The Radius, Diameter, Girth and Circumference of the ZeroDivisor Cayley Graph of the Ring $\left(\boldsymbol{Z}_{\boldsymbol{n}}, \oplus, \odot\right)$

Jangiti Devendra ${ }^{1}$, Levaku Madhavi ${ }^{2 *}$ and Tippaluri Nagalakshumma ${ }^{3}$
1.Research Scholar, Department of Applied Mathematics, Yogi Vemana University, Kadapa-516005, A.P., India.
2*.Assistant Professor, Department of Applied Mathematics, Yogi Vemana University, Kadapa-516005, A.P., India.
3.Research Scholar, Department of Applied Mathematics, Yogi Vemana University, Kadapa-516005, A.P., India.
Corresponding Author: Levaku Madhavi

Abstract

Thezero-divisor Cayley graph $G\left(Z_{n}, D_{0}\right)$, associated with the ring $\left(Z_{n}, \oplus, \odot\right)$, of residue classes modulo $n \geq 1$, an integer and the set D_{0} of nonzero zero-divisors is studied by Devendra et al. In this paper we present the eccentricity, radius, diameter, girth and circumference of the zero-divisor Cayley graph $G\left(Z_{n}, D_{0}\right)$.

Keywords: Cayley graph, zero-divisor Cayley graph, eccentricity, girth and circumference.
AMS Subject Classification(2010):05C12, 05C25, 05C38.

Date of Submission: 08-07-2019
Date of acceptance: 23-07-2019

I. Introduction

The Cayley graph $G(X, S)$ associated with the group $(X,$.$) and its symmetric subset S$ (a subset S of the group ($X,$.) is called a symmetric subset $s^{-1} \in S$ for every $s \in S$) is introduced to study whether given a group ($X,$.), there is a graph Γ, whose automorphism group is isomorphic to the group ($X,$.) [10].Later independent studies on Cayley graphs have been carried out by many researches [5,6]. The Cayley graph $G(X, S)$ associated with the group $(X,$.$) and its symmetric subset S$ is the graph, whose vertex set is X and the edge set $E=\left\{(x, y)\right.$: either $x y^{-1} \in S$, or, $\left.y x^{-1} \in S\right\}$. If $e \notin S$, where e is the identity element of X, then $G(X, S)$ is an undirected simple graph. Further $G(X, S)$ is $|S|$ - regular and contains $\frac{|X||S|}{2}$ edges [12]. Madhavi [12] introduced Cayley graphs associated with the arithmetical functions, namely, the Euler totient function $\varphi(n)$, the quadratic residues modulo a prime p and the divisor function $d(n), n \geq 1$, an integer and obtained various properties of these graphs.

Recent studies on the zero-divisor graphs of commutative rings are carried out by Beck [4], Anderson and Naseer [2], Livingston[11], Anderson and Livingston [1], Smith [13], Tongsuo [14]and others. Given a commutative ring R with unity, they define the zero-divisor graph $\Gamma(R)$ is the graph, whose vertex set is the ring $Z(R)^{*}$, the set of nonzero divisors of R and the edge set is the set of order pairs (x, y) of elements $x, y \in$ $Z(R)^{*}$, such that $x y=0$ and studied the connectedness, the diameter, the girth, the automorphism $\Gamma(R)$ and other properties under conditions on the ring R. Our study differs from their study basically that the zero-divisor graph we consider is the Cayley graph associated with the set of zero-divisors of the ring (Z_{n}, \oplus, \odot) of residue classes modulo $n \geq 1$, an integer. The terminology and notations that are used in this paper can be found in [7] for graph theory, [9] for algebra and [3] for number theory.

