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Abstract: This article considers nonlinear dynamical system to study the dynamics of tuberculosis through 

vaccination and dual treatments. By dual treatments we studychemoprophylaxis and therapeuticstreatments of 

latent and active tuberculosis respectively.  The total population is divided in to ten compartments. We found the 

dynamical system has disease free equilibrium point and endemic equilibrium point. We also found that the 

basic reproduction number of the considered dynamical system is  

𝑅0 =  

𝑐𝜔 ( 1−𝜓 𝜁+𝜃)𝛼𝜀 1−𝑝 𝛿𝛾

(𝜁+𝜃)(𝜁+𝛼)(𝜁+𝛾)(𝜁+𝜌+𝑑)
+

𝑐𝜔𝜍𝜓𝜁𝛼 𝜀 1−𝑝 𝛿𝛾

(𝜁+𝜃)(𝜁+𝛼)(𝜁+𝛾)(𝜁+𝜌+𝑑)
 +

𝑐𝜔 ( 1−𝜓 𝜁+𝜃)𝛼 1−𝜀  1−𝑝 

(𝜁+𝜃)(𝜁+𝛼)(𝜁+𝜌+𝑑)
  +

𝑐𝜔𝜍𝜓𝜁𝛼  1−𝜀  1−𝑝 

(𝜁+𝜃)(𝜁+𝛼)(𝜁+𝜌+𝑑)

 .This depends on thirteen parameters. 

We proved that the disease free equilibrium point is locally stable if 𝑅0 < 1 and the endemic equilibrium point 

is locally stable if𝑅0 > 1.  we also proved that the global stability of both equilibriums using Liapunov 

functions. Using standard data collected from different sources we found the numerical value of the basic 

reproduction number is 𝑅0 = 0.7 < 1 which shows that the tuberculosis disease not spreads in the community. 

We have done also sensitivity analysis to identify the most influential parameter that affects the basic 

reproduction number and we found rate of vaccine waning𝜃 is the most influential parameter to change the 

basic reproduction number. To support the analytical findings we have done the numerical simulation of the 

dynamical system. 
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I. Introduction 
Tuberculosis is an air borne and highly infectious disease caused by infection with the bacteria 

mycobacterium tuberculosis 
[7]

.Tuberculosis patients are divided into active tuberculosis and latent (passive) 

tuberculosis where active tuberculosis can transmit disease. According to the World Health Organization, one-

third of the world’s population is infected, either latently or actively with tuberculosis 
[4, 5]

. The disease is most 

commonly transmitted from a person suffering from infectious (active) tuberculosis to other persons by infected 

droplets created when the person with active tuberculosis coughs, sneeze, sing or speak. The infectious bacilli 

are inhaled as droplets from the atmosphere. In the lung the bacteria are phagocytosed by alveolar macrophages 

and induce a localized pro inflammatory response that leads to the recruitment of mononuclear cells from 

neighboring blood vessels 
[6, 10]

. 

Data from a variety of sources suggest that the life time risk of developing clinically evident 

tuberculosis after being infected is approximately 10%, with 90% likelihood of the infection remaining latent. 

Individuals who have a latent tuberculosis infection are neither clinically ill nor capable of transmitting 

tuberculosis. At greater ages, the immunity of persons who have been previously infected may wane, and they 

may be then at risk of developing active tuberculosis as a consequence of either exogenous reinfection (i.e., 

acquiring a new infection from another infectious individual) or endogenous reactivation of latent bacilli (i.e., 

re-activation of a pre-existing dormant infection) 
[5, 7, 8, 10]

. 

The general symptoms of tuberculosis disease include feelings of sickness or weakness, weight loss, 

fever, and night sweats. The symptoms of tuberculosis disease of the lungs also include coughing, chest pain, 

and the coughing up of blood 
[7, 10]

. Diagnosis relies on radiology (commonly chest X- ray), a tuberculin skin 

test, blood tests, as well as microscopic examination and microbiological culture of bodily fluids (such as 

sputum) 
[1, 7]

. 
Tuberculosis affects all countries and all age groups, but overall the best estimates for 2017 were that 

90% of cases were adults (aged ≥15 years), 64% were male, 9% were people living with HIV (72% of them in 

Africa) and two thirds were in eight countries: India (27%), China (9%), Indonesia (8%), the Philippines (6%), 

Pakistan (5%), Nigeria (4%), Bangladesh (4%) and South Africa (3%). Only 6% of cases were in the WHO 

European Region and the WHO Region of the Americas, each of which had 3% of cases 
[12]

. 
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WHO report, Ethiopia is one of the 30 high burden tuberculosis countries in the world which together 

account for 87% of the global tuberculosis cases, with an estimated incidence of tuberculosis172,000 individuals 

in 2017. This number ranks Ethiopia 10
th

 globally and 4
th

 in Africa in terms of absolute tuberculosis-burden 

after Nigeria, South Africa and the Democratic Republic of Congo of estimated incidence tuberculosis 418,000, 

322,000 and 262,000 individuals respectively in 2017 
[12]

.Tuberculosis kills an estimated 32,000 Ethiopians 

every year (more than 80 people per day) 
[11, 13]

. 

Epidemiology is the science of public health. It studies the distribution and determinants of disease 

status or events in populations, with the aim of controlling public health problems. The study of epidemiology 

ranges from cluster investigation at the individual level to building mathematical models to simulate disease 

dynamics at the population level 
[4]

. 

Mathematical models are important tools in analyzing the spread and control of infectious diseases. 

This started as far back as 1760 when Daniel Bernoulli developed a model for smallpox 
[2]

. Many mathematical 

models have been developed for many infectious diseases including tuberculosis. Several researchers have 

continuously researched on how to reduce tuberculosis infection using mathematical models by incorporating 

control measures such as Bacilli Calmette-Guérin(BCG) vaccination, education, screening and treatment 
[2, 9]

. 

Long-term effects of tuberculosis can be examined using epidemiological models. Epidemiological 

models consist of compartments which represent sets of individuals grouped by disease status. The links 

between compartments represent transitions from one state of disease to another state. The future of an epidemic 

can be estimated by finding the basic reproductive number of the model 
[6]

 

 

II. The Mathematical Model 
In this work we extend the basic SEIR Mathematical model done by ImaneAbduelkheir

[7]
under the title 

of Optimal Control Strategy of a Tuberculosis Epidemic Model with Drug Resistant tuberculosisandwe 

introduce a deterministic tuberculosis model. The total population 𝑁(𝑡) is divided in to eight disjoint classes 

depending on the epidemiological status of individuals: Susceptible S(t), who have never exposed to the 

Mycobacterium tuberculosis; Vaccinated V(t), individuals who are vaccinated against mycobacterium 

tuberculosis; we assumed that persons with latent tuberculosis infection are considered at high risk of 

developing active tuberculosis during the first 2 years of infection, during which approximately 5% of those 

persons develop active tuberculosis and the likelihood of developing active disease after infection decreases 

with the age of the infection. Thus, we divide them in to two stages depending on the duration of time they spent 

after primary infection: An early stage with high risk of developing active tuberculosis  𝐻𝑟(𝑡) (in the first two 

years after primary infection) and Later(Long) stage with low risk of developing active disease 𝐿𝑟(𝑡) (More than 

two years after primary infection but not transformed to active tuberculosis), individuals who screened and 

treating at early latent stage tuberculosis  𝑇(𝑡), Infectious individuals with tuberculosis 𝐼 𝑡 that are not yet in 

treatment, treating infectious𝐼𝑇(𝑡)  and Recovered individuals 𝑅(𝑡). 

 

2.1 Model Assumptions  

We assumed that individuals are recruited into the population by a constant rate Λ with the proportions 

𝜓  of which are vaccinated to protect them against tuberculosis infection and the remaining proportion are 

susceptible. All susceptible individuals are equally likely to be infected by infectious individuals in case of 

contact.  Furthermore, the vaccine has a waning effect over time (after a time 
1

𝜃
vaccinated individuals become 

susceptible). Susceptible population increases due to the coming in of new births not vaccinated against the 

infection and those who were vaccinated but lose their immunity. When some susceptible individuals come into 

contact with infectious individuals, they get infected and progress to latently infected classes at a force of 

infection rate  𝜆 where 𝜆 = 𝑐𝜔  
𝐼

𝑁
  and 𝜔  is the probability that an individual is infected by one infectious 

individual, and c is the percapita contact rate. 

The proportion 𝑝 of class 𝐻𝑟  have got a chance of screened and treatment while the remaining 

proportion  1 − 𝑝 of the high risk latently tuberculosis infected individuals may not have opportunity for 

treatment. The proportion 𝜀 and  1 − 𝜀 of individuals of the early latent/exposed individuals for tuberculosis 

who do not get chance for screened will go to  𝐿𝑟  and 𝐼 respectively at the rate 𝛼. Thus, the proportion  𝑝,𝜀 1 −
𝑝and 1−𝜀1−𝑝 of individuals in the class 𝐻𝑟 is transferred to classes 𝑇, 𝐿𝑟 and 𝐼 respectively at a rate 𝛼. 

Individual leaves class 𝐿𝑟  at the rate 𝛾 in which, the proportion 𝛿goes to class 𝐼 and; the remaining 

proportion 1 − 𝛿 recovers naturally and enter to recovered class R. The proportion 𝑞of individuals in class 

𝐼goes for treatment in 𝐼𝑇and the remaining proportion(1 − 𝑞) enters to class 𝑅 at the rate 𝜌. Individuals leave 

the screened class𝑆𝑇 and treating class 𝐼𝑇  at the rates𝜙, and   𝜑  respectively, and go to recovered class, 

where 𝜙 > 𝜑. 

Individuals in the recovered class are temporarily recovered. Soon they revert back to the latently 

infected classes 𝐻𝑟after been re-infected by tuberculosis at the rate 𝜅𝜆, where𝜅 is the reduction in susceptibility 
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due to prior endogenous infection of tuberculosis. We assume that each class conforms to natural death at the 

rate µ while infectious individuals in  𝐼 are die due to tuberculosis diseases at the rate 𝑑. 

Population is closed which means the increase or decrease of population is only caused by birth and 

death, while the increase and reduction caused by other factors is ignored. That is, there are no immigrants and 

emigrants. The only way of entry into the population is through new – born babies and the only way of exit is 

through death from natural causes or death from tuberculosis-related causes. Death caused by factors other than 

tuberculosis infection is considered a natural death.Population is homogeneous.All newborns are previously 

uninfected by tuberculosis and therefore join either the vaccinated compartment or the susceptible compartment 

depending on whether they are vaccinated or not. The immunity conferred on individuals by vaccination expires 

after some time at a given rate. Infected individuals are divided into two groups: latent infected and active 

infected. The individual active infected can transmit tuberculosis disease.Latently Infected individuals are 

divided into two sub groups: early latent infected (high risk to develop active tuberculosis) and long (low risk to 

develop active tuberculosis) latent infected. All susceptible individuals are equally likely to be infected by 

infectious individuals in case of contact. Individuals in each compartment have equal natural death rate.  

