without appending any polynomial term, however, little 

experiments have been carried out with GMQ-RBFs having non-standard exponent 𝛽. Although some 

researchers such as
15, 16, 17

have reported good results with some non-standard values of GMQ-RBFs exponents 

for 𝛽 = 1.03 and 𝛽 = 1.99 respectively, much applications are not found in literature about them especially for 

approximating PDEs. 

In this paper, we wish to apply the values of the exponent 𝛽 = 1.03 and 𝛽 = 1.99 in equation (1.2) to 

approximate the solutions of some time-dependent PDEs via the method of lines (MOLs) in one space 

dimension. We shall obtain our test problems from
10

 for the purpose of comparison. 

The rest of the paper is organized as follows, the derivation of the methods is considered in Section 2, 

while the results are presented in Section 3 and finally discussion and conclusion are done in Sections 4 

and5respectively. 

 

II. Methods 
The derivation of the differentiation matrix of the GMQ RBFs having non-standard values of the 

exponent 𝛽 = 1.03 and 𝛽 = 1.99 for discretizing the space derivatives ofsometime-dependent PDEs in one 

space dimension are provided in this section. 

To solve a PDE with an RBF method, the space derivatives are discretized using a differentiation 

matrix which depends on both the evaluation and interpolation matrices of the required RBF. First we make an 

assumption that if 𝑢:ℝ𝑑 ⟶ℝ is the unknown solution, it can be approximated with an RBF interpolant 

𝑠:ℝ𝑑 ⟶ℝdefined by 

𝑠 𝑥 = 𝑢 𝑥                                                                                              (2.1) 

where  

𝑠 𝑥 =  𝜆𝑗𝜙  𝑥 − 𝑥𝑗  

𝑁

𝑗=1

+ 𝑝 𝑥 ,                                                               (2.2) 

 ∙  denotes the Euclidean norm, 𝑝(𝑥) ∈ 𝒫𝑚
𝑑  is a polynomial of degree 𝑚 − 1 and 𝜆𝑗 , 𝑗 = 1,2,3,… ,𝑁 is 

a vector of an unknown to be found. However, we wish to use equation (2.2) without appending the polynomial 

term 𝑝(𝑥) as explained in Sarra and Kansa (2009). Thus, equation (2.2) can be written as  

𝑠 𝑥 =  𝜆𝑗𝜙  𝑥 − 𝑥𝑗   

𝑁

𝑗=1

.                                                                              (2.3) 

Substituting equation (2.3) in equation (2.1) and expanding for each 𝑥 = 𝑥𝑖 , 𝑖 = 1,2,3,… ,𝑁, and 

𝑗 = 1,2,3,… ,𝑁 gives the system of linear equations in matrix form 

 

𝜙  𝑥1 − 𝑥1  𝜙  𝑥1 − 𝑥2  ⋯ 𝜙  𝑥1 − 𝑥𝑁  

𝜙  𝑥2 − 𝑥1  𝜙  𝑥2 − 𝑥2  ⋯ 𝜙  𝑥2 − 𝑥𝑁  
⋮ ⋮ ⋱ ⋮

𝜙  𝑥𝑁 − 𝑥1  𝜙  𝑥𝑁 − 𝑥2  ⋯ 𝜙  𝑥𝑁 − 𝑥𝑁  

  

𝜆1

𝜆2

⋮
𝜆𝑁

 =  

𝑢1

𝑢2

⋮
𝑢𝑁

                          (2.4) 

Equation (2.4) is the general interpolation matrix of an RBF. It can be expressed in vector-matrix form as  

𝐴𝜆 = 𝑢.                                                                                                   (2.5) 

The unknown vector 𝜆is obtained from equation (2.5) as shown in equation (2.6) 

𝜆 = 𝐴−1𝑢                                                                                                 (2.6) 

The evaluation matrix is obtained by evaluating equation (2.3) for each data point𝑥𝑖 , 𝑖 = 1,2,3,… ,𝑀, 

𝑗 = 1,2,3,… ,𝑁. However, to ensure a symmetric evaluation matrix, 𝑁 data points and 𝑁 evaluation points are 

used. The evaluation matrix is expressed as  

 𝜆𝑗𝜙  𝑥𝑖 − 𝑥𝑗  

𝑁

𝑗=1

= 𝐻𝜆𝑗                                                                               (2.7) 

where 𝐻 has the entries 𝑖𝑗 = 𝜙  𝑥𝑖 − 𝑥𝑗  . 