II. The Zero-Divisor Cayley Graph And Its Properties

Consider the ring $\left(Z_{n}, \oplus, \odot\right)$ of integers modulo $n, n \geq 1$, an integer, which is a commutative ring with unity. In [8], it is established that the set D_{0} of nonzero zero-divisors in the ring (Z_{n}, \oplus, \odot) is a symmetric subset of the group $\left(Z_{n}, \oplus\right)$ and the zero-divisor Cayley graph $G\left(Z_{n}, D_{0}\right)$ is the graph, whose vertex set is Z_{n} and the edge set is the set of ordered pairs (u, v) such that $u, v \in Z_{n}$ and either $u-v \in D_{0}$ or $v-u \in D_{0}$.This graph is $(n-\varphi(n)-1)$-regular and its size is $\frac{n}{2}(n-\varphi(n)-1)$.
The graphs $G\left(Z_{7}, D_{0}\right), G\left(Z_{8}, D_{0}\right)$ and $G\left(Z_{10}, D_{0}\right)$ are given below :

We state below the main results that are established in [8] for the zero-divisor Cayley graph $G\left(Z_{n}, D_{0}\right)$.
Lemma 2.1: (Lemma 2.10, [8]) For a prime p, the graph $G\left(Z_{p}, D_{0}\right)$ contains only isolated vertices.
Lemma 2.2: (Theorem 3.7, [8]) For a prime p and an integer $r>1$, the graph $G\left(\mathrm{Z}_{p^{r}}, D_{0}\right)$ contains p disjoint components, each of which is complete subgraph of $G\left(\mathrm{Z}_{p^{r}}, D_{0}\right)$.
Lemma 2.3: (Theorem 4.4, [8]) Let $n>1$ be an integer, which is not a power of a single prime. Then the graph $G\left(Z_{n}, D_{0}\right)$ is a connected graph.

III. Eccentricity, Radius And Diameter Of The Zero-Divisor Cayley Graph

Definition 3.1: Let $G(V, E)$ be a graph with the vertex set V and edge set is E. The distance $d(u, v)$ between two vertices u and v in the graph G is defined as the length of the shortest path joining them, if any. If there is no path joining the vertices u and v in graph $G(V, E)$, then it is defined by $d(u, v)=\infty$.
Definition 3.2: Let $G(V, E)$ a graph. The eccentricity $e(v)$ of a vertex $v \in V(G)$ is defined as $e(v)=\max \{d(u, v): u \in V(G)\}$.
Definition 3.3: Let $G(V, E)$ be a graph. The radius $r(G(V, E))$ and the diameter $d(G(V, E))$ of the graph $G(V, E)$ are respectively defined as $r(G(V, E))=\min \{e(v): v \in V\}$ and $d(G(V, E))=\max \{e(v): v \in V\}$.
Example 3.4: Consider the graph $G(V, E)$, where $V=\{a, b, c, d, e, f\}$ and $E=\{(a, b),(a, d),(b, c),(b, d),(c, e),(d, f),(e, f)\}$,
whose diagram is given below. The following table gives $d(u, v)$ for all vertices in V and eccentricity $e(v)$ of a vertex $v \in V(G)$, radius $r(v)$ and diameter $d(v)$ of a vertex $v \in V(G)$.

Fig. 3.1

$d(u, v)$	a	b	c	d	e	f
a	0	1	2	1	2	3
b	1	0	1	1	2	3
c	2	1	0	2	1	2
d	1	1	2	0	1	2
e	2	2	1	1	0	1
f	3	3	2	2	1	0
$e(v)$	3	3	2	2	2	3
$r(G(V, E))$	$\max =\{3,3,2,2,2,3\}=2$					
$d(G(V, E))$	man					

Theorem 3.5: If $n=p^{r}, r>1$ is a integer, then the eccentricity of any vertex $v \in Z_{p^{r}}$ is ∞.
Proof: By the Remark 3.1[8], the zero-divisor Cayley graph $G\left(Z_{p^{r}}, D_{0}\right)$ is a disjoint union of the following p components $C_{0}, C_{1}, \ldots, C_{p-1}$, each of it is a complete sub graph of the graph $G\left(Z_{p^{r}}, D_{0}\right)$.