Individuals on recovered classes will return to be individuals on infected classes.  

Based on the above assumptions we do have the following flow chart:  

 
Figure-1: Flow chart of dynamical system of tuberculosis 

 

With the above assumptions and relations between different compartments the dynamics of tuberculosis model 

can be ruled by the following nonlinear ordinary differential equations. 
𝑑𝑉

𝑑𝑡
= 𝜓Λ − (𝜍𝜆 + 𝜃 + 𝜇)𝑉       (1) 

𝑑𝑠

𝑑𝑡
=  1 − 𝜓 Λ + 𝜃𝑉 −  𝜆 + 𝜇 𝑆      (2) 

𝑑𝐻𝑟

𝑑𝑡
= 𝜆(𝑆 + 𝜍𝑉 + 𝜅𝑅) − (𝛼 + 𝜇)𝐻𝑟       (3) 

𝑑𝐿𝑟

𝑑𝑡
= 𝛼𝜀 1 − 𝑝 𝐻𝑟 − (𝛾 + 𝜇)𝐿𝑟       (4)   

𝑑𝑇

𝑑𝑡
= 𝛼𝑝𝐻𝑟 − (𝜙 + 𝜇)𝑇       (5) 

𝑑𝐼

𝑑𝑡
= 𝛿𝛾𝐿𝑟 + 𝛼(1 − 𝜀)(1 − 𝑝)𝐻𝑟 − (𝜌 + 𝜇 + 𝑑)𝐼    (6) 

𝑑𝐼𝑇

𝑑𝑡
= 𝑞𝜌𝐼 − (𝜑 + 𝜇)𝐼𝑇        (7) 

𝑑𝑅

𝑑𝑡
= 𝜙𝑇 + (1 − 𝑞)𝜌𝐼 + (1 − 𝛿)𝛾𝐿𝑟 − (𝜅𝜆 + 𝜇)𝑅    (8) 

With the total population at a given time t is  

𝑁 𝑡 = 𝑆 𝑡 + 𝑉 𝑡 + 𝐻𝑟 𝑡 + 𝐿𝑟 𝑡 + 𝐼 𝑡 + 𝑇 𝑡 + 𝑅(𝑡).  

 

Table-1: Symbols and their descriptions for state variables and parameters in the model 
Symbols Description 

𝑆(𝑡) Susceptible individuals who are at risk of being infected by tuberculosis at time 𝑡. 

𝑉(𝑡) Vaccinated individuals against tuberculosis at time 𝑡. 

𝐻𝑟(𝑡) Early latently(High risk) infected individuals at time 𝑡. 

𝐿𝑟(𝑡) Long latently(Low risk) infected individuals at time 𝑡. 

𝑇(𝑡) Screened and treating individuals at time 𝑡. 

𝐼(𝑡) Individuals who are infectious at time 𝑡. 

R Individuals Recovered against tuberculosis at time 𝑡. 

Λ Recruitment of the population 
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𝜓 Proportions new born vaccinated 

𝜇 Natural death rate 

𝜍 The rate of inefficacy of vaccine  

𝜃 The rate of vaccine waning  

𝜙 The rate of chemoprophylaxis treatment of early latent tuberculosis 

𝜆 Force of infection  

𝜔 Probability of acquiring tuberculosis infections one infectious individual  

𝑐 Number of effective contacts susceptible individuals makes with infectious individuals per year. 

𝛼 The rate of progression of individuals from early latently infected  

𝑑 Death rate due to the disease  

𝑝 Proportion of early latently infected individuals who go for treatment.  

𝛾 Progression rate from Long latently infected tuberculosis to active tuberculosis. 

𝛿 The portion of 𝐿𝑟enter in to 𝐼. 

𝜀 Proportion of individuals who do not get chance for screened at  𝐻𝑟and will go to  𝐿𝑟  class. 

𝜌 The rate at which individuals leave infectious class. 

𝑞 Proportion of infectious individuals who go for treatment.  

𝜑 The rate of therapeutic treatment of active tuberculosis individuals in 𝐼𝑇  

𝜅 Acquired immunity due to previous treatment. 

 

2.2 Positivity of Solutions 

Theorem-1: Let the initial value for the model is  𝑉 0 > 0, 𝑆 0 > 0,𝐻𝑟 0 > 0, 𝐿𝑟 0 > 0, 

𝐼 0 > 0,𝑇 0 > 0,𝐼𝑇 0 > 0 and 𝑅 0 > 0. Then, the solutions  𝑉 𝑡 ,𝑆 𝑡 ,𝐻𝑟 𝑡 ,𝐿𝑟 𝑡 ,𝐼 𝑡 ,𝑇 𝑡 , 𝐼𝑇(𝑡) and 

𝑅 𝑡  of the dynamical system (1) − (8) will be remain positive for all time 𝑡 > 0. 

Proof  

Let 𝑡 = 𝑠𝑢𝑝 𝑡 > 0: 𝑆 𝑡 > 0, 𝐸 𝑡 > 0, 𝐼 𝑡 > 0, 𝑅 𝑡 > 0  𝜖 0, 𝑡  and by considering the eight ordinary 

differential equations and after taking some steps on finding their solution we do have 

i. 
𝑑𝑉

𝑑𝑡
= 𝜓Λ − (𝜍𝜆 + 𝜃 + 𝜇)𝑉whose solution is  

𝑉 𝑡  = 𝑉 0 𝑀𝑉 + 𝑀𝑉  𝜓Λ𝑒𝑥𝑝  𝜇𝑡 + 𝜃𝑡 +   𝜆 𝑣  𝑑𝑣
𝑤

0

 𝑑𝑤
𝑡 

0

> 0 

Since  𝑀𝑉 = 𝑒𝑥𝑝 −  𝜇𝑡 + 𝜃𝑡 +  𝜆 𝑣 𝑑𝑣
𝑡 

0
 > 0 

ii. 
𝑑𝑠

𝑑𝑡
=  1 − 𝜓 Λ + 𝜃𝑉 −  𝜆 + 𝜇 𝑆whose solution is 

𝑆 𝑡  = 𝑆 0 𝑀𝑆 + 𝑀𝑆  ( 1 − 𝜓 Λ + 𝜃𝑉(𝑡))𝑒𝑥𝑝  𝜇𝑡 +   𝜆 𝑣  𝑑𝑣
𝑤

0

 𝑑𝑤
𝑡 

0

> 0 

Since𝑀𝑆 = 𝑒𝑥𝑝 −  𝜇𝑡 +  𝜆 𝑣 𝑑𝑣
𝑡 

0
 > 0 

iii. 
𝑑𝐻𝑟

𝑑𝑡
= 𝜆(𝑆 + 𝜍𝑉 + 𝜅𝑅) − (𝛼 + 𝜇)𝐻𝑟  whose solution is  

𝐻𝑟 𝑡  = 𝐻𝑟 0 𝑀𝐻 + 𝑀𝐻  𝜆(𝑡)(𝑆(𝑡) + 𝜍𝑉(𝑡) + 𝜅𝑅(𝑡))𝑒𝑥𝑝 𝛼𝑡 + 𝜇𝑡  𝑑𝑤
𝑡 

0
> 0, Since  𝑀𝐻 = 𝑒𝑥𝑝 −

 𝛼𝑡 + 𝜇𝑡  > 0 

iv. 
𝑑𝐿𝑟

𝑑𝑡
= 𝛼𝜀 1 − 𝑝 𝐻𝑟 − (𝛾 + 𝜇)𝐿𝑟Whose solution is 

𝐿𝑟 𝑡  = 𝐿𝑟 0 𝑀𝐿 + 𝑀𝐿  𝛼𝜀 1 − 𝑝 𝐻𝑟𝑒𝑥𝑝 𝛾𝑡 + 𝜇𝑡  𝑑𝑤
𝑡 

0
> 0since 

𝑀𝐿 = 𝑒𝑥𝑝 −  𝛼𝑡 + 𝜇𝑡  > 0 

v. 
𝑑𝑇

𝑑𝑡
= 𝛼𝑝𝐻𝑟 + 𝑞𝜌𝐼 − (𝜙 + 𝜇)𝑇 whose solution is 

𝑇 𝑡  = 𝑇 0 𝑀𝑇 + 𝑀𝑇  𝛼𝑝𝐻𝑟𝑒𝑥𝑝 𝜙𝑡 + 𝜇𝑡  𝑑𝑡
𝑡 

0
> 0since𝑀𝑇 = 𝑒𝑥𝑝 −  𝜙𝑡 + 𝜇𝑡  > 0 

vi. 
𝑑𝐼

𝑑𝑡
= 𝛿𝛾𝐿𝑟 + 𝛼(1 − 𝜀)(1 − 𝑝)𝐻𝑟 − (𝜌 + 𝜇 + 𝑑)𝐼 whose solution is  

𝐼 𝑡  = 𝐼 0 𝑀𝐼 + 𝑀𝐼  [𝛿𝛾𝐿𝑟 + 𝛼(1 − 𝜀)(1 − 𝑝)𝐻𝑟]𝑒𝑥𝑝 𝜌𝑡 + 𝑑𝑡 + 𝜇𝑡  𝑑𝑡
𝑡 

0
> 0since 

𝑀𝐻 = 𝑒𝑥𝑝 −  𝜌𝑡 + 𝑑𝑡 + 𝜇𝑡  > 0  

vii. 
𝑑𝐼𝑇

𝑑𝑡
= 𝑞𝜌𝐼 − (𝜑 + 𝜇)𝐼𝑇  whose solution is 

𝐼𝑇 𝑡  = 𝐼𝑇 0 𝑀𝐼𝑇 + 𝑀𝐼𝑇  𝑞𝜌𝐼𝑒𝑥𝑝 𝜑𝑡 + 𝜇𝑡  𝑑𝑡
𝑡 

0
> 0since𝑀𝐼𝑇 = 𝑒𝑥𝑝 −  𝜑𝑡 + 𝜇𝑡  > 0 

viii. 
𝑑𝑅

𝑑𝑡
= 𝜙𝑇 + (1 − 𝑞)𝜌𝐼 + 𝜑𝐼𝑇 + (1 − 𝛿)𝛾𝐿𝑟 − (𝜅𝜆 + 𝜇)𝑅 whose solution is  

𝑅 𝑡  = 𝑅 0 𝑀𝑅 + 𝑀𝑅  [𝑇 + (1 − 𝑞)𝜌𝐼 + 𝜑𝐼𝑇 + (1 − 𝛿)𝛾𝐿𝑟 ]𝑒𝑥𝑝  𝜇𝑡 +  𝜆 𝑣 𝑑𝑣
𝑡 

0

 𝑑𝑤
𝑡 

0

> 0  

Since𝑀𝑅 = 𝑒𝑥𝑝 −  𝜇𝑡 +  𝜆 𝑣 𝑑𝑣
𝑡 

0
 > 0 
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2.3 Roundedness of Solutions 

Theorem-2: The closed set Ω =   𝑉, 𝑆, 𝐻𝑟 , 𝐿𝑟 , 𝑇, 𝐼, 𝐼𝑇 , 𝑅 ∈ ℛ+
8 : 𝑁 ≤

Λ

𝜇
   is positively invariant and attracts all 

positive solutions of the dynamical system (1) – (8).  

