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Abstract: We formulated a four compartmental model of Infectious Bursal Disease (IBD) for both the ordinary 

and control models. We first determined the basic Reproduction number and the existence of Steady 

(Equilibrium) states (disease-free and endemic). Conditions for the local stability of the disease-free and 

endemic steady states were determined. Further, the Global stability of the disease-free equilibrium (DFE) and 

endemic equilibrium were proved using Lyponav method. We went further to carry out the sensitivity analysis or 

parametric dependence on R0 and later formulated the optimal control problem. We finally looked at numerical 

Results on poultry productivity in the presence of Infectious Bursal Disease (IBD) and we drew six graphs to 

demonstrate this. From Figure 4.1 we observe that the number of birds at the early stage of the infection 

increases rapidly and drops to a particular level. Applying the both control measures reduces the number to 

zero. This strategy shows a significant reduction in the number of birds at the early stage of the infection with 

control. It is observed from Figure 4.2 that the number of birds at the latter stage of the infection reduces with 

and without control. Without control the reduction is as a result of high mortality rate at this stage of the 

infection. With control the number reduces and drops to zero. Therefore we may conclude that applying both 

controls the infectious birds will drop to zero over time. We observe from Figure 4.3 that the number of 

infectious bird will keep reducing as the use of vaccination increases. At the optimal application of vaccines the 

number of infectious birds becomes less than 5 and remains at that level over time. From Figure 4.4, at the 

optimal application of only vaccines, the number of birds at the latter stage of the infection will drop to zero. 

This implies that strategy B (that is, when supportive measures to enhance recovery infectious birds are not 

applied) will be more effective on the infectious birds at the latter stage of the infection than on birds at the 

early stage of the infection. 

 We observe that from Figure 4.5 that the number of birds at the early stage of the infection will also reduce 

when only supportive measures are applied but will increase the number of infectious birds gradually after 

about 10 days. When only supportive measures are applied in IL, we see from Figure 4.6 that the number drops 

to zero faster even at the early application of the strategy. Hence we can deduce that this strategy is more 

effective on birds at the latter stage of the infection and less effective on birds at the early stage of infection. 
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I. Introduction 
Infectious bursal disease also known as Gumboro disease is a highly contagious immunosuppressive 

viral infection of poultry birds. The causative agent of IBD is a bi-segmented, double-stranded RNA virus of the 

Birnaviridae family named IBD virus (IBDV). Although turkeys, ducks, guinea fowls and ostriches may be 

infected, clinical disease occurs solely in chickens, OIE (2008). However, serological evidence of the infection 

has been reported in free – living wild birds such as corden bleu and village weaver, Antartic penguins, wild 

water birds, cattle egrets and wild turkeys, Candelora et al (2010). Moreover infectious bursal disease virus 

antibodies were detectable in the sera of sedentary and migratory wild bird species in Japan, suggesting that they 

play a key role in the natural history of infectious bursal disease, Oluwayelu et al (2014). 

It affects young chickens and is characterized by the destruction of the lymphoid organs. The infection 

when not fatal or in the early stage, causes an immune suppression, Janmaat (2010), in most cases temporary, 

the degree of which is often difficult to determine. IBD has been described throughout the world and socio – 

economic significance of the disease is considerable world – wide. 

Infectious bursal disease is one of the major economically important diseases of poultry worldwide 

despite wide usage of vaccination programs. Most commercial chickens are exposed to IBDV early in life. The 

infectious bursal disease virus (IBDV) is the etiological agent of infectious bursal disease (IBD) also known as 

Gumboro disease. In unprotected flocks, the virus causes mortality and immunosuppression. Although mortality 
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can be quite significant, the major economic loss is the ability of IBDV to produce immunosuppression. 

Immunosuppressed flocks have poor performance which results in reduced economic return, Alfred et al (2016). 

Infectious bursal disease (IBD) was first reported by Cosgrove in 1957in broilers of the Delmarva 

Peninsula of the United States. It was initially recognized as “avian nephrosis”, and the syndrome became 

known as “Gumboro disease” because the first outbreaks occurred in the town of Gumboro, Delaware, USA. 