$$
\begin{aligned}
& C_{0}=\left\{\overline{0}, \bar{p}, 2 \bar{p}, \ldots, i \bar{p}, \ldots, j \bar{p}, \ldots,\left(p^{r-1}-1\right) \bar{p}\right\}, \\
& C_{1}=\left\{\overline{1}, \bar{p}+\overline{1}, 2 \bar{p}+\overline{1}, \ldots, i \bar{p}+\overline{1}, \ldots, j \bar{p}+\overline{1}, \ldots,\left(p^{r-1}-1\right) \overline{1}\right\}, \\
& \vdots \\
& C_{k}=\left\{\bar{k}, \bar{p}+\bar{k}, 2 \bar{p}+\bar{k}, \ldots, i \bar{p}+\bar{k}, \ldots, j \bar{p}+\bar{k}, \ldots,\left(p^{r-1}-1\right) \bar{k}\right\}, \\
& \vdots \\
& C_{p-1}=\left\{\overline{p-1}, \bar{p}+\overline{p-1}, 2 \bar{p}+\overline{p-1}, \ldots, i \bar{p}+\overline{p-1}, \ldots,\left(p^{r-1}-1\right) \overline{p-1}\right\} .
\end{aligned}
$$

Let $v \in G\left(Z_{p^{r}}, D_{0}\right)$.
Then $v \in C_{i}$, for some $i, 0 \leq i \leq p-1$. For any $u \in Z_{p^{r}}$, the following two cases will arise.
Case (i): Let $u \in C_{i}$. Then by the Lemma 3.4[8], C_{i} is a complete subgraph of $G\left(Z_{p^{r}}, D_{0}\right)$, so that v and u are adjacent in $G\left(Z_{p^{r}}, D_{0}\right)$ and $d(v, u)=1$.
Case (ii): Let $u \notin C_{i}$. Then $u \in C_{j}$, for some $j \neq i, 0 \leq j \leq p-1$. By the Lemma 3.5[8], C_{i} and C_{j} are edge disjoint subgraphs of $G\left(Z_{p^{r}}, D_{0}\right)$. So there is no edge between v and u so that $d(v, u)=\infty$.Thus $e(v)=\max \{1, \infty\}=\infty$.
Theorem 3.6: If $n>1$ is a integer, where n is not a power of single prime, then the eccentricity of a any vertex $v \in G\left(Z_{n}, D_{0}\right)$ is 2 .
Proof: By the Theorem 4.4[8], $G\left(Z_{n}, D_{0}\right)$ is connected and by the Remark 4.1[8], the vertex set V is the union of the subsets $V_{0}, V_{1}, \ldots, V_{p-1}$ of vertices, where

$$
\begin{aligned}
& V_{0}=\left\{0,1 \overline{p_{1}}, 2 \overline{p_{1}}, \ldots, i \overline{p_{1}}, \ldots,\left(\frac{n-p_{1}}{p_{1}}\right) \overline{p_{1}}\right\}, \\
& V_{1}=\left\{\overline{p_{2}}, 1 \overline{p_{1}}+\overline{p_{2}}, 2 \overline{p_{1}}+\overline{p_{2}}, \ldots, i \overline{p_{1}}+\overline{p_{2}}, \ldots,\left(\frac{n-p_{1}}{p_{1}}\right) \overline{p_{1}}+\overline{p_{2}}\right\}, \\
& \vdots \\
& V_{p_{1}-1}=\left\{\left(p_{1}-1\right) \overline{p_{2}}, \ldots, i \overline{p_{1}}+\left(p_{1}-1\right) \overline{p_{2}}, \ldots,\left(\frac{n-p_{1}}{p_{1}}\right) \overline{p_{1}}+\left(p_{1}-1\right) \overline{p_{2}}\right\} .
\end{aligned}
$$