Differentiating (2.7), we get the differentiation matrix 

 𝜆𝑗
𝜕

𝜕𝑥𝑖
𝜙  𝑥𝑖 − 𝑥𝑗  

𝑁

𝑗=1

=
𝜕

𝜕𝑥𝑖
𝐻𝜆𝑗                                                                 (2.8) 

Equation (2.8) can be differentiated the number of times requiredto get the order of the derivative of interest. 

Thus, relating (2.8) and (2.1) shows that  
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𝜕

𝜕𝑥𝑖
𝑢 𝑥𝑖 ≈

𝜕

𝜕𝑥𝑖
𝑠 𝑥𝑖 =

𝜕

𝜕𝑥𝑖
𝐻𝜆𝑗 .                                                                 (2.9) 

Substituting (2.6) in (2.9) yields 
𝜕

𝜕𝑥𝑖
𝑢 =

𝜕

𝜕𝑥𝑖
𝐻𝐴−1𝑢.   

Let  

𝐷 =
𝜕

𝜕𝑥𝑖
𝐻𝐴−1                                                                                               (2.10) 

Equation (2.10) is called the differentiation matrix, it is used for approximating the derivatives of a given PDE. 

Substituting  

𝜙 𝑟 =  1 +  𝜀 𝑥𝑖 − 𝑥𝑗  
2
 

1.03

                                                                   (2.11) 

and  

𝜙 𝑟 =  1 +  𝜀 𝑥𝑖 − 𝑥𝑗  
2
 

1.99

                                                                  (2.12) 

𝑖 = 1,2,3,… ,𝑁 and 𝑗 = 1,2,3,… ,𝑁, 
We get the following basis functions which can be substituted in equation (2.4) and (2.7) to get the 

desired interpolation and evaluation matrices respectively which are used for the formulation of the 

differentiation matrices as shown in equation (2.10). In one dimension, the interpolation matrices for the non-

standard GMQ-RBFs are given below 

 

 1 +  𝜀 𝑥1 − 𝑥1  
2 𝑛  1 +  𝜀 𝑥1 − 𝑥2  

2 𝑛 ⋯  1 +  𝜀 𝑥1 − 𝑥𝑁  
2 𝑛

 1 +  𝜀 𝑥2 − 𝑥1  
2 𝑛  1 +  𝜀 𝑥2 − 𝑥2  

2 𝑛 ⋯  1 +  𝜀 𝑥2 − 𝑥𝑁  
2 𝑛

⋮ ⋮ ⋱ ⋮
 1 +  𝜀 𝑥𝑁 − 𝑥1  

2 𝑛  1 +  𝜀 𝑥𝑁 − 𝑥2  
2 𝑛 ⋯  1 +  𝜀 𝑥𝑁 − 𝑥𝑁  

2 𝑛

                       (2.13) 

where  

𝑛 = 1.03 and 1.99 

 

Existence and Uniquenessof Interpolation Matrix of RBFs: Forany RBF applied to discretize the space 

derivatives of a PDE to exist and be unique, the interpolation matrix has to be invertible
10

. There are many 

methods for characterizing the existence and uniqueness of an interpolation matrix
3
, however, we shall verify 

that the basic functions of the RBFs of interest are completely monotone. 