The causative agent of IBD is a bi-segmented, double-stranded RNA virus of the Birnaviridae family named 

IBD virus (IBDV). It had spread rapidly throughout the United States by 1965 but was effectively controlled by 

vaccinations in the mid-1970s (Lasher & Davis 1997). Initially avian nephrosis or Gumboro disease was thought 

to be caused by the Gray strain of infectious bronchitis virus (IBV) because of gross changes in the kidney. This 

misconception arose because the IBV and IBDV infections were concurrent in many cases and IBDV was 

difficult to isolate with the available methods at the time of discovery.  

In later studies, (Winterfield et al in Mohamed 2006), succeeded in isolating the causative agent in 

embryonating eggs, and later Hitchner proposed the term “infectious bursal disease” for the disease. There is a 

significant antigenic, immunogenic, and pathogenic variation between IBDV strains which determines disease 

outcome. Some IBDV strains cause an immunosuppressive, subclinical form of disease with less than 5% 

mortality, while others can cause a clinical form with up to 100% mortality such as very virulent strains. The 

clinical signs and the degree of immunosuppression can also vary significantly. Vaccination is the primary 

means for control; and thus most efforts for protection against IBDV by the commercial poultry industry are 

focused on developing efficient vaccination programs. Successful immunization requires reliable IBDV field 

and vaccine strain characterization (Mohamed 2006). 

There are two serotypes of IBDV: 1 and 2. All viruses capable of causing disease in chickens belong to 

serotype 1, whereas serotype 2 viruses are non-pathogenic for both chickens and turkeys (Muller et al 2012). 

Chickens are the only avian species known to be susceptible to clinical disease and lesions produced by IBDV. 

Turkeys, ducks and ostriches are susceptible to infection with IBDV but are resistant to its clinical 

manifestations (Alfred et al 2016). IBDV has also been isolated from African black-footed and Macaroni 

penguins and have been serologically identified as serotype 2 IBDV (Sudhir et al 2016), and further confirmed 

as serotype 2 by molecular identification. 

In 1972, it was reported that IBDV infections at an early age were immunosuppressive (Boot et al 

2005). The recognition of this immunosuppressive capability of IBDV greatly increased the interest in the 

control of this disease. The existence of serotype 2 IBDV was reported in 1980. The Delmarva Peninsula broiler 

growing area experienced a significant increase in mortality and higher percentage of condemnations in 1984 

and 1985. The clinical syndrome had significant variability, but often was respiratory in nature. Lesions ranged 

from moderate to severe, with death usually being attributed to E. coli infection (38). 

Rosenberger et al in Mohamed (2006) isolated four isolates designated as A, D, G, and E using 

vaccinated sentinel birds. These isolates differed from standard strains in that they produced a very rapid bursal 

atrophy associated with minimal inflammatory response. The available killed standard vaccines did not provide 

complete protection against these four new Delaware isolates. The Delaware isolates, A, D, G and E were 

designated as antigenic variants and killed vaccines were developed, tested and proven effective against them 

(Li et al 2015). Currently these and other similar variants are widely distributed in the United States. Snyder et 

al (1994), first described variant viruses as newly emergent viruses due to a major antigenic shift within 

serotype 1 (Stoute et al 2013). The terminology given to these newly emergent viruses was “IBDV variants” as 

they were the result of a major antigenic shift within serotype 1, while the older serotype 1 viruses discovered 

prior to these newly emergent viruses were called standard or classical strains of IBDV.   

Acute IBDV outbreaks exhibiting 30% to 60% mortality in broiler and pullet flocks, respectively, have 

been commonly reported in Europe since 1987. The first reports were made by Chettle et al in Boot et al (2005), 

and van den Berg et al. (2000). Some of these acute outbreaks occurred in broiler flocks where appropriate 

hygienic and prophylactic measures had been taken. Although no antigenic drift was detected, these strains of 

increased virulence were identified as very virulent IBDV (vvIBDV) strains.   