Proof: 

Consider the biologically feasible region, Ω and observe that the rate of change of the total population obtained 

by adding all the equations of the model (1)-(8) is given by 
𝑑𝑁

𝑑𝑡
= Λ − μN − dI ≤ Λ − μN. It follows that 

𝑑𝑁

𝑑𝑡
< 0whenever𝑁 >

Λ

𝜇
. Furthermore, since 

𝑑𝑁

𝑑𝑡
≤ Λ − μN; Now using a standard comparison theorem we do have 

𝑑𝑁

Λ−μN
≤  𝑑𝑡. Integrating both sides gives  

Λ − μN ≥ A𝑒−𝜇𝑡  , where 𝐴 = 𝑒−𝑐𝜇 it is a constant. By using initial condition 𝑁 0  we do have Λ − μN 0 ≥ A 

or N 0 ≤
Λ

μ
−

A

μ
≤

Λ

μ
and 𝑁 𝑡 ≤ 𝑁 0 𝑒−𝜇𝑡 +

Λ

𝜇
 1 − 𝑒−𝜇𝑡  . Thuslim𝑡→∞ 𝑁 𝑡 ≤ 𝑁 0 𝑒−𝜇𝑡 +

Λ

𝜇
 1 − 𝑒−𝜇𝑡   

⟹ lim𝑡→∞ 𝑁 𝑡 ≤ 𝑁 0 𝑒−𝜇𝑡 −
Λ

𝜇
𝑒−𝜇𝑡 +

Λ

𝜇
≤

Λ   

𝜇
since 0 ≤

Λ

𝜇
 ).Hence as 𝑡 → ∞  the population size 𝑁(𝑡) →

Λ

𝜇
 

which implies that 0 ≤ 𝑁(𝑡) ≤
Λ

𝜇
.Therefore, all feasiblesolutions of the dynamical system (1) - (8) with initial 

conditions in Ω =   𝑉, 𝑆, 𝐻𝑟 , 𝐿𝑟 , 𝑇, 𝐼, 𝐼𝑇 , 𝑅 ∈ ℛ+
8 : 𝑁 ≤

Λ

𝜇
  do remain in Ω∀ 𝑡 > 0. That is, the set Ω is positively 

invariant and attracting.  

 

2.4 Scaling the population  

Introducing new variables 𝑣 =
𝑉

𝑁
, 𝑠 =  

𝑆

𝑁
 , ℎ𝑟 =  

𝐻𝑟

𝑁
, 𝑙𝑟 =  

𝐿𝑟

𝑁
, 𝑠𝑇 =  

𝑇

𝑁
, 𝑖 =  

𝐼

𝑁
, 𝑖𝑇 =  

𝐼𝑇

𝑁
, 𝑟 =  

𝑅

𝑁
 and 

𝑑𝑉

𝑑𝑡
= 𝑣

𝑑𝑁

𝑑𝑡
+

𝑁
𝑑𝑣

𝑑𝑡
 which implies that 

𝑑𝑣

𝑑𝑡
=

1

𝑁
 
𝑑𝑉

𝑑𝑡
− 𝑣

𝑑𝑁

𝑑𝑡
  and similar derivation for 

𝑑𝑠

𝑑𝑡
,
𝑑ℎ𝑟

𝑑𝑡
,
𝑑𝑙𝑟

𝑑𝑡
,
𝑑𝑠𝑇

𝑑𝑡
,
𝑑𝑖𝑇

𝑑𝑡
,
𝑑𝑖

𝑑𝑡
and

𝑑𝑟

𝑑𝑡
, into the 

original dynamical system (1) - (8) and after some simplification we get 
𝑑𝑣

𝑑𝑡
=

1

𝑁
 
𝑑𝑉

𝑑𝑡
− 𝑣

𝑑𝑁

𝑑𝑡
               = 𝜓𝜁 − (𝜁 + 𝜍𝜆 + 𝜃 − 𝑑𝑖)𝑣     (9) 

𝑑𝑠

𝑑𝑡
=

1

𝑁
 
𝑑𝑆

𝑑𝑡
− 𝑠

𝑑𝑁

𝑑𝑡
                =  1 − 𝜓 𝜁 + 𝜃𝑣 − (𝜆 + 𝜁 − 𝑑𝑖)𝑠    (10) 

𝑑ℎ𝑟

𝑑𝑡
=

1

𝑁
 
𝑑𝐻𝑟

𝑑𝑡
− ℎ𝑟

𝑑𝑁

𝑑𝑡
    = 𝜆 𝑠 + 𝜍𝑣 + 𝜅𝑟 − (𝜁 + 𝛼 − 𝑑𝑖)ℎ𝑟     (11) 

𝑑𝑙𝑟

𝑑𝑡
=

1

𝑁
 
𝑑𝐿𝑟

𝑑𝑡
− 𝑙𝑟

𝑑𝑁

𝑑𝑡
           = 𝛼𝜀 1 − 𝑝 ℎ𝑟 − (𝜁 + 𝛾 − 𝑑𝑖)𝑙𝑟      (12) 

𝑑𝑠𝑇

𝑑𝑡
=

1

𝑁
 
𝑑𝑇

𝑑𝑡
− 𝑠𝑇

𝑑𝑁

𝑑𝑡
            = 𝛿𝛾𝑙𝑟 + 𝛼 1 − 𝜀  1 − 𝑝 ℎ𝑟 − (𝜁 + 𝜌 + 𝑑 − 𝑑𝑖)𝑖  (13) 

𝑑𝑖𝑇

𝑑𝑡
=

1

𝑁
 
𝑑𝐼𝑇

𝑑𝑡
− 𝑖𝑇

𝑑𝑁

𝑑𝑡
           = 𝛼𝑝 ℎ𝑟 − (𝜁 + 𝜙 − 𝑑𝑖)𝑠𝑇      (14) 

𝑑𝑖

𝑑𝑡
=

1

𝑁
 
𝑑𝐼

𝑑𝑡
− 𝑖

𝑑𝑁

𝑑𝑡
                  = 𝑞𝜌𝑖 − (𝜁 + 𝜑 − 𝑑𝑖)𝑖𝑇       (15) 

𝑑𝑟

𝑑𝑡
=

1

𝑁
 
𝑑𝑅

𝑑𝑡
− 𝑟

𝑑𝑁

𝑑𝑡
               = 𝜙𝑠𝑇 +  1 − 𝑞 𝜌𝑖 +  1 − 𝛿 𝛾𝑙𝑟 + 𝜑𝑖𝑇 − (𝜁 + 𝜅𝜆 − 𝑑𝑖)𝑟 (16) 

 

2.5 Equilibrium points and their stability analysis 

Disease Free Equilibrium point 𝐸0 =  𝑣0 , 𝑠0 , ℎ𝑟
0, 𝑙𝑟

0, 𝑖0, 𝑠𝑇
0 , 𝑖𝑇

0, 𝑟0  

The disease free equilibrium point is obtained by assuming that  

ℎ𝑟
0 =  𝑙𝑟

0 =  𝑖0 =  𝑠𝑇
0 = 𝑖𝑇

0 =  𝑟0 = 0  and by making the right hand side of the dynamical system (9) - (16) 

equal to zero we get the disease free equilibrium point is: 

𝐸0 =  𝑣0 , 𝑠0 , ℎ𝑟
0, 𝑙𝑟

0, 𝑖0 , 𝑠𝑇
0, 𝑖𝑇

0, 𝑟0 =  
ψζ

𝜁+𝜃
,
 1−𝜓 𝜁+𝜃

𝜁+𝜃
, 0, 0, 0, 0, 0,0 . 

 

Basic Reproduction Number 𝑹𝟎 
The basic reproduction number is defined as the average number of secondary infections caused by typical 

infected individual during his entire period of infectiousness. We calculate the basic reproduction number 𝑅0by 

using the next generation operator method in the dynamical system (9)-(16) with the rate of appearance of new 

infections ℱ and the transfer rate of individuals 𝑉 at the disease free steady state 

𝐸0 =  
ψζ

𝜁+𝜃
,
 1−𝜓 𝜁+𝜃

𝜁+𝜃
, 0, 0, 0, 0, 0,0 is 

𝐹 =  
0 0 𝑐𝜔  

𝜍ψζ+ 1−𝜓 𝜁+𝜃

𝜁+𝜃
 

0 0 0
0 0 0

  , 𝑉 =  

(𝜁 + 𝛼) 0 0

−𝛼𝜀 1 − 𝑝 (𝜁 + 𝛾) 0

−𝛼 1 − 𝜀  1 − 𝑝 −𝛿𝛾 (𝜁 + 𝜌 + 𝑑)

  and  
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𝑉−1 =

 
 
 
 
 
 
 

1

(𝜁 + 𝛼)
0 0

𝛼𝜀 1 − 𝑝 

(𝜁 + 𝛼)(𝜁 + 𝛾)

1

(𝜁 + 𝛾)
0

𝛼𝜀 1 − 𝑝 𝛿𝛾 + 𝛼 1 − 𝜀  1 − 𝑝 (𝜁 + 𝛾)

(𝜁 + 𝛼)(𝜁 + 𝛾)(𝜁 + 𝜌 + 𝑑)

𝛿𝛾

(𝜁 + 𝛾)(𝜁 + 𝜌 + 𝑑)

1

(𝜁 + 𝜌 + 𝑑) 
 
 
 
 
 
 

 

So that 
𝐹𝑉−1

=

 
 
 
 𝑐𝜔  

𝜍ψζ +  1 − 𝜓 𝜁 + 𝜃

𝜁 + 𝜃
 

𝛼𝜀 1 − 𝑝 𝛿𝛾 + (𝜁 + 𝜌 + 𝑑)(𝜁 + 𝛾)

(𝜁 + 𝛼)(𝜁 + 𝛾)(𝜁 + 𝜌 + 𝑑)
𝑐𝜔  

𝜍ψζ +  1 − 𝜓 𝜁 + 𝜃

𝜁 + 𝜃
 

𝛿𝛾

(𝜁 + 𝛾)(𝜁 + 𝜌 + 𝑑)
𝑐𝜔  

𝜍ψζ +  1 − 𝜓 𝜁 + 𝜃

𝜁 + 𝜃
 

1

(𝜁 + 𝜌 + 𝑑)