 

Theorem 1: Completely Monotone Functions
10 

A function 𝜙 𝑟  is completely monotone on [0,∞) if  

(i) 𝜙 ∈ 𝐶 0,∞ , 
(ii) 𝜙 ∈ 𝐶∞ 0,∞ , 

(iiii)  −1 ℓ𝜙 ℓ  𝑟 ≥ 0, 
where 𝑟 > 0 and ℓ = 0,1,2,…. 
The RBFs we wish to use are conditionally positive definite, so we shall verify that their basic functions are 

completely monotone using Theorem 2 below. 

 

Theorem 2
3 

Suppose 𝜙 𝑟 is completely monotone, then 

𝜙 𝑟 = (−1) 𝛽  1 + 𝑟 𝛽 ,         0 < 𝛽 ∉ ℕ, 
imply 

𝜙 ℓ  𝑟 = (−1) 𝛽 𝛽 𝛽 − 1 …  𝛽 − ℓ + 1  1 + 𝑟 𝛽−ℓ 
so that  

(−1) 𝛽 𝜙  𝛽   𝑟 = 𝛽 𝛽 − 1 …  𝛽 −  𝛽 + 1  1 + 𝑟 𝛽− 𝛽                                                       (2.14)  
where  𝛽  means the least integer greater than 𝛽. 
If 𝛽 = 1.03 and 𝛽 = 1.99, then both  1.03  and  1.99  are equal to 2. 

Thus equation (2.14) in both cases reduces to  

(−1)2𝜙 2  𝑟 =  1.03  0.03 
1

 1 + 𝑟 0.97
≥ 0                                                                               (2.15) 

and  

(−1)2𝜙 2  𝑟 =  1.99  0.99 
1

 1 + 𝑟 0.01
≥ 0                                                                               (2.16) 

Equation (2.15) and (2.16) shows that Theorem 1 is verified. 
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Discretizing Derivatives with RBFs: To discretize a derivative using RBFs 𝜙 𝑟(𝑥)  , the chain rule for the first 

two derivatives according to Sarra and Kansa (2009) are given as  
𝜕𝜙

𝜕𝑥𝑖
=
𝑑𝜙

𝑑𝑟

𝜕𝑟

𝜕𝑥𝑖
                                                                                                                          (2.17) 

and  

𝜕2𝜙

𝜕𝑥𝑖
2

=
𝑑𝜙

𝑑𝑟

𝜕2𝑟

𝜕𝑥𝑖
2

+
𝑑2𝜙

𝜕𝑟2
 
𝜕𝜙

𝜕𝑥𝑖
 

2

                                                                                             (2.18) 

where  
𝜕𝑟

𝜕𝑥𝑖
=
𝑥𝑖
𝑟

 

and  

𝜕2𝑟

𝜕𝑥𝑖
2

=
1 −  

𝜕𝑟

𝜕𝑥𝑖
 

2

𝑟
 . 

For the GMQ RBF having the value of 𝛽 = 1.03, 
𝑑𝜙

𝑑𝑟
= 2.06𝜀2𝑟 1 + 𝜀2𝑟2 0.03 

and 

𝑑2𝜙

𝜕𝑟2
= 2.06𝜀2𝑟 1 + 𝜀2𝑟2 0.03 +

0.1236𝜀4𝑟2

 1 + 𝜀2𝑟2 0.97
 

Similarly, for the GMQ RBF having the value of 𝛽 = 1.99 
𝑑𝜙

𝑑𝑟
= 3.98𝜀2𝑟 1 + 𝜀2𝑟2 0.99 

and 

𝑑2𝜙

𝑑𝑟2
= 3.98𝜀2𝑟 1 + 𝜀2𝑟2 0.99 +

7.8804𝜀4𝑟2

 1 + 𝜀2𝑟2 0.01
 

 

Algorithm for Approximating the Solution of Time-Dependent PDEs 

To solve time-dependent PDEs considered in this paper using the method of lines (MOLs), once the space 

discretization is performed using RBFs as described above, the PDE can be written as 
𝜕𝑢

𝜕𝑡
+  ℒ𝑢 + ℬ𝑢 = 0                                                                                                                   (2.19) 

where  

ℒ𝑢 =  𝜆𝑗

𝑁𝐼

𝑗=1

 𝑡 ℒ 𝜙 𝑥𝑖 − 𝑥𝑗   , 𝑖 = 1, 2,… ,𝑁𝐼                                                         (2.20) 

and  

ℬ𝑢 =  𝜆𝑗

𝑁

𝑗=𝑁𝐼+1

 𝑡 ℬ 𝜙 𝑥𝑖 − 𝑥𝑗   , 𝑖 = 𝑁𝐼+1,… ,𝑁,                                                      (2.21) 

ℒ and ℬ are the differential operators applied to the interior and boundary points respectively. 