These very virulent strains have rapidly spread all over Asia and other parts of the world in an 

explosive manner, following their introduction into Japan in the early 1990s (30).In the America, acute IBD 

outbreaks due to vvIBDV strains have already been reported in Brazil, and the Dominican Republic (Mohamed 

2006). To date the terminology given to serotype 1 IBDV is standard or classic, variant, and very virulent 

IBDV. 

Chung-Chai et al (2006) in their study investigated the phylogenetic origins of the genome segments of 

IBDV and estimated the time of emergence of its most recent common ancestors. With recently developed 

coalescence techniques, they reconstructed the past population dynamics of vvIBDV and timed the onset of its 

expansion to the late 1980s. Their analysis suggests that genome segment A of vvIBDV emerged at least 20 

years before its expansion, which argues against the hypothesis that mutation of genome segment A is the major 

contributing factor in the emergence and expansion of vvIBDV. Alternatively, the phylogeny of genome 
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segment B suggests a possible reassortment event estimated to have taken place around the mid-1980s, which 

seems to coincide with its expansion within approximately 5 years. It was therefore hypothesized that the 

reassortment of genome segment B initiated vvIBDV expansion in the late 1980s, possibly by enhancing the 

virulence of the virus synergistically with its existing genome segment A. This report reveals the possible 

mechanisms leading to the emergence and expansion of vvIBDV, which would certainly provide insights into 

the scope of surveillance and prevention efforts regarding the disease.  

Durairaj et al (2013) presented an in vivo experimental model developed to differentiate a new 

antigenic variant of IBDV. A hyper-immune serum to IBDV E/Del-type virus was generated in specific 

pathogen-free chickens and a standard volume of the hyper-immune serum was serially diluted and injected in 

specific pathogen-free birds via intravenous, subcutaneous, or intramuscular routes. The chickens were bled at 

different time points in order to evaluate the dynamics of virus neutralization titres. Based on the results, 

chickens were injected with different serum dilutions by the subcutaneous route. Twenty-four hours later, 

chickens were bled and then challenged with 100 median chicken infectious doses of the E/Del virus and a new 

IBDV variant. Chickens were euthanized at 7 days post infection and the bursa of Fabricius was removed for 

microscopic evaluation to determine the bursal lesion score. The determined virus neutralization titre along with 

the bursal lesion score was used to determine the breakthrough titre in the in vivo chicken model. Based on the 

data obtained, an antigenic subtype of IBDV was identified and determined to be different from E/Del. This 

model is a sensitive model for determination of IBDV antigenicity of non-tissue culture adapted IBDV. 

In a recent study by Sufen et al (2016), they examined the bursa anatomical structure and pathological 

changes in specific-pathogen free (SPF) white leghorn chickens 0 to 8 weeks post hatch (w.p.h.) and IBDV 

BC6/85-infected SPF chickens 2 to 6 w.p.h. respectively, by histology, histopathology, immunohistochemistry, 

and transmission electron microscopy. This study showed that white leghorn chickens seem to be less 

susceptible to IBD. 

Raja et al (2016) considered a novel infectious bursal disease virus.The findings from this study 

provide additional insight into the genetic exchange between attenuated and very virulent strains of IBDV 

circulating in the field. Furthermore, Alike &Rautenschein highlighted the pattern of virus evolution and new 

developments in prophylactic strategies, mainly the development of new generation vaccines, which will 

continue to be of interest for, research as well as field application in the future. 

Abid (2016) formulated an optimal control problem for an SIR epidemic model with saturated 

incidence and saturated treatment. Two main efforts, namely treatment and vaccination are considered to limit 

the disease transmission. The impacts of vaccination and treatment on the disease transmission are discussed 

through the basic reproduction number. Then to achieve control of the disease, a control problem was 

formulated and the existence of the control is shown. Two control functions were used: one for vaccinating the 

susceptible and the other for treatment efforts for infectious individuals. Optimal control methods were used to 

characterize the optimal levels of the two controls. The effectiveness of the proposed control solution was 

shown by comparing the behaviour of controlled and uncontrolled systems. Numerical results show the impacts 

of two controls in decreasing both susceptible and infectious members of the population. 