Let v be any vertex of $G\left(Z_{n}, D_{0}\right)$. Then
$v=\overline{i p_{1}+l p_{2}} \in V_{l}$, for some $l, 0 \leq l \leq p_{1}-1$ and for some $i, 0 \leq i \leq\left(\frac{n-p_{1}}{p_{1}}\right)-1$.
For any vertex $u \in G\left(Z_{n}, D_{0}\right)$, the following two cases will arise.
Case (i): Let $u \in V_{l}$. Then by the Lemma 4.3 [8], V_{l} is a complete subgraph of $G\left(Z_{n}, D_{0}\right)$, so that v and u are adjacent in $G\left(Z_{n}, D_{0}\right)$ and $d(v, u)=1$.
Case (ii): Let $u \notin V_{l}$. Then $u=\overline{j p_{1}+k p_{2}} \in V_{k}$, for some $k \neq l, 0 \leq k \leq p_{1}-1$ and for some j, $0 \leq j \leq\left(\frac{n-p_{1}}{p_{1}}\right)-1$. We may assume that $i<j$. Let $w=\overline{i p_{1}+k p_{2}} \in V_{k}$. Since $i<j \leq\left(\frac{n-p_{1}}{p_{1}}\right)$, it follows that $w \in V_{k}$. That is, $u, w \in V_{k}$. Now V_{k} being a complete subgraph of $G\left(Z_{n}, D_{0}\right), u$ and w are adjacent, so that $d(w, u)=1$
Further $v-w=\overline{i p_{1}+l p_{2}}-\overline{i p_{1}+k p_{2}}=\overline{(l-k) p_{2}}$, which is a zero divisor in the ring $\left(Z_{n}, \oplus, \odot\right)$. So there is an edge between v and w, so that $d(v, w)=1$.So
$d(v, u)=d(v, w)+d(w, u)=1+1=2$ and $e(v)=\max \{1,2\}=2$.

Fig. 3.2

Theorem 3.7: If $n=p^{r}, r>1$ is a integer, then the radius and diameter of any vertex $v \in Z_{p^{r}}$ is ∞.
Proof: By the Theorem 3.5, the eccentricitye $(v)=\infty$, for every vertex v in $G\left(Z_{n}, D_{0}\right)$. So
$r\left(G\left(Z_{n}, D_{0}\right)\right)=\min \{\infty\}=\infty$ and $d\left(G\left(Z_{n}, D_{0}\right)\right)=\max \{\infty\}=\infty$.
Theorem 3.8: If $n>1$ is a integer, where n is not a power of single prime, then

$$
r\left(G\left(Z_{n}, D_{0}\right)\right)=d\left(G\left(Z_{n}, D_{0}\right)\right)=2 .
$$

Proof: By the Theorem 3.6, the eccentricity $e(v)=2$, for any vertex v in $G\left(Z_{n}, D_{0}\right)$, so that

$$
r\left(G\left(Z_{n}, D_{0}\right)\right)=\min \{2\}=2 \text { and } \quad d\left(G\left(Z_{n}, D_{0}\right)\right)=\max \{2\}=2 .
$$

IV. The Girth And The Circumference Of The Zero-Divisor Cayley Graph

Definition 4.1: The length of the smallest cycle in the graph $G(V, E)$ is called the girth of the graph $G(V, E)$ and it is denoted by $g(G(V, E))$ and the length of the largest cycle in the graph $G(V, E)$ is called the circumference of the graph $G(V, E)$ and it is denoted by $c(G(V, E))$. If the graph $G(V, E)$ has no cycles then the girth and the circumference are undefined.
Remark 4.2: If p is a prime, then the graph $G\left(Z_{p}, D_{0}\right)$ has no edges. So that the girth and the circumference of graph $G\left(Z_{p}, D_{0}\right)$ is undefined.

Remark 4.3: For $n=1,2,3,4$ and 5 , the graphs $G\left(Z_{n}, D_{0}\right)$ are given as follows:

Fig. 4.1
One can observe that there are no cycles in the above graphs, so that the girth and the circumference are undefined. Thus for $n \leq 5$, the terms girth and circumference of the graph $G\left(Z_{n}, D_{0}\right)$ are undefined.
Theorem 4.4: If $n>5$ is not a prime, then $g\left(G\left(Z_{n}, D_{0}\right)\right)$ is 3 .
Proof: Let $n>5$ be not a prime and let p_{1} be the least prime divisor of n. Then $\overline{p_{1}}, \overline{2 p_{1}} \in D_{0}$. For the vertices $\overline{0}, \overline{p_{1}}, \overline{2 p_{1}} \in G\left(Z_{n}, D_{0}\right)$, we have $\overline{2 p_{1}}-\overline{p_{1}}=\overline{p_{1}} \in D_{0}, \overline{p_{1}}-\overline{0}=\overline{p_{1}} \in D_{0}$ and $\overline{2 p_{1}}-\overline{0}=\overline{2 p_{1}} \in D_{0}$, so that $\left(\overline{0}, \overline{p_{1}}\right),\left(\overline{p_{1}}, \overline{2 p_{1}}\right)$ and $\left(\overline{2 p_{1}}, \overline{0}\right)$ are edges in $G\left(Z_{n}, D_{0}\right)$. So $\left(\overline{0}, \overline{p_{1}}, \overline{2 p_{1}}, \overline{0}\right)$ is a 3-cycle and $g\left(G\left(Z_{n}, D_{0}\right)\right)$ is 3 .

Theorem 4.5: If $n=p^{r}$, where p is a prime and $r>1$ an integer and let $n>5$, thenc $\left(G\left(Z_{n}, D_{0}\right)\right)$ is $\frac{n}{p}$.
Proof: Let $n>5$ be a power of single prime say $n=p^{r}, p$ a prime and $r>1$ aninteger. By the Theorem 3.7[8], $G\left(Z_{p^{r}}, D_{0}\right)$ is decomposed into p-components, $C_{0}, C_{1}, C_{2}, \ldots C_{p-1}$, where $C_{k}=\left\{\bar{k}, \quad \bar{p}+\bar{k}, \quad 2 \bar{p}+\bar{k}, \ldots, \quad i \bar{p}+\bar{k}, \ldots, j \bar{p}+\bar{k}, \ldots,\left(p^{r-1}-1\right) \bar{k}\right\}$,
for some $k, 0 \leq k \leq p-1$. Now

$$
\mathcal{C}=\left(\bar{k}, \quad \bar{p}+\bar{k}, \quad 2 \bar{p}+\bar{k}, \ldots, \quad i \bar{p}+\bar{k}, \ldots, j \bar{p}+\bar{k}, \ldots,\left(p^{r-1}-1\right) \bar{k}, \bar{k}\right)
$$

is a cycle of length $\frac{n}{p}$, which is also a cycle of maximum length. So

$$
c\left(G\left(Z_{n}, D_{0}\right)\right)=\frac{n}{p}
$$

Example 4.6: Consider the graph $G\left(Z_{9}, D_{0}\right)$. Here $p=3$. This graph has 3-components $\{\overline{0}, \overline{3}, \overline{6}\},\{\overline{1}, \overline{4}, \overline{7}\}$ and $\{\overline{2}, \overline{5}, \overline{8}\}$ each of which is a triangle. Further these are the only cycles in $G\left(Z_{9}, D_{0}\right)$. Since a triangle is a cycle of length 3 . It follows that

$$
g\left(G\left(Z_{9}, D_{0}\right)\right)=c\left(G\left(Z_{9}, D_{0}\right)\right)=3 .
$$

This fact is exhibited in the graphs $G\left(Z_{9}, D_{0}\right)$ given below.

The graph $G\left(Z_{9}, D_{0}\right)$

The components of $G\left(Z_{9}, D_{0}\right)$

Fig.4. 2
Theorem 4.7:If $n>1$, is an integer and ifnis not a power of a single prime, then $c\left(G\left(Z_{n}, D_{0}\right)\right)$ is n.
Proof: Let n be not a power of single prime and let p_{1} be the least prime divisor of n. One can see that the following cycle