 

Equation (2.20) – (2.22) can be written as a single equation as  
𝑑𝑢

𝑑𝑡
=

𝜕

𝜕𝑥𝑖
𝐻𝜆𝑗                                                                                                                    (2.22) 

where  
𝜕

𝜕𝑥𝑖
𝐻 =  ℒ𝑢 + ℬ𝑢 . 

Equation (2.4) can be recast in this case as  

𝐴𝜆 = 𝑢,  𝑢1 𝑡 ,𝑢1 𝑡 ,… ,𝑢𝑁 𝑡  ,                                                                         (2.23) 

equation (2.23) can be written as equation (2.6) and substituting in (2.22) leads to 
𝑑𝑢

𝑑𝑡
=

𝜕

𝜕𝑥𝑖
𝐻𝐴−1𝑢                                                                                                            (2.24) 

or  
𝑑𝑢

𝑑𝑡
= 𝐷𝑢                                                                                                                           (2.25) 
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Equation (2.25) leads to a system of ordinary differential equations (ODEs) which can be integrated using a 

suitable time-stepping method. In this paper,the fourth order Runge-Kutta method is used to integrate the 

resulting system of ODEs. 

III. Results 
In this section, three test problems on some time-dependent PDEs in one space dimension are 

implemented in MATLAB 2017b on WINDOWS 8 operating system and displayed in Graphs and Tables. The 

test problems and parameters values are obtained from
10, 18

.These results are compared with the MQ-RBF-

MOLs from
10

 and the IQ and GIMQ RBF-MOLs from
12

. 

The following symbols are found in all the Tables  
S/No. Symbol Meaning 

1 ∆𝑡 Change in Time 

2 𝐹𝑇 Final Time 

3 𝑁 Number of Data Points 

4 𝜀 Shape Parameter 

5 𝑀𝑃𝐸 Maximum Point-wise Error 

 

Example 1: The Linear Advection-Diffusion Equation
10 

The linear advection-diffusion equation is given by  

𝜕𝑢

𝜕𝑡
+ 𝑎

𝜕𝑢

𝜕𝑥
= 𝑣

𝜕2𝑢

𝜕𝑥2
,    𝑣 > 0                                                                                                       (3.1) 

where 𝑎 = 1 and 𝑣 = 0.002, 
approximated on the domain  

Ω = [0,1] 
the initial condition is  

𝑢 𝑥, 0 = 0 

the boundary conditions are 

𝑢 0, 𝑡 = 1 

and 

𝑢 𝑥, 𝑡 =
1

2
 𝑒𝑟𝑓𝑐  

1−𝑡

2 𝑣𝑡
 + 𝑒𝑥𝑝  

1

𝑣
 𝑒𝑟𝑓𝑐  

1+𝑡

2 𝑣𝑡
  . 

The exact solution is given by 

𝑢 𝑥, 𝑡 =
1

2
 erfc  

𝑥−𝑡

2 𝑣𝑡
 + exp  

1

𝑣
 erfc  

𝑥+𝑡

2 𝑣𝑡
  . 

The results for Example1 are given in Figures 1, 2 and Table 1 

 

 
Fig. 1(a): Numerical solution usingGMQ RBF-MOLs with 𝛽 = 1.03 versus the exact solution. 

Fig. 1(b): Point-wise error of  theGMQ RBF-MOLS with 𝛽 = 1.03 for Example 4.1 
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Fig. 2(a): Numerical solution usingGMQ RBF-MOLs with 𝛽 = 1.99 versus the exact solution. 