In view of the above, none of these studies have considered the optimal control strategies in preventing 

and controlling the outbreak of the disease. Therefore this study aims at providing a non – linear mathematical 

model which will study the impact of optimal control strategies for Infectious bursal disease in the presence of 

infective birds and non – linear incidence. Other works we have looked at in this paper were: Alfred et al 

(2016), OIE (2008), Chettle et al (   ), Mohamed (2006), Oluwayelu et al (2014), Rosenberger et al (  ), 

Winterfield et al 

 

II. Formulation of Infectious Bursal Disease Model 
2.1 Assumptions of the model 

1. Infected birds first develop the early stage of infection  

2. Birds at the early and latter stage of the infection are capable of transmitting the disease 

3. Birds are immunosuppressed at the early stage of the infection   

4. No natural death for infectious birds 

5. Birds are recruited either by birth or immigration 

6. Recovered birds will overtime become susceptible to the disease  

2.2 Parameters of the Model 

S(t) - Population of susceptible birds at time t 

E(t) - Population of infectious birds at the early stage of the infection 

L(t) - Population of infectious birds at the latter stage of the infection 

R(t) - Population of recovered birds at time t 

π - Recruitment rate of bids 

   β contact rate with infectious class 
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d - natural death rate of birds 

λ - force of infection 

μ - disease -  induced death rate 

α - rate of becoming acutely infected 

p - probability of recovery from infection 

τ - progression rate from early stage to latter stage of the infection  

δ - rate of recovery of birds at the latter stage of the infection 

ν          - rate of losing immunity 

u1 - vaccination control measure 

u2 - supportive control measure 

 N(t) - Total population of birds at time t 

N(t) = S(t) + E(t) + L(t) + R(t) 

 

 

2.3 Model Flow diagram 

 
Fig. 2.1: Flow Diagram of Bursal Disease 

 

 

2.4 Equations of the Model 
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2.5 Equation of Control Model 

 Now building in the controls u1(t) and u2(t) which are the vaccination control and the supportive control 

measures. These supportive measures are strategies such as proper ventilation, vitamin electrolyte therapy, water 

consumption etc used in enhancing the quick recovery of infected birds. The control model is given as 
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III. Analysis of IBD model 
3.1 Basic Reproduction number 

 The basic reproduction number (R0) gives the expected number or average number of secondary 

infections produced when one single infected bird is introduced into the susceptible population. The basic 

reproduction number is calculated using the next generation operator approach. This approach calculates R0 

based on the definition of infected and uninfected compartments in the model. 

Assuming that there are 𝑛 compartments of which the first 𝑚 compartments to infected individuals. We define, 

𝑉𝑖 (𝑥) = 𝑉𝑖
−(𝑥) − 𝑉𝑖

+(𝑥) 

 Where 𝑉𝑖
+(𝑥) is the rate of transfer of individuals into compartment 𝑖 by all other means and 𝑉𝑖

− 𝑥 is 

the rate of transfer of individual out of the 𝑖𝑡ℎ compartment. It is assumed that each function is continuously 

differentiable at least twice in each variable. The disease transmission model consists of non-negative initial 

conditions together with the following system of equations:  

 𝑥𝑖 = ℎi (𝑥) = ℱi (𝑥) – 𝑉i (𝑥) , 𝑖=1,2,3,…𝑛. where 𝑥 is the rate of change of 𝑥.  

The next is the computation of the square matrices 𝐹 and 𝑉of order 𝑚 ×𝑚 , where 𝑚 is the number of infected 

classes, defined by 𝐹=  
𝜕𝑥𝑖

𝜕𝑥𝑗
𝑥(0) and 𝑉=   

𝜕𝑣𝑖

𝜕𝑥𝑗
𝑥(0)  with 1≤𝑖,𝑗 ≤𝑚 , such that 𝐹 is nonnegative , 𝑉 is a non -

singular matrix and x(0) is the disease – free equilibrium point (DFE). Since 𝐹 is non-negative and 𝑉 non-

singular, then 𝑉-1
 is non-negative and also 𝐹𝑉-1

 is non-negative. Hence the matrix of 𝐹V
-1

 is called the next 

generation matrix for the model. Finally the basic reproduction number 𝑅0 is given by  

𝑅0 = 𝜌(𝐹𝑉-1
)  

where 𝜌(𝐴) denotes the spectral radius of matrix 𝐴 and the spectral radius is the biggest non-negative eigenvalue 

of the next generation matrix.  