$$
H=\left(\overline{0}, \overline{p_{1}}, . . \overline{i p_{1}}, \overline{p_{1}\left(\frac{n-p_{1}}{p_{1}}\right)}, \overline{\left(\frac{n-p_{1}}{p_{1}}\right) p_{1}}+\overline{p_{2}}, \ldots, \overline{p_{1}}+\overline{p_{2}}, \overline{p_{2}}, \ldots, \overline{p_{1}\left(\frac{n-p_{1}}{p_{1}}\right)+2 p_{2}}, \ldots, \overline{\left(p_{1}-1\right) p_{2}}, \overline{0}\right) \text { is }
$$

a Hamilton cycle in $G\left(Z_{n}, D_{0}\right)$ of length n. Since a Hamilton cycle is a cycle of maximum length n, it follows that $c\left(G\left(Z_{n}, D_{0}\right)\right)=n$.
Example4.8: Consider the graph $G\left(Z_{12}, D_{0}\right)$. Here $n=12=2^{2} \times 3$. So the graph is a connected graph. In this graph $(\overline{0}, \overline{2}, \overline{4}, \overline{0})$ is a cycle of length 3 , so that $g\left(G\left(Z_{12}, D_{0}\right)\right)=3$. Further $(\overline{0}, \overline{2}, \overline{4}, \overline{6}, \overline{8}, \overline{10}, \overline{1}, \overline{11}, \overline{9}, \overline{7}, \overline{5}, \overline{3}, \overline{0})$ is a Hamilton cycle in $G\left(Z_{12}, D_{0}\right)$ which is of length 12 , so that $c\left(G\left(Z_{12}, D_{0}\right)\right)=12$. The graph $G\left(Z_{12}, D_{0}\right)$ and the above Hamilton cycle is given below.

Fig.4. 3

Acknowledgements

The authors express their thanks to Prof. L. Nagamuni Reddy for his valuable suggestions during the preparation of this paper.

References

[1]. Anderson D. F, Livingston, P.S: The zero-divisor graph of commutative ring, J. Algebra 217(1999) 434-447.
[2]. Anderson, D., Naseer, M.: Beck's coloring of Commutative Ring, J. Algebra 159 (1993), 500-514.
[3]. Apostol, T. M.: Introduction to Analytical Number Theory, Springer International, Student Edition (1989).
[4]. Beck, I.: Coloring of commutative rings., J. Algebra 116(1998) 208-206.
[5]. Bierrizbeitia, P., Giudici, R. E.: On cycles in the sequence of unitary Cayley graphs. Reporte Techico No. 01-95, Universidad Simon Bolivear, Dept. De Mathematics, Caracas, Venezuela (1995).
[6]. Bierrizbeitia, P., Giudici, R. E.: Counting pure k-cycles in sequences of Cayley graphs, Discrite math., 149, 11-18.
[7]. Bondy, J. A., Murty, U. S. R.: Graph theory with Applications, Macillan, London, (1976).
[8]. Devendra, J., Nagalakshumma, T., Madhavi, L.: The zero-divisor Cayley graph of the residue class ring $\left(Z_{n}, \oplus, \odot\right)$, Malaya Journal of Mathematik (communicated).
[9]. Gallian, J.A.: Contemporary Abstract Algebra, Narosa publications.
[10]. Konig, D.: Theorie der endlichen and unedndlichen, Leipzing (1936), 168-184.
[11]. Livingston, P.S.: Structure in zero-divisor Graphs of commutative rings, Masters Thesis, The University of Tennessee, Knoxville, TN, December 1997.
[12]. Madhavi, L.: Studies on Domination Parameters and Enumeration of cycles in some arithmetic graphs, Ph.D. Thesis, Sri Venkateswara University, Tirupati, India, 50-83(2003).
[13]. Smith, N.O.: Planar Zero-Divisor Graph, International Journal of Commutative Rings, 2002, 2(4), 177-188.
[14]. Tangsuo, Wu.: On Directed Zero-Divisor Graphs of Finite Rings, Discrete Mathematics, 2005, 296(1), 73-86.

Jangiti Devendra. "The Radius, Diameter, Girth and Circumference of the Zero-Divisor Cayley Graph of the Ring (Z_n, $\oplus, \odot) . "$ IOSR Journal of Mathematics (IOSR-JM) 15.4 (2019): 58-62