Fig. 2(b): Point-wise error of  theGMQ RBF-MOLS with 𝛽 = 1.99 for Example 4.1 
 

Table 1: Comparison of MQ, IMQ, IQ, GIMQ and GMQ (𝛽 = 1.03 and 𝛽 = 1.99) RBF-MOLS for Example 

4.1 
S/No RBF-MOLs N ∆𝒕 FT 𝜺            MPE Source 

1 MQ 51 5.0 × 10−3 5.0 × 10−1 6.0 4.6960 × 10−4 
10 

2 IMQ 51 5.0 × 10−3 5.0 × 10−1 5.1 3.5065 × 10−4 
13 

3 IQ 51         5.0 × 10−3 5.0 × 10−1 5.0 4.2310 × 10−4 
13 

4 GIMQ 51 5.0 × 10−3 5.0 × 10−1 4.5 4.5420 × 10−4 
13 

5 GMQ with 𝛽 = 1.03 51 5.0 × 10−3 5.0 × 10−1 6.0 4.5560 × 10−4  

6 GMQ with 𝛽 = 1.99 51 5.0 × 10−3 5.0 × 10−1 6.9 5.4430 × 10−4  

 
 Example 4.2: A Nonhomogenous Heat Equation

18 

A problem involving a nonhomogenous heat equation is given below 

𝜕𝑢

𝜕𝑡
=
𝜕2𝑢

𝜕𝑥2
+ 2,                                                                                                                                     (3.2) 

on the domain  

Ω = [0,1] 
with the initial condition   

𝑢 𝑥, 0 = sin 𝜋𝑥 = 𝑥(1 − 𝑥) 
and boundary conditions 

𝑢 0, 𝑡 = 0 , 𝑢 1, 𝑡 = 0. 
The exact solution is given by 

𝑢 𝑥, 𝑡 = exp −𝜋2𝑡 sin 𝜋𝑥 + 𝑥(1 − 𝑥). 

The results for Example 3.2 are given in the Figures 3, 4 and Table 

 

 
Fig. 3(a): Numerical solution usingGMQ RBF-MOLs with 𝛽 = 1.03 versus the exact solution. 

 

Fig. 3(b): Point-wise error of  theGMQ RBF-MOLS with 𝛽 = 1.03 for Example 4.2 
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Fig. 4(a): Numerical solution usingGMQ RBF-MOLs with 𝛽 = 1.99 versus the exact solution. 

Fig. 4(b): Point-wise error of  theGMQ RBF-MOLS with 𝛽 = 1.99 for Example 4.2 
 

Table 2: Comparison of MQ, IMQ, IQ, GIMQ and GMQ (𝛽 = 1.03 and 𝛽 = 1.99)   Example 4.2 
S/No RBF-MOLs N ∆𝒕 FT 𝜺            MPE Source 

1 MQ 31 5.0 × 10−7 5.0 × 10−4 5.0 2.5380 × 10−4 
10 

2 IMQ 31 5.0 × 10−7 5.0 × 10−4 5.0 1.6630 × 10−4 
13 

3 IQ 31 5.0 × 10−7 5.0 × 10−4 5.0 7.4550 × 10−5 
13 

4 GIMQ 31 5.0 × 10−7 5.0 × 10−4 3.0 1.9780 × 10−5 
13 

5 GMQ with 𝛽 = 1.03 31 5.0 × 10−7 5.0 × 10−4 1.0 1.4500 × 10−5  

6 GMQ with 𝛽 = 1.99 31 5.0 × 10−7 5.0 × 10−4 1.2 9.5000 × 10−6  
 

Example 4.3: The Burgers’ Equation
10 

The Burger’s equation is given by 

𝜕𝑢

𝜕𝑡
+

𝜕

𝜕𝑥
 
𝑢2

2
 = 𝑣

𝜕2𝑢

𝜕𝑥2
 ,     𝑣 > 0                                                                                                                    (3.3) 