From the system (3.1a), ℱi and 𝑉i are defined as: 

 

ℱi =  
𝛽  

𝐼𝐸+𝐼𝐿

𝑁
 𝑆

0
  and Vi =  

( 𝜏 + 𝜇 + 𝑑)𝐼𝐸

(𝛿 + 𝜇 + 𝑑)𝐼𝐿 − 𝜏 1 –  𝜌 𝐼𝐸
  

The partial derivatives of ℱi with respect to (IE, IL) and the Jacobian matrix of ℱi at the disease – free 

equilibrium point is: 

 F =  
𝛽                        𝛽
0                          0

  

Similarly, the partial derivatives of Vi with respect to (𝐼E, 𝐼L) and the Jacobian matrix of 𝑉i is: 

 V =  
 𝜏𝜌 +  𝜏 1 −  𝜌 +  𝜇 + 𝑑                        0

−𝜏 1 −  𝜌 𝛿 + 𝜇 + 𝑑
  

The inverse of the matrix 𝑉 is given as: 

 V
-1

 =  

1

 𝜏𝜌 + 𝜏 1− 𝜌 + 𝜇+𝑑 
0

𝜏 1− 𝜌 

 𝜏𝜌+ 𝜏 1− 𝜌 + 𝜇+𝑑 (𝛿+𝜇+𝑑)

1

𝛿+𝜇+𝑑

  

Thus; 

FV
-1

 =  
𝛽

𝜏𝜌+ 𝜏 1− 𝜌 + 𝜇+𝑑
+

𝛽𝜏  1− 𝜌 

𝛿+𝜇+𝑑

𝛽

𝛿+𝜇+𝑑

0                                           0
  

 The basic reproduction number (R0) is the dominant eigenvalue or spectral radius 𝜌(FV
-1

). Thus, 

 R0 = 
𝛽

𝜏𝜌+ 𝜏 1− 𝜌 + 𝜇+𝑑
+

𝛽𝜏  1− 𝜌 

𝛿+𝜇+𝑑
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      =  
𝛽 𝛿+𝜇+𝑑 +[𝜏 1− 𝜌   𝜏+ 𝜇+𝑑 ]

( 𝜏+ 𝜇+𝑑)(𝛿+𝜇+𝑑)
 

 

 

3.2 Existence of Steady (Equilibrium) states 

 Here we would like to know what would happen to the disease, IBD in a long run: will it die out or will 

it establish itself in the poultry population and become endemic? In order to answer these questions, we have to 

investigate the long – term behaviour of the solutions to the model. This behaviour largely depends on the 

equilibrium points that are time independent solutions of the system. Since these solutions do not depend on 

time, we set 
𝑑𝑠

𝑑𝑡
=  

𝑑𝐼𝐸
𝑑𝑡

=  
𝑑𝐼𝐿
𝑑𝑡

=  
𝑑𝑅

𝑑𝑡
= 0 

Hence we get the system of equations 

 𝑏𝑁 −  𝛽  
𝐼𝐸+𝐼𝐿

𝑁
 𝑆 −  𝜇𝑆 + νR = 0                           (i) 

  𝛽  
𝐼𝐸+𝐼𝐿

𝑁
 𝑆 – τρ𝐼𝐸  – τ(1 – ρ)𝐼𝐸  – (μ+d)𝐼𝐸  = 0         (ii)             

 τ(1 – ρ)𝐼𝐸  – δ𝐼𝐿  – (μ+d)𝐼𝐿  = 0                                (iii)               (4.1) 

 𝜏𝜌𝐼𝐸 +  𝛿𝐼𝐿 −  𝜐𝑅 − 𝜇𝑅 = 0                                   (iv) 

From (i) 