0 0 0
0 0 0  

 
 
 
 

Thus the basic reproduction number𝑅0 is the spectral radius of 𝐹𝑉−1 

𝑅0 =
𝑐𝜔( 1 − 𝜓 𝜁 + 𝜃)𝛼𝜀 1 − 𝑝 𝛿𝛾

(𝜁 + 𝜃)(𝜁 + 𝛼)(𝜁 + 𝛾)(𝜁 + 𝜌 + 𝑑)
+

𝑐𝜔𝜍ψζ𝛼𝜀 1 − 𝑝 𝛿𝛾

(𝜁 + 𝜃)(𝜁 + 𝛼)(𝜁 + 𝛾)(𝜁 + 𝜌 + 𝑑)

+
𝑐𝜔( 1 − 𝜓 𝜁 + 𝜃)𝛼 1 − 𝜀  1 − 𝑝 

(𝜁 + 𝜃)(𝜁 + 𝛼)(𝜁 + 𝜌 + 𝑑)
+

𝑐𝜔𝜍ψζ𝛼 1 − 𝜀  1 − 𝑝 

(𝜁 + 𝜃)(𝜁 + 𝛼)(𝜁 + 𝜌 + 𝑑)
 

 

Endemic Equilibrium Point   𝑬∗ =  𝑣∗, 𝑠∗, ℎ𝑟
∗, 𝑙𝑟

∗, 𝑠𝑇
∗, 𝑖∗, 𝑖𝑇

∗, 𝑟∗  

The endemic equilibrium point 𝐸∗ =  𝑣∗, 𝑠∗, ℎ𝑟
∗, 𝑙𝑟

∗, 𝑠𝑇
∗, 𝑖∗, 𝑖𝑇

∗, 𝑟∗ obtained by setting the right hand side of 

each equation of the dynamical system (9)-(16)equal to zero. That is  

𝜓ζ −  ζ + 𝜍𝜆 + 𝜃 − di 𝑣 = 0 

 1 − 𝜓 ζ + 𝜃𝑣 −  𝜆 + ζ − di 𝑠 = 0 

𝜆 𝑠 + 𝜍𝑣 + 𝜅𝑟 −  𝜁 + 𝛼 − di ℎ𝑟 = 0 

𝛼𝜀 1 − 𝑝 ℎ𝑟 −  𝜁 + 𝛾 − 𝑑𝑖 𝑙𝑟 = 0   

𝛿𝛾𝑙𝑟 + 𝛼 1 − 𝜀  1 − 𝑝 ℎ𝑟 −  𝜁 + 𝜌 + 𝑑 − 𝑑𝑖 𝑖 = 0    

𝛼𝑝ℎ𝑟 −  𝜁 + 𝜙 − 𝑑𝑖 𝑠𝑇 = 0 

𝑞𝜌𝑖 −  𝜁 + 𝜑 − 𝑑𝑖 𝑖𝑇 = 0 

𝜙𝑠𝑇 +  1 − 𝑞 𝜌𝑖 +  1 − 𝛿 𝛾𝑙𝑟 + 𝜑𝑖𝑇 −  𝜁 + 𝜅𝜆 − 𝑑𝑖 𝑟 = 0 

Let𝜋 = 𝜁 − 𝑑𝑖∗and  𝜆∗ = 𝑐𝜔𝑖∗.  

Thus after some calculation we get the endemic equilibrium point 𝐸∗ =  𝑣∗, 𝑠∗, ℎ𝑟
∗, 𝑙𝑟

∗, 𝑠𝑇
∗, 𝑖∗, 𝑖𝑇

∗, 𝑟∗  where   

𝑣∗ =
𝜓ζ

𝜋 + 𝜍𝜆∗ + 𝜃
 

𝑠∗ =
 1 − 𝜓 ζ(𝜋 + 𝜍𝜆∗ + 𝜃) + 𝜃𝜓ζ

 𝜆∗ + π (𝜋 + 𝜍𝜆 + 𝜃)
 

𝑙𝑟
∗ =  

𝐵𝜆∗𝜀 1−𝑝 

(𝐴1𝜆∗+𝐴2) 𝜋+𝛾 
 

 𝜋+𝜅𝜆∗  1−𝜓 ζ(𝜋+𝜍𝜆∗+𝜃)+𝜃𝜓 ζ

𝜅 𝜆∗+π (𝜋+𝜍𝜆∗+𝜃)
+

 𝜋+𝜅𝜆∗ 𝜍𝜓 ζ

𝜅(𝜋+𝜍𝜆∗+𝜃)
  ,  

𝑠𝑇
∗ =

𝐵𝜆∗𝛼𝑝

(𝐴1𝜆
∗ + 𝐴2) 𝜋 + 𝜙 

 
 𝜋 + 𝜅𝜆∗  1 − 𝜓 ζ(𝜋 + 𝜍𝜆∗ + 𝜃) + 𝜃𝜓ζ

𝜅 𝜆∗ + π (𝜋 + 𝜍𝜆∗ + 𝜃)
+

 𝜋 + 𝜅𝜆∗ 𝜍𝜓ζ

𝜅(𝜋 + 𝜍𝜆∗ + 𝜃)
  

𝑖∗ =
𝐵𝜆∗ 𝛿𝛾𝜀 1 − 𝑝 +  𝜋 + 𝛾  1 − 𝜀  1 − 𝑝  

(𝐴1𝜆
∗ + 𝐴2) 𝜋 + 𝛾 (𝜋 + 𝜌 + 𝑑)

 
 𝜋 + 𝜅𝜆∗  1 − 𝜓 ζ(𝜋 + 𝜍𝜆∗ + 𝜃) + 𝜃𝜓ζ

𝜅 𝜆∗ + π (𝜋 + 𝜍𝜆∗ + 𝜃)

+
 𝜋 + 𝜅𝜆∗ 𝜍𝜓ζ

𝜅(𝜋 + 𝜍𝜆∗ + 𝜃)
  

𝑖𝑇
∗ =

𝐵𝜆∗ 𝑞𝜌𝛿𝛾𝜀 1 − 𝑝 +  𝜋 + 𝛾  1 − 𝜀  1 − 𝑝  

(𝐴1𝜆
∗ + 𝐴2)(𝜋 + 𝜑) 𝜋 + 𝛾 (𝜋 + 𝜌 + 𝑑)

 
 𝜋 + 𝜅𝜆∗  1 − 𝜓 ζ(𝜋 + 𝜍𝜆∗ + 𝜃) + 𝜃𝜓ζ

𝜅 𝜆∗ + π (𝜋 + 𝜍𝜆∗ + 𝜃)

+
 𝜋 + 𝜅𝜆∗ 𝜍𝜓ζ

𝜅(𝜋 + 𝜍𝜆∗ + 𝜃)
  

𝑟∗ =
𝐵𝜆∗ 𝜋 + 𝛼 

(𝐴1𝜆
∗ + 𝐴2)𝜆∗𝜅

 
 𝜋 + 𝜅𝜆∗  1 − 𝜓 ζ(𝜋 + 𝜍𝜆∗ + 𝜃) + 𝜃𝜓ζ

𝜅 𝜆∗ + π (𝜋 + 𝜍𝜆∗ + 𝜃)
+

 𝜋 + 𝜅𝜆∗ 𝜍𝜓ζ

𝜅(𝜋 + 𝜍𝜆∗ + 𝜃)
 

−  
 1 − 𝜓 ζ(𝜋 + 𝜍𝜆∗ + 𝜃) + 𝜃𝜓ζ

𝜅 𝜆∗ + π (𝜋 + 𝜍𝜆∗ + 𝜃)
+

𝜍𝜓ζ

𝜅(𝜋 + 𝜍𝜆∗ + 𝜃)
  

Where, 𝐴1 =  

𝜅 𝜋 + 𝛼  𝜋 + 𝜑  𝜋 + 𝛾  𝜋 + 𝜌 + 𝑑 − 𝜅𝜙𝛼𝑝 𝜋 + 𝛾  𝜋 + 𝜌 + 𝑑 −

𝜅 𝜋 + 𝜑  1 − 𝑞 𝜌𝛿𝛾𝜀 1 − 𝑝 −  𝜅 𝜋 + 𝜑  𝜋 + 𝜌 + 𝑑  1 − 𝛿 𝛾𝜀 1 − 𝑝 −

𝜅𝜑𝑞𝜌𝛿𝛾𝜀 1 − 𝑝 
  

𝐴2 = 𝜋 𝜋 + 𝛼  𝜋 + 𝜑  𝜋 + 𝛾  𝜋 + 𝜌 + 𝑑 −  𝜋 + 𝛾  1 − 𝜀  1 − 𝑝 −  𝜋 + 𝛾  1 − 𝜀  1 − 𝑝  

𝐵 =  𝜅 𝜋 + 𝜑  𝜋 + 𝛾  𝜋 + 𝜌 + 𝑑  
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2.5.1 Local Stability of the Disease Free Equilibrium𝑬𝟎 

Theorem-3: 

The disease free equilibrium point 𝐸0 =  
ψζ

𝜁+𝜃
,
 1−𝜓 𝜁+𝜃

𝜁+𝜃
, 0, 0, 0, 0, 0, 0 of the dynamical system (9)-(16)is 

locally asymptotically stable if the basic reproduction number 𝑅0 < 1 and 𝐸0 is unstable if𝑅0 > 1. 