On the domain 

Ω =  −1,1 , 
with the initial condition  

𝑢 𝑥, 0 = 0 

and boundary conditions  

𝑢 −1, 𝑡 = 𝑔 𝑡 ,𝑢 1, 𝑡 =  𝑡  
The boundary conditions are taken from the exact solution 

𝑢 𝑥, 𝑡 =
0.1 exp 𝑎 + 0.5 exp 𝑏 + exp(𝑐)

exp 𝑎 + exp 𝑏 + exp(𝑐)
 

where 

𝑎 =
−(𝑥 + 0.5 + 4.95𝑡)

2𝑣
, 

𝑏 =
−(𝑥 + 0.5)

4𝑣
, 

𝑐 =
−(𝑥 + 0.625 + 0.75𝑡)

2𝑣
, 

𝑣 = 4.4 × 10−3 
The results for Example 3.3 are provided in Figures 5, 6 and Table 3 

 
Fig. 5(a): Numerical solution usingGMQ RBF-MOLs with 𝛽 = 1.03 versus the exact solution. 

Fig. 5(b): Point-wise error of  theGMQ RBF-MOLS with 𝛽 = 1.03 for Example 4.3 
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Fig. 6(a): Numerical solution usingGMQ RBF-MOLs with 𝛽 = 1.99 versus the exact solution. 

Fig. 6(b): Point-wise error of  theGMQ RBF-MOLS with 𝛽 = 1.99 for Example 4.2 
 

Table 3: Comparison of MQ, IMQ, IQ, GIMQ and GMQ (𝛽 = 1.03 and 𝛽 = 1.99) for Example 4.3 
S/No RBF-MOLs N ∆𝒕 FT 𝜺             MPE Source 

1 MQ 140 1.0 × 10−5 1.2 11 6.6230 × 10−4 
10 

2 IMQ 140 1.0 × 10−5  8.0 7.5159 × 10−4 
13 

3 IQ 140 1.0 × 10−5  8.0 1.1000 × 10−3 
13 

4 GIMQ 140 1.0 × 10−5  7.0 1.3000 × 10−3 
13 

5 GMQ with 𝛽 = 1.03 140 1.0 × 10−5  80 3.5700 × 10−3  

6 GMQ with 𝛽 = 1.99  1.0 × 10−5  110 1.1500 × 10−3  

 

IV. Discussion 
Discussion 

Example 4.1 is a linear advection-diffusion equation. To approximate this equation by RBF-MOLs, the domain 

was partitioned into 𝑁 = 51 uniformly spaced centres and the spatial derivatives were approximated using two 

non-standard exponent valuesGMQ RBFs. Since the advection-diffusion equation is linear, the entire space 

derivatives were discretized using one differential operator and one differentiation matrix. The shape parameters 

𝜀 = 6.0 and 𝜀 = 6.9 were used for the GMQ RBF-MOLs with 𝛽 = 1.03 and 𝛽 = 1.99 respectively to 

approximate the solution of the problem. In the course of implementing the program in MATLAB, it was 

observed that values of the shape parameter less than 5 tend not to yield good approximations for this problem. 

The brute force method was used to obtain a suitable estimate for the shape parameter for the proposed RBF 

methods. The fourth order Runge-Kutta method was used to integrate the system of ODEs that resulted from the 

spatial discretization of the PDE. We chose the temporal step size to be 5.0 × 10−3 and used it to advance the 

problem to a final time 5.0 × 10−1. For the purpose of comparison, the plots of the exact and numerical 

solutions are provided in Figures 1 and 2 on the same graph. The maximum point-wise errors obtained by using 

the GMQ RBF-MOLs with 𝛽 = 1.03 and 𝛽 = 1.99  were  4.5560 × 10−4  and 5.4430 × 10−4. These point-

wise errors are within the same range with the errors obtained using other RBF-MOLs like the MQ of
10 

and 

IMQ, IQ, GIMQ of
13

 as shown in Table 1.   

 

Examples 4.2 is a nonhomogenous heat equation with a second order space derivative. To approximate the 

problem using RBF-MOLs, the GMQ RBF with 𝛽 = 1.03 and 𝛽 = 1.99 were used to discretize the space 

derivative and the domain was divided into 𝑁 = 31 equally spaced centres. The spatial discretization was 

carried out using a single differentiation matrix since the problem is linear. The system of ODEs resulting from 

the spatial discretization of the PDE was integrated using the fourth order Runge-Kutta method. A time stepof 

∆𝑡 = 5.0 × 10−7  was used to advance the approximation of the problem to a final time 1.0 × 10−4. The shape 

parameters 𝜀 = 1.0 and 𝜀 = 1.2  were used for the GMQ with 𝛽 = 1.03 and 𝛽 = 1.99 respectively fornumerical 

approximations. The maximum point-wise errors obtained using the GMQ with 𝛽 = 1.03 and 𝛽 = 1.99 were 

1.45 × 10−5 and 9.5 × 10−6 respectively. Comparing the point-wise errors of the nonstandard exponential 

values of the GMQ RBF-MOLs with the errors of the MQ, IMQ, IQ and GIMQ which are 2.5380 × 10−4, 

1.6330 × 10−4, 7.4550 × 10−5 and 1.97800 × 10−5 (approximated under the same condition with shape 

parameters 𝜀 = 5.0, 𝜀 = 5.0, 𝜀 = 3.0 and 𝜀 = 3.0 for the respective RBF-MOLs) as shown in Table 2, we 

observed that the GMQ with 𝛽 = 1.99 has the smallest point wise error, followed by the GMQ with 𝛽 = 1.03.  
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Example 4.3 is the Burgers’ equation with a space derivative of order two (2). The approximate solution of the 

problem was obtained using the GMQ RBF-MOLs with 𝛽 = 1.03 and 𝛽 = 1.99. The domain of the solution 

was divided into 𝑁 = 140 equally spaced centres. Two separate differentiation matrices were used to carry out 

the spatial discretization since it is a nonlinear PDE. The system of ODEs that resulted from the spatial 

discretization were integrated using the explicit fourth order Runge-Kutta method. A time step size of ∆𝑡 =
1.0 × 10−5 was chosen to advance the solution to a final time 𝐹𝑇 = 1.2. The results of the problem as obtained 

from the implementation of the MATLAB program are shown in Table 3. During the implementation of the 

MATLAB program, we observed that smaller values of the time step yielded a better approximation but took a 

long time to debug. Figures 5(a) and 6(a) represent the plots of the exact and approximate solutions. The values 

80 and 110 were used as estimates of the shape parameters for the GMQ RBF-MOLs with 𝛽 = 1.03 and 

𝛽 = 1.99 respectively. The maximum point wise errors for the GMQ RBF-MOLs with 𝛽 = 1.03 and 𝛽 = 1.99 

are 3.57 × 10−3and 3.57 × 10−3as shown in Table 3. Comparing these errors with the point-wise errors of the 

MQ, IMQ, IQ and GIMQ RBF-MOLs as shown in Table 3, indicates that the nonstandard exponent values of 

the GMQ RBF-MOLs compared favourably with the rest of the RBF-MOLs for the Burgers’ equation. 

 

V Conclusion 

Two GMQ RBF-MOLs with non-standard exponents, 𝛽 = 1.03 and 𝛽 = 1.99 were developed, 

implemented in MATLAB and utilized to approximate the solutions of some second order time-dependent PDEs 

in one space dimension. The numerical solutions were compared with the exact solutions and other RBF-MOLs, 

the approximate solutions showed that the non-standard RBF-MOLs method performed competitively with 

standard RBF-MOLs. Based on our results, we recommend that the GMQ RBF-MOLs with non-standard 

exponents be explored and applied to approximate other PDEs such as steady state PDEs and other methods of 

approximations that require RBFs, however, there is no clear evidence that these methods are better than the 

other RBF-MOLs. 
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