Proof: 

The Jacobean matrix of the dynamical system (9)-(16) at the disease free equilibrium point 

𝐸0 =  𝑣0 , 𝑠0 , ℎ𝑟
0, 𝑙𝑟

0, 𝑖0 , 𝑠𝑇
0, 𝑖𝑇

0, 𝑟0 =  
ψζ

𝜁+𝜃
,
 1−𝜓 𝜁+𝜃

𝜁+𝜃
, 0, 0, 0, 0, 0, 0 is 

𝐽 𝐸0 =

 
 
 
 
 
 
 
 
𝑚1

𝜃
0
0
0
0
0
0

0
−𝜁
0
0
0
0
0
0

0
0

𝑚4

𝑚6
𝛼𝑝
𝑚9

0
0

0
0
0

𝑚7

0
𝛿𝛾
0

𝑚12

0
0
0
0

𝑚8

0
0
𝜙

𝑚2

𝑚3
𝑚5

0
0

𝑚10
𝑞𝜌
𝑚13

0
0
0
0
0
0

𝑚11

𝜑

0
0
0
0
0
0
0

−𝜁 
 
 
 
 
 
 
 

 

Where, 

𝑚1 = −(𝜁 + 𝜃), 𝑚2 = −(𝜍𝑐𝜔 − 𝑑)
𝜓𝜁

𝜁+𝜃
, 𝑚3 = −(𝜍𝑐𝜔 − 𝑑)

 1−𝜓 𝜁+𝜃

𝜁+𝜃
,  

𝑚4 = −(𝜁 + 𝛼), 𝑚5 = 𝑐𝜔  
 1−𝜓 𝜁+𝜃

𝜁+𝜃
+

𝜍𝜓𝜁

𝜁+𝜃
 , 𝑚6 = 𝛼𝜀(1 − 𝑝), 

𝑚7 = −(𝜁 + 𝛾),𝑚8 = −(𝜁 + 𝜙),  𝑚9 = 𝛼(1 − 𝜀)(1 − 𝑝),  
𝑚10 = −(𝜁 + 𝜌 + 𝑑), 𝑚11 = −(𝜁 + 𝜑), 𝑚12 = (1 − 𝛿)𝛾, 𝑚13 = (1 − 𝑞)𝜌 
The corresponding characteristic equation of the Jacobean matrix at the disease equilibrium point is:  

⇔

 

 

 

𝑚1 − 𝜆
𝜃
0
0
0
0
0
0

0
−𝜁 − 𝜆

0
0
0
0
0
0

0
0

𝑚4 − 𝜆
𝑚6
𝛼𝑝
𝑚9

0
0

0
0
0

𝑚7 − 𝜆
0
𝛿𝛾
0

𝑚12

0
0
0
0

𝑚8 − 𝜆
0
0
𝜙

𝑚2

𝑚3
𝑚5

0
0

𝑚10 − 𝜆
𝑞𝜌
𝑚13

0
0
0
0
0
0

𝑚11 − 𝜆
𝜑

0
0
0
0
0
0
0

−𝜁 − 𝜆

 

 

 

= 0 

 
 
 
 
 

 
 
 
 

  𝜆 + 𝜁 2 𝜆 + 𝜁 + 𝜃  𝜆 + 𝜁 + 𝜙  𝜆 + 𝜁 + 𝜑  ∗

 
 
 
 
 

− 𝜆3 +  3𝜉 + 𝛼 + 𝛾 + 𝜌 + 𝑑 𝜆2 +

 
  𝜁 + 𝛼  𝜁 + 𝛾 +  2𝜁 + 𝛼 + 𝛾  𝜁 + 𝜌 + 𝑑 + 𝛼 1 − 𝜀  1 − 𝑝 𝑐𝜔  

 1 − 𝜓 𝜁 + 𝜃

𝜁 + 𝜃
+

σψζ

𝜁 + 𝜃
  𝜆 +

(𝜁 + 𝛼)(𝜁 + 𝛾) 𝜁 + 𝜌 + 𝑑 

 +

 
 
 
 
 

𝑐𝜔  
 1 − 𝜓 𝜁 + 𝜃

𝜁 + 𝜃
+

σψζ

𝜁 + 𝜃
  𝛿𝛾𝛼𝜀 1 − 𝑝 − 𝛼 1 − 𝜀  1 − 𝑝  𝜁 + 𝛾  

 
 
 
 
 

 
 
 
 

= 0 
Thus the roots of the characteristic equation are: 

𝜆1 = −𝜁,𝜆2 = −,𝜆3 = − 𝜁 + 𝜃 ,   𝜆4 = − 𝜁 + 𝜃 , 𝜆5 = − 𝜁 + 𝛾  or𝜆3 + 𝑐1𝜆
2 + 𝑐2𝜆 + 𝑐3 = 0 

Where, 

𝑐1  =  3𝜁 + 𝛼 + 𝛾 + 𝜌 + 𝑑 , 

𝑐2 =   𝜁 + 𝛼  𝜁 + 𝛾 +  2𝜁 + 𝛼 + 𝛾  𝜁 + 𝜌 + 𝑑 + 𝛼 1 − 𝜀  1 − 𝑝 𝑐𝜔  
 1−𝜓 𝜁+𝜃

𝜁+𝜃
+

σψζ

𝜁+𝜃
 , 

𝑐3 =  𝜁 + 𝛼  𝜁 + 𝛾  𝜁 + 𝜌 + 𝑑 − 𝑐𝜔  
 1−𝜓 𝜁+𝜃

𝜁+𝜃
+

σψζ

𝜁+𝜃
  𝛿𝛾𝛼𝜀 1 − 𝑝 + 𝛼 1 − 𝜀  1 − 𝑝  𝜁 + 𝛾  .  

Now we are going to show𝑐3 > 0. 

 𝜁 + 𝛼  𝜁 + 𝛾  𝜁 + 𝜌 + 𝑑 − 𝑐𝜔  
 1 − 𝜓 𝜁 + 𝜃

𝜁 + 𝜃
+

σψζ

𝜁 + 𝜃
  𝛿𝛾𝛼𝜀 1 − 𝑝 + 𝛼 1 − 𝜀  1 − 𝑝  𝜁 + 𝛾  > 0 

⟹ 1 − 𝑐𝜔  
 1−𝜓 𝜁+𝜃

𝜁+𝜃
+

σψζ

𝜁+𝜃
 

𝛿𝛾𝛼𝜀  1−𝑝 +𝛼 1−𝜀  1−𝑝  𝜁+𝛾 

 𝜁+𝛼  𝜁+𝛾  𝜁+𝜌+𝑑 
> 0 that is 1 − 𝑅0 > 0 

And therefore𝑅0 < 1. Since these conditions ensure that all roots of the polynomial have negative real parts and 

thus by RouthHurwitz stability criterion we found that all of the eigenvalues of the Jacobean matrix have 

negative real parts when   𝑅0 < 1, (𝑐3 > 0). Thus, the disease free equilibriumpoint 𝐸0, of the dynamical system 

(9)-(16)is locally asymptotical stable if   𝑅0 < 1. 

 



Dynamics of a Tuberculosis Model with Vaccination and Dual Treatments:  A Mathematical model .. 

DOI: 10.9790/5728-1504024760                                   www.iosrjournals.org                                           54 | Page 

2.5.2 Global stability of Diseases free Equilibrium point 

Theorem-4: 

The diseases free equilibrium 𝐸0 of the model (9)-(16) is globally asymptotically stable in Ω whenever𝑅0 < 1 −
 𝑐𝜔  𝜅𝑟 +𝑑ℎ𝑟  𝛼𝜀  1−𝑝 𝛿𝛾 +𝛼 1−𝜀  1−𝑝  𝜁+𝛾  +𝛿𝛾  𝜁+𝛼 𝑑𝑙𝑟 + 𝜁+𝛾  𝜁+𝛼 𝑑𝑖

 𝜁+𝛼  𝜁+𝛾  𝜁+𝜌+𝑑 
.  

Proof: 

Define a Liapunovfunction  𝑊 𝑙𝑟 , ℎ𝑟 , 𝑖 = 𝐴1𝑙𝑟 + 𝐴2ℎ𝑟 + 𝐴3𝑖, 𝑓𝑜𝑟  𝑎𝑙𝑙 𝐴1 > 0, 𝑓𝑜𝑟 𝑖 = 1,2, 3.  

⟹  𝑊 𝑙𝑟 , ℎ𝑟 , 𝑖 =

 
 
 
 

 
 
 𝐴1  𝐿𝑟 0 𝑀𝐿 + 𝑀𝐿  𝛼𝜀 1 − 𝑝 𝐻𝑟𝑒𝑥𝑝 𝛾𝑡 + 𝜇𝑡 𝑑𝑤

𝑡

0

 +

𝐴2  𝐻𝑟 0 𝑀𝐻 + 𝑀𝐻  𝜆(𝑡)(𝑆(𝑡) + 𝜍𝑉(𝑡) + 𝜅𝑅(𝑡))𝑒𝑥𝑝 𝛼𝑡 + 𝜇𝑡 𝑑𝑤
𝑡

0

 +

𝐴3  𝐼 0 𝑀𝐼 + 𝑀𝐼  [𝛿𝛾𝐿𝑟 + 𝛼(1 − 𝜀)(1 − 𝑝)𝐻𝑟 ]𝑒𝑥𝑝 𝜌𝑡 + 𝑑𝑡 + 𝜇𝑡 𝑑𝑤
𝑡

0

 
 
 
 
 

 
 
 

 

Where 𝑀𝐿 = 𝑀𝐻 = 𝑒𝑥𝑝 −  𝛼𝑡 + 𝜇𝑡 and𝑀𝐼 = 𝑒𝑥𝑝 −  𝜌𝑡 + 𝑑𝑡 + 𝜇𝑡 . 
Here we do have𝑊(𝑥) ≥ 0, for𝑥 ∈ 𝑖𝑛𝑡Ω since 𝑙𝑟 𝑡 > 0, ℎ𝑟 𝑡 > 0, 𝑖 𝑡 > 0 and  

𝑊 (𝐸0)  = 0 , since𝑙𝑟 = ℎ𝑟 = 0;sothe function 𝑊 is positive definite with respect to the disease free 

equilibrium point. The derivative of 𝑊 at the diseases free equilibrium point is 

𝑊 =  

𝐴1 𝑐𝜔𝑖 𝑠 + 𝜍𝑣 + 𝜅𝑟 − (𝜁 + 𝛼 − d𝑖)ℎ𝑟  +

𝐴2 𝛼𝜀 1 − 𝑝 ℎ𝑟 − (𝜁 + 𝛾 − 𝑑𝑖)𝑙𝑟  +

𝐴3 𝛿𝛾𝑙𝑟 + 𝛼 1 − 𝜀  1 − 𝑝 ℎ𝑟 − (𝜁 + 𝜌 + 𝑑 − 𝑑𝑖)𝑖 
  

By choosing 𝐴1 = 𝛼𝜀 1 − 𝑝 𝛿𝛾 + 𝛼 1 − 𝜀  1 − 𝑝  𝜁 + 𝛾 , 𝐴2 = 𝛿𝛾 𝜁 + 𝛼 , 𝐴3 = (𝜁 + 𝛾) 𝜁 + 𝛼 we do have 

𝑊 ≤  𝜁 + 𝛼  𝜁 + 𝛾  𝜁 + 𝜌 + 𝑑  𝑐𝜔 𝑠∗ + 𝜍𝑣∗ 
𝛼𝜀 1 − 𝑝 𝛿𝛾 + 𝛼 1 − 𝜀  1 − 𝑝  𝜁 + 𝛾 

 𝜁 + 𝛼  𝜁 + 𝛾  𝜁 + 𝜌 + 𝑑 
− 1 𝑖

+  𝐴1 𝑐𝜔 𝜅𝑟 + 𝑑ℎ𝑟 + 𝐴2𝑑𝑙𝑟 + 𝐴3𝑑𝑖 𝑖  
=  𝜁 + 𝛼  𝜁 + 𝛾  𝜁 + 𝜌 + 𝑑  𝑅0 − 1 𝑖

+   𝛼𝜀 1 − 𝑝 𝛿𝛾 + 𝛼 1 − 𝜀  1 − 𝑝  𝜁 + 𝛾   𝑐𝜔 𝜅𝑟 + 𝑑ℎ𝑟 + 𝛿𝛾 𝜁 + 𝛼 𝑑𝑙𝑟
+  𝜁 + 𝛾  𝜁 + 𝛼 𝑑𝑖 𝑖 

Hence𝑊 < 0 , provided that 𝜁 + 𝛼  𝜁 + 𝛾  𝜁 + 𝜌 + 𝑑  𝑅0 − 1 +   𝛼𝜀 1 − 𝑝 𝛿𝛾 + 𝛼 1 − 𝜀  1 − 𝑝  𝜁 +

𝛾𝑐𝜔 𝜅𝑟+𝑑ℎ𝑟+𝛿𝛾𝜁+𝛼𝑑𝑙𝑟+𝜁+𝛾𝜁+𝛼𝑑𝑖<0.That is,𝑊<0⟺ 𝑅0−1<−𝛼𝜀1−𝑝𝛿𝛾+𝛼1−𝜀1−𝑝𝜁+𝛾𝑐𝜔 
𝜅𝑟+𝑑ℎ𝑟+𝛿𝛾𝜁+𝛼𝑑𝑙𝑟+𝜁+𝛾𝜁+𝛼𝑑𝑖𝜁+𝛼𝜁+𝛾𝜁+𝜌+𝑑 

⟺ 𝑅0 < 1 −
  𝛼𝜀 1 − 𝑝 𝛿𝛾 + 𝛼 1 − 𝜀  1 − 𝑝  𝜁 + 𝛾   𝑐𝜔 𝜅𝑟 + 𝑑ℎ𝑟 + 𝛿𝛾 𝜁 + 𝛼 𝑑𝑙𝑟 +  𝜁 + 𝛾  𝜁 + 𝛼 𝑑𝑖 

 𝜁 + 𝛼  𝜁 + 𝛾  𝜁 + 𝜌 + 𝑑 
 

2.5.3 Local Stability of endemic equilibrium point 

Theorem-5: 

The endemic equilibrium point 𝐸∗ =  𝑣∗, 𝑠∗, ℎ𝑟
∗, 𝑙𝑟

∗, 𝑠𝑇
∗, 𝑖∗, 𝑖𝑇

∗, 𝑟∗  of the dynamical (9)-(16) is locally 

asymptotically stable if𝑅0 > 1,𝐶𝑖𝑖 < 0,for 𝑖 = 1: 8 and 𝑑 > 𝑐𝜔. 

Proof: 

The Jacobean matrix of the dynamical system (9)-(16) at the endemic equilibrium point 

𝐸∗ =  𝑣∗, 𝑠∗, ℎ𝑟
∗, 𝑙𝑟

∗, 𝑠𝑇
∗, 𝑖∗, 𝑖𝑇

∗, 𝑟∗  is  

𝐽 𝐸∗ =

 
 
 
 
 
 
 
 𝐶11

𝐶12

𝐶31

0
0
0
0
0

0
𝐶22

𝐶32

0
0
0
0
0

0
0

𝐶33

𝐶43

𝐶53

𝐶63

0
0

0
0
0

𝐶44

0
𝐶64

0
𝐶84

0
0
0
0

𝐶55

0
0

𝐶85

𝐶16

𝐶26

𝐶36

𝐶46

𝐶56

𝐶66

𝐶76

𝐶86

0
0
0
0
0
0

𝐶77

𝐶87

0
0

𝐶38

0
0
0
0

𝐶88 
 
 
 
 
 
 
 

 

 

 

  



Dynamics of a Tuberculosis Model with Vaccination and Dual Treatments:  A Mathematical model .. 

DOI: 10.9790/5728-1504024760                                   www.iosrjournals.org                                           55 | Page 

Where, 

𝐶11= − 𝜁 + 𝜍𝑐𝜔𝑖∗ + 𝜃 − 𝑑𝑖∗ , 𝐶22  = −(𝑐𝜔𝑖∗ + 𝜁 − 𝑑𝑖∗), 𝐶16  = (𝑑 − 𝜍𝑐𝜔)𝑣∗, 𝐶21 = 𝜃, 𝐶32 = 𝑐𝜔𝑖∗, 𝐶26 =
  𝑑 − 𝑐𝜔 𝑠∗, 𝐶31 = 𝜍𝑐𝜔𝑖∗, 𝐶33 = − 𝜁 + 𝛼 − 𝑑𝑖∗ , 𝐶36 = 𝑐𝜔 𝑠∗ + 𝜍𝑣∗ + 𝜅𝑟∗ + 𝑑ℎ𝑟

∗
, 

𝐶38 = 𝑐𝜔𝑘𝑖∗, 𝐶43 = 𝛼𝜀 1 − 𝑝 , 𝐶44 = − 𝜁 + 𝛾 − 𝑑𝑖∗ , 𝐶46 = 𝑑𝑙𝑟
∗
, 𝐶53 = 𝛼𝑝, 𝐶55 = − 𝜁 + 𝜙 − 𝑑𝑖∗ , 

𝐶56 =  𝑑𝑠𝑇
∗, 𝐶63 = 𝛼 1 − 𝜀  1 − 𝑝 , 𝐶64 = 𝛿𝛾, 𝐶66 = − 𝜁 + 𝜌 + 𝑑 − 2𝑑𝑖∗ , 𝐶75 =  𝑞𝜌 + 𝑑𝑖𝑇

∗, 𝐶77 =
− 𝜁 + 𝜑 − 𝑑𝑖∗ , 𝐶84 =  1 − 𝛿 𝛾, 𝐶85 = 𝜙, 𝐶86 =   1 − 𝑞 𝜌 + 𝑑𝑟∗, 𝐶87 = 𝜑and 

𝐶88 = − 𝜁 + 𝜅𝑐𝜔𝑖∗ − 𝑑𝑖∗  
The corresponding characteristic equation of the Jacobean matrix is: 

 

 

 

𝐶11 − 𝜆
𝐶12

𝐶31

0
0
0
0
0

0
𝐶22 − 𝜆

𝐶32

0
0
0
0
0

0
0

𝐶33 − 𝜆
𝐶43

𝐶53

𝐶63

0
0

0
0
0

𝐶44 − 𝜆
0

𝐶64

0
𝐶84

0
0
0
0

𝐶55 − 𝜆
0
0

𝐶85

𝐶16

𝐶26

𝐶36

𝐶46

𝐶56

𝐶66 − 𝜆
𝐶76

𝐶86

0
0
0
0
0
0

𝐶77 − 𝜆
𝐶87

0
0

𝐶38

0
0
0
0

𝐶88 − 𝜆

 

 

 

= 0 

Or we can rewrite in form of: 

𝜆8 + 𝐴7𝜆
7 + 𝐴6𝜆

6 + 𝐴5𝜆
5 + 𝐴4𝜆

4 + 𝐴3𝜆
3 + 𝐴2𝜆

2 + 𝐴1𝜆 + 𝐴0 = 0 
We have set conditions that𝑑 > 𝑐𝜔  anddiagonal elements of 𝐽 𝐸2 (i.e,𝐶𝑖𝑖 < 0 ) are negative, for𝑖 = 1, 2, … , 8, 

and then the coefficients from 𝐴0to𝐴7 are all positive. Finally we found that theelements in first columnof the 

Routh-Hurwitharrayare all positive, itfollows from the Routh–Hurwitz criteria that all the eigenvalues associated 

to the Jacobean matrix of the dynamical system at the endemic equilibrium have negative real part. Therefore 

the endemic equilibrium point is locally asymptotically stable for 𝑅0 > 1 with the conditions 𝑑 >
𝑐𝜔  anddiagonal elements of 𝐽 𝐸2  are negative. 

 
2.5.4 Global stability of Endemic Equilibrium point 

Theorem-6: 

The endemic equilibrium 𝐸∗of the tuberculosis dynamical system is globally asymptotically stable if𝑅0 > 1.  

Proof: 

We define a Liapunovfunction  𝑉(𝑥) =  𝐴𝑖  𝑥𝑖 − 𝑥𝑖
∗ − 𝑥𝑖

∗𝑙𝑛
𝑥𝑖

𝑥𝑖
∗ 

8
𝑖=1 , where𝐴𝑖properly selected positive is 

constant, 𝑥𝑖 is the population of 𝑖𝑡ℎcompartment and 𝑥𝑖
∗ isthe population of 𝑖𝑡ℎcompartment at the endemic 

equilibrium point. We note that𝑉(𝑥) ≥ 0, for𝑥 ≠ 𝐸∗and the Liapunov function at the endemic equilibrium 

point is zero i.e𝑉  𝐸∗ = 0 . Now differentiatingtheLiapunov function with respect to time we get: 

𝑉 = 𝐴1  1 −
𝑣∗

𝑣
 𝑣 + 𝐴2  1 −

𝑠∗

𝑠
 𝑠 + 𝐴3  1 −

ℎ𝑟
∗

ℎ𝑟

 ℎ𝑟
 + 𝐴4  1 −

𝑙𝑟
∗

𝑙𝑟
 𝑙𝑟 + 𝐴5  1 −

𝑠𝑇
∗

𝑠𝑇

 𝑠𝑇 + 𝐴6  1 −
𝑖∗

𝑖
 𝑖 

+ 𝐴7  1 −
𝑖𝑇

∗

𝑖𝑇
 𝑖𝑇 + 𝐴8  1 −

𝑟∗

𝑟
 𝑟  

Substituting their respective values and some calculation gives 

𝑉 = − ζ + 𝜃 𝐴1𝑣  1 −
𝑣∗

𝑣
 

2

− 𝜁𝐴2𝑠  1 −
𝑠∗

𝑠
 

2

− 𝐴8𝜁𝑟 − 𝐴1𝑖
∗𝑣∗ 1 − 𝑥1  1 −

𝑥3

𝑥1𝑥5

  𝑑 − 𝜍𝑐𝜔 

− 𝜃𝐴2𝑣
∗  1 −

1

𝑥1

  1 − 𝑥2 + 𝑖∗𝑠∗𝐴2 1 − 𝑥2  1 −
1

𝑥2𝑥5

  𝑐𝜔 − 𝑑 

+ 𝐴3𝑐𝜔𝑖∗𝑠∗  1 −
𝑥3

𝑥2𝑥5

+
1

𝑥2𝑥5

 + 𝐴3𝜍𝑐𝜔𝑖∗𝑣∗  1 −
𝑥3

𝑥1𝑥5

+
1

𝑥1𝑥5

 

+ 𝐴3𝜅𝑐𝜔𝑖∗𝑟∗  1 −
𝑥3

𝑥2𝑥8

+
1

𝑥2𝑥8

 + +𝐴4𝛼𝜀 1 − 𝑝 ℎ𝑟
∗  1 −

𝑥4

𝑥3

 + 𝐴3𝑑𝑖∗ℎ𝑟
∗  1 −

1

𝑥5

+
1

𝑥3𝑥5

 

+ 𝐴4𝑑𝑖∗𝑙𝑟
∗  1 −

1

𝑥5

+
1

𝑥4𝑥5

 + 𝐴5𝛼𝑝ℎ𝑟
∗  1 −

𝑥6

𝑥3

 + 𝐴5𝑑𝑖∗𝑠𝑇
∗  1 −

1

𝑥5

+
1

𝑥5𝑥6

 

+ 𝐴6𝑑𝑖∗𝑖∗  1 −
1

𝑥5

+
1

𝑥5

1

𝑥5

 + 𝐴7𝑑𝑖∗𝑖𝑇
∗  1 −

1

𝑥5

+
1

𝑥5𝑥7

  

+𝐴6𝛿𝛾𝑙𝑟
∗  1 −

𝑥5

𝑥4
 + 𝐴6𝛼 1 − 𝜀  1 − 𝑝 ℎ𝑟

∗  1 −
𝑥5

𝑥3
 + 𝐴7𝑞𝜌𝑖∗  1 −

𝑥7

𝑥5
 + 𝐴8𝜙𝑠𝑇

∗  1 −
𝑥8

𝑥6
 + 𝐴8 1 −

𝑞𝜌𝑖∗1−𝑥8𝑥5+𝐴81−𝛿𝛾𝑙𝑟∗1−𝑥8𝑥4+𝐴8𝜑𝑖𝑇∗1−𝑥8𝑥7+𝐴8𝑑−𝜅𝑐𝜔𝑖∗𝑟∗1−1𝑥5+1𝑥5𝑥8.Where, 𝑥1, 𝑥2, 𝑥3, 𝑥4, 
𝑥5, 𝑥6, 𝑥7, 𝑥8=𝑣∗𝑣,𝑠∗𝑠,  ℎ𝑟∗ℎ𝑟,  𝑙𝑟∗𝑙𝑟, 𝑖∗𝑖, 𝑠𝑇∗𝑠𝑇,𝑖𝑇∗𝑖𝑇,𝑟∗𝑟 

After some simplification we get 𝑉  𝑥 < 0 if𝑅0 > 1. 
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III. Numerical Simulations 
This numerical simulation is done by using a set of parameter values whose sources are mainly from related 

literatures, WHO and Federal Democratic Republic of Ethiopia Ministry of Healthreports.  

 
Parameter Symbols Value  Source  

𝜓 0.9 [13] 

𝜍 0.2 [13] 

𝜃 0.0667 [10, 13] 

𝜙 2  Estimated  

𝜔 0.5 [8] 

𝑐 2 Estimated 

𝛼 0.03 [8] 

𝑑 0.00025 [13] 

𝑝 0.2 Estimated 

𝛾 0.03 [8] 

𝛿 0.1 Estimated 

𝜀 0.5 Estimated 

𝜌 0.3  [8] 

𝑞 0.94 [13] 

𝜑 1.33 Estimated  

𝜁 0.0183 Estimated 

𝜅 0.99 Estimated 

Table-2: Parameter estimation 

 

Numerical simulation for basic reproduction number 

We discussed on the relation between basic reproduction number 𝑅0 and the parameters involved in it. 

Accordingly, Figer-2 represents the graph of basic reproduction number 𝑅0 versus contact rate 𝑐  bykeeping 

other parameters constant, and shows the lines 𝑅0(𝑐) = 0.510027891273821𝑐 and 𝑅0 = 1intersect at 𝑐 =
1.960677086. Therefore,𝑅0 < 1 when the contact rate,  𝑐 < 1.960677086 and𝑅0 > 1  when  𝑐 >
1.960677086. Figer-3 represents the graph of basic reproduction number 𝑅0 versus probability of transmission 

 𝜔 bykeeping other parameters constant,shows the lines 𝑅0 𝜔 = 2.040111564909529𝜔 and 𝑅0 = 1intersect 

at 𝜔 = 0.490169272, then 𝑅0 < 1 when  𝜔 < 0.490169272   and 𝑅0 > 1 when 0.490169272 < 𝜔. 

 

 
Figure-2:the basic reproduction number 𝑅0 versus 

contact rate 𝑐 

Figure-3:graph the basic reproduction number 𝑅0 

versus probability of transmission 𝜔 

Figure-4 representsthe graph of the basic reproduction number𝑅0 versus rate of vaccine waning 

 𝜃  bykeeping other parameters constant. This graph showsthe curve𝑅0 𝜃 = 1.20718341374268
0.005124 +𝜃

0.0183 +𝜃
and 

the line𝑅0 = 1 intersect at𝜃 = 0.05849180491849, then𝑅0 < 1 when 𝜃 < 0.05849180491849  and 𝑅0 > 1 

when𝜃 > 0.05849180491849. Figure-5 representsthe graph of the basic reproduction number 𝑅0 versus 

proportions of new born vaccinated  𝜓  bykeeping other parameters constant and thenthis shows the 

lines𝑅0 𝜓 = −0.2079195903199174𝜓 + 1.20718341374269 and 𝑅0 = 1 intersect at𝜓 = 0.9964593, then  

𝑅0 < 1 when 𝜃 > 0.9964593  and 𝑅0 > 1 when  𝜃 < 0.9964593 
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Figure-4:the basic reproduction number 𝑅0 versus 

rate of vaccine waning 𝜃 

Figure-5:the basic reproduction number 𝑅0 versus 

proportions new born vaccinated 𝜓 

 

The basic reproduction number 𝑅0is given as a function ofprogression rate 𝛼  of individuals from early 

latently infected bykeeping other parameters constant𝑅0(𝛼) =
1.126946446858242 𝛼

𝛼+0.0183
. In figure-6the curve𝑅0(𝛼) =

1.126946446858242 𝛼

𝛼+0.0183
 and the line  𝑅0 = 1 intersect at  𝛼 = 0.14415528, then𝑅0 < 1 

when  𝛼 < 0.14415528  and𝑅0 > 1 when  𝛼 > 0.14415528. In figure-7, the basic reproduction number, 

𝑅0 < 1 when  𝛾 < 0.02870644  and 𝑅0 > 1when  𝛾 > 0.02870644 by taking the value of all other parameters 

from table-2 respectively.  

 
Figure-6:the basic reproduction number 𝑅0 versus 

progression rate 𝛼  of individuals from early latently 

infected 

Figure-7:the basic reproduction number 𝑅0 versus 

progression rate from long latently infected 

 

The basic reproduction number  𝑅0is given as a function ofproportion of individuals who do not get 

chance for screened at  𝐻𝑟  and who go to 𝐿𝑟  class𝜀  bykeeping other parameters 

constant𝑅0 𝜀 = −1.236198565079491𝜀 + 1.318066019717244 . In figure-8 the lines 𝑅0 𝜀 =
−1.236198565079491𝜀 + 1.318066019717244 and𝑅0 = 1intersect at  𝜀 = 0.257293632 and then𝑅0 < 1 

when   𝜀 > 0.257293633  and𝑅0 > 1when  𝜀 < 0.257293633.The basic reproduction number𝑅0is also given 

as a function ofdeath rate 𝑑 bykeeping other parameters constant𝑅0 𝑑 =
2.229744041283815

𝑑+0.085
.By figure-9the 

curve𝑅0 𝑑 =
2.229744041283815

𝑑+0.085
 and the line 𝑅0 = 1 intersect at  𝑑 = 2.144744041, then𝑅0 < 1when  𝑑 >

2.144744041  and𝑅0 > 1when  𝑑 < 2.144744041. 
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Figure-8:the basic reproduction number 𝑅0 versus 

Proportion of individuals who do not get chance for 

screened at  𝐻𝑟 , 𝜀 

Figure-9:the basic reproduction number 𝑅0 versus 

Death rate due to the disease 𝑑 

 

The basic reproduction number 𝑅0can also be given as a function of the rate  𝜌 at which individuals 

leave infectious class bykeeping other parameters constant𝑅0 𝜌 =
2.229744041283815

𝜌+0.0185
.  As figure-10, the curve 

𝑅0 𝜌 =
2.229744041283815

𝜌+0.0185
 and the line𝑅0 = 1 intersect at𝜌 = 2.211194, then𝑅0 < 1 

when𝜌 > 2.211194  and𝑅0 > 1  when𝜌 < 2.211194.Figure-11 shows that the 

curve𝑅0 𝜁 =
(0.28𝜁+0.0667 )(0.012𝜁+0.00036 )

(𝜁+0.0667 ) 𝜁+0.03 2(𝜁+0.30025 )
 and the line𝑅0 = 1  intersect at𝜁 = 4.015, then𝑅0 < 1 when𝜁 <

4.015  and𝑅0 > 1 when𝜁 > 4.015. Andthe curve 𝑅0 𝑝 = (1 − 𝑝)0.8749584214737915 and the line 𝑅0 =
1 have no intersection in the first quadrant however𝑅0 < 1  for all  𝑝𝜖 0,1 . 

 

 
Figure-10: the basic reproduction number 𝑅0 versus 

rate at which individuals leave infectious class 𝜌 

Figure-11:the basic reproduction number 𝑅0 versus 

rate of the proportion of recruitment rate 𝜁 

 

IV. Sensitivity Analysis 
We perform sensitivity analyses on a mathematical model of tuberculosis transmission to determine the 

relative importance of model parameters to disease transmission and control. We apply the normalized forward 

sensitivity index of   𝑅0to a parameter is the ratio of the relative change in the variable to the relative change in 

the parameter
 [10]

. We do have an explicit formula for sensitivity index: Π𝑥
  𝑅0 =

𝜕   𝑅0

𝜕𝑥
×

𝑥

  𝑅0
 where  𝑥  is the 

parameter of the dynamical system.  

Π𝑐
  𝑅0 =

𝜕   𝑅0

𝜕𝑐
×

𝑐

  𝑅0
= 1;   Π𝜔

  𝑅0 =
𝜕   𝑅0

𝜕𝑐
×

𝜔

  𝑅0
= 1 

Πψ
  𝑅0 =

𝜕   𝑅0

𝜕ψ
×

ψ

  𝑅0
=

(𝜍−1)ψ𝜁

𝜍ψζ+ 1−𝜓 𝜁+𝜃
;   Πσ

  𝑅0 =
𝜕   𝑅0

𝜕σ
×

σ

  𝑅0
=

σψζ

𝜍ψζ+ 1−𝜓 𝜁+𝜃
,  

Π𝜃
  𝑅0 =

𝜕   𝑅0

𝜕σ
×

𝜃

  𝑅0
=

(1−σ)ψζ

(𝜁+𝜃) 𝜍ψζ+ 1−𝜓 𝜁+𝜃 
; Π𝛼

  𝑅0 =
𝜕   𝑅0

𝜕α
×

𝛼

  𝑅0
=

𝜁

 𝜁+𝛼 
, 

Π𝛾
  𝑅0 =

𝜕  𝑅0

𝜕γ
×

𝛾

  𝑅0

=
𝛾 𝛼𝜀 1 − 𝑝 𝛿 + 𝛼 1 − 𝜀  1 − 𝑝  

𝛼𝜀 1 − 𝑝 𝛿𝛾 + 𝛼 1 − 𝜀  1 − 𝑝  𝜁 + 𝛾 
−

𝛾

 𝜁 + 𝛾 
 

Π𝑝
  𝑅0 =

𝜕  𝑅0

𝜕p
×

𝑝

  𝑅0

= −
𝑝 𝛼𝜀𝛿𝛾 + 𝛼 1 − 𝜀  𝜁 + 𝛾  

𝛼𝜀 1 − 𝑝 𝛿𝛾 + 𝛼 1 − 𝜀  1 − 𝑝  𝜁 + 𝛾 
 



Dynamics of a Tuberculosis Model with Vaccination and Dual Treatments:  A Mathematical model .. 

DOI: 10.9790/5728-1504024760                                   www.iosrjournals.org                                           59 | Page 

Π𝜀
𝑅0 =

𝜕   𝑅0

𝜕𝜀
×

𝜀

  𝑅0
=

𝛼 1−𝑝 𝜀 𝛿𝛾−(𝜁+𝛾) 

𝛼𝜀 1−𝑝 𝛿𝛾+𝛼 1−𝜀  1−𝑝  𝜁+𝛾 
;Π𝜌

  𝑅0 =
𝜕   𝑅0

𝜕𝜌
×

𝜌

  𝑅0
= −

𝜌

 𝜁+𝜌+𝑑 
 

Π𝛿
  𝑅0 =

𝜕   𝑅0

𝜕𝛿
×

𝛿

  𝑅0
=

𝛿𝛼𝜀 1−𝑝 𝛾

𝛼𝜀 1−𝑝 𝛿𝛾+𝛼 1−𝜀  1−𝑝  𝜁+𝛾 
;Π𝑑

  𝑅0 =
𝜕   𝑅0

𝜕𝑑
×

𝑑

  𝑅0
= −

𝑑

 𝜁+𝜌+𝑑 
 

Π𝜁
  𝑅0 =

𝜕  𝑅0

𝜕𝜁
×

𝜁

  𝑅0

= ζ  
(1 +  𝜍 − 1 𝜓)

 1 +  𝜍 − 1 𝜓 ζ + 𝜃
+

 1 − 𝜀 

 1 − 𝜀 ζ + 𝜀𝛿𝛾 +  1 − 𝜀 𝛾
−

1

ζ + 𝜃
−

1

ζ + θ
−

1

ζ + 𝛾

−
1

ζ + 𝑑 + 𝜌
  

Using the data in table-2the resulting sensitivity indices of 𝑅0to the different parameters in the model are shown 

in the following table in the order from most sensitive to the least. 

 

Parameters 𝜃 𝛾 𝑐 𝜔 𝛼 𝜁 𝛿 σ 𝑑 𝜓 𝜀 𝜌 𝑝 

sensitivity 

index 

2.16 1.26 1 1 0.38 0.13 0.06 0.05 −0.00075 −0.18 −0.88 −0.94 −1.25 

Table-3: Sensitivity indices 

 

V. Results and discussion 
In this work we considered non-linear dynamical system to study the dynamics of Tuberculosis disease. 

The basic reproduction number is: 

𝑅0 =
𝑐𝜔 ( 1−𝜓 𝜁+𝜃)𝛼𝜀 1−𝑝 𝛿𝛾

(𝜁+𝜃)(𝜁+𝛼)(𝜁+𝛾)(𝜁+𝜌+𝑑)
+

𝑐𝜔𝜍 ψζ𝛼𝜀 1−𝑝 𝛿𝛾

(𝜁+𝜃)(𝜁+𝛼)(𝜁+𝛾)(𝜁+𝜌+𝑑)
+

𝑐𝜔 ( 1−𝜓 𝜁+𝜃)𝛼 1−𝜀  1−𝑝 

(𝜁+𝜃)(𝜁+𝛼)(𝜁+𝜌+𝑑)
+

𝑐𝜔𝜍 ψζ𝛼 1−𝜀  1−𝑝 

(𝜁+𝜃)(𝜁+𝛼)(𝜁+𝜌+𝑑)
which 

depends on thirteen parameters. We have evaluated the effect of each parameter on the basic reproduction 

number 𝑅0 by keeping all other parameters that involved in it are constants. Consequently,Figure-2 shows that if 

the contact rate,  𝑐 < 1.960677086 then 𝑅0 < 1 andif 𝑐 > 1.960677086then𝑅0 > 1. Implies that the disease 

does not spread in the communitywhen𝑐 < 1.960677086 and spreads in the community when𝑐 >
1.960677086.Figure-3 illustrates that  𝑅0 < 1  when   𝜔 < 0.490169272  and 𝑅0 > 1 when   0.490169272 <
𝜔 < 1 .That is,the tuberculosis disease spreads in the community when0.490169272 < 𝜔 < 1 and does not 

spread in the community if𝜔 < 0.490169272. In figure-6,𝑅0 < 1 if  𝛼 < 0.0.14415528  and 𝑅0 > 1 if  𝛼 >
0.14415528,impliesdisease spreads in the community when𝛼 > 0.14415528 and is not spread in the 

community if𝛼 < 0.14415528. Figure-7 also shows thatthe tuberculosis disease does not spread in the society 

when  𝛾 < 0.02870644  and spreads in the society when 𝛾 > 0.02870644. 
Figure-4 confirms that the tuberculosis disease spreads in the society if 𝜃 > 0.05849180491849and 

does not spread in the society if𝜃 < 0.0584918049184.Figure-5 shows that𝑅0 < 1 if 𝜓 > 0.9964593  and 

𝑅0 > 1 if 𝜓 < 0.9964593 implies that the disease does not spread in the society when 𝜓 > 0.9964593and the 

disease spreads in the society when𝜓 < 0.9964593. 𝑅0 < 1 for all 𝑝𝜖[0,1] and then the disease does not spread 

in the community for all values of  𝑝. Figure-8 shows that the disease do not spread in the society when   𝜀 >
0.257293633and the disease spreads in the society when  𝜀 < 0.257293633. Figure-9 shows that the disease 

does not spread in the society when  𝑑 > 2.144744041 and spreads in the society when  𝑑 <
2.144744041.Figure-10 shows the tuberculosis disease does not spread in the society when𝜌 > 2.211194 and 

spreads in the society when𝜌 < 2.211194by keeping other parameters are constant. Figure-11 tells us the 

disease does not spread in the society when𝜁 < 4.015 and spreads in the society when𝜁 > 4.015 by keeping 

other parameters are constant. 

From table-2, we found that the parameters contact rat of susceptible or vaccinated individuals makes 

with infectious individuals c, probability of tuberculosis disease transmission from infectious person to another 

person 𝜔 , the rate of inefficacy of Bacilli Calmette-Guérin (BCG) vaccine  𝜍 , the rate of Bacilli Calmette-

Guérin (BCG) vaccine waning  𝜃 , the rate of  individuals leave from early latently infected class 𝛼, the rate of 

individuals leave from long latently infected class  have  positive   contributions for the transmission of 

tuberculosis, implies that, the value of 𝑅0increaseswhen those parameters increase. While the parameters, the 

proportion of vaccinated new born individuals  𝜓, the proportion of early latently infected individuals who go 

for treatment𝑝, the rate at which individuals leave infectious class will help to decrease the value of 𝑅0 as they 

increase.  

The most sensitive parameter in the spread and control of tuberculosis disease is the waning rate of 

Bacilli Calmette-Guérin(BCG) vaccine, 𝜃,  followed by the progression rate from long latently infected 

tuberculosis to active tuberculosis, 𝛾 and the proportion𝑝 of early stage latently infected individuals who have 

got the chance for screened and treatment.  
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VI. Conclusion 
This study presents a deterministic model for the dynamics of tuberculosis Mathematical model with 

interventions: vaccination, chemoprophylaxis and therapeuticstreatments. The total population is divided in to 

ten compartments. We found the dynamical system has disease free equilibrium point and endemic equilibrium 

point. We also found that the basic reproduction number of the considered dynamical system is  

𝑅0 =
𝑐𝜔 ( 1−𝜓 𝜁+𝜃)𝛼𝜀  1−𝑝 𝛿𝛾

(𝜁+𝜃)(𝜁+𝛼)(𝜁+𝛾)(𝜁+𝜌+𝑑)
+

𝑐𝜔𝜍 ψζ𝛼𝜀  1−𝑝 𝛿𝛾

(𝜁+𝜃)(𝜁+𝛼)(𝜁+𝛾)(𝜁+𝜌+𝑑)
+

𝑐𝜔 ( 1−𝜓 𝜁+𝜃)𝛼 1−𝜀  1−𝑝 

(𝜁+𝜃)(𝜁+𝛼)(𝜁+𝜌+𝑑)
+

𝑐𝜔𝜍 ψζ𝛼 1−𝜀  1−𝑝 

(𝜁+𝜃)(𝜁+𝛼)(𝜁+𝜌+𝑑)
 . 

We proved that the disease free equilibrium is locally asymptotically stable if the basic reproduction 

number is less than unity and globally asymptotically stable if the basic reproduction number𝑅0 < 1 −
 𝑐𝑤  𝜅𝑟+𝑑ℎ𝑟  𝛼𝜀  1−𝑝 𝛿𝛾 +𝛼 1−𝜀  1−𝑝  𝜁+𝛾  +𝛿𝛾  𝜁+𝛼 𝑑𝑙𝑟+ 𝜁+𝛾  𝜁+𝛼 𝑑𝑖

 𝜁+𝛼  𝜁+𝛾  𝜁+𝜌+𝑑 
. We also proved the local stability of the endemic 

equilibrium point and also its global stability using a Liapunov function. Using standard data collected from 

different sources we found the numerical value of the basic reproduction number is 𝑅0 = 0.7 which shows that 

the tuberculosis disease not spreads in the community. We have done the numerical simulation of the dynamical 

system. The waning rate of Bacilli Calmette-Guérin (BCG) vaccine, 𝜃, followed by the progression rate from 

long latently infected tuberculosisis to active tuberculosis,  𝛾  and the proportion  𝑝  of early stage latently 

infected individuals who go for treatment are the most sensitive parameter the most influential parameter to 

change the basic reproduction number. The result shows that vaccination alone cannot eliminate tuberculosis 

disease from a population, but can slow the rate of transmission from long stage latently infected; and increasing 

the portion screened and treating of early stage latently infected. 

 

VII. Recommendation 
To study the dynamics of tuberculosis we considered vaccination, chemoprophylaxis and therapeutics 

treatments. The next researchers may found more findings by considering drug resistant tuberculosis on the 

infection pattern.  
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