𝑏𝑁 −  𝛽  
𝐼𝐸+𝐼𝐿

𝑁
 𝑆 −  𝜇𝑆 + νR = 0 => S* = 

𝑏+ 𝜈𝑅∗

𝜆∗+𝜇
              (v) 

where 𝜆∗ =  𝛽  
𝐼𝐸
∗+𝐼𝐿

∗

𝑁
  

From (ii)  

𝜆𝑆 − ( 𝜏𝜌𝐼𝐸 +  𝜏 1 –  𝜌 𝐼𝐸 +  𝜇 + 𝑑)𝐼𝐸  =  0 

=> S
*
 = 

( 𝜏𝜌+ 𝜏 1 – 𝜌 + 𝜇+𝑑)𝐼𝐸
∗

𝜆∗  = 
𝑘𝐼𝐸

∗

𝜆∗ (vi) 

with k = 𝜏𝜌 +  𝜏 1 –  𝜌 +  𝜇 + 𝑑 

From (iii) τ(1 – ρ)𝐼𝐸  – δ𝐼𝐿  – (μ+d)𝐼𝐿  = 0  =>𝐼𝐿
∗ =  

𝜏(1 – 𝜌)𝐼𝐸
∗

(𝛿+ 𝜇+𝑑) 
 

 From (v) and (vi) 
𝑏𝑁+ 𝜈𝑅∗

𝜆+𝜇
 =  

( 𝜏𝜌 𝐼𝐸
∗+ 𝜏 1 – 𝜌 𝐼𝐸

∗+ 𝜇+𝑑)𝐼𝐸
∗

𝜆
 =>𝑅∗ = 

 𝜆+𝜇 𝑘𝐼𝐸
∗−𝜆𝑏

𝜆𝜈
                 (vii) 

From (iv) 𝜏𝜌𝐼𝐸 +  𝛿𝐼𝐿 −  𝜐𝑅 − 𝜇𝑅 = 0 => R
*
 = 

𝜏𝜌𝑘𝐼𝐸
∗+ 𝛿𝐼𝐸

∗

𝜐+𝜇
(viii) 

From (vii) and (viii) 
 𝜆+𝜇 𝑘𝐼𝐸

∗−𝜆𝑏

𝜆𝜈
    = 

𝜏𝜌 𝐼𝐸
∗+ 𝛿𝐼𝐿 

∗

𝜐+𝜇
 =>𝐼𝐸

∗ =  
𝜆[𝜈𝛿 𝐼𝐿

∗+(𝜈+𝜇)𝑏

 𝜈+𝜇   𝜆+𝜇 𝑘 −𝜆𝜈𝜏𝜌
 

The steady states are: 

 S* = 
𝑏+ 𝜈𝑅∗

𝜆∗ +𝜇
 , 𝐼𝐸

∗ =  
𝜆[𝜈𝛿 𝐼𝐿

∗+ 𝜈+𝜇 𝑏]

 𝜈+𝜇   𝜆+𝜇 𝑘 −𝜆𝜈𝜏𝜌
  ,  𝐼𝐿

∗ =  
𝜏(1 – 𝜌)𝐼𝐸

∗

(𝛿+ 𝜇+𝑑) 
   , R

*
 = 

(𝜏𝜌𝑘+ 𝛿)𝐼𝐸
∗

𝜐+𝜇
 

 Setting 𝐼𝐸
∗= 𝐼𝐿

∗ = 0, we obtain the disease - free equilibrium (DFE) 

 𝜀0= (S
0
,𝐼𝐸

0,𝐼𝐿
0, R

0
) 

 𝜀0 = (
𝑏𝑁

µ
 , 0, 0, 0) 

 

3.3  Local Stability of DFE 

Here we look at the stability of the disease – free equilibrium (DFE) of the system for infectious Bursal disease 

model (3.1a).   

Theorem 3.1: The disease free steady (equilibrium) state of the IBD modelislocally asymptotically stable if and 

only if (i) b <  and (ii) 

 < d  

Proof: The Jacobian matrix of the system (3.1a) is given as    

( ) 0

0 (1 ) ( ) 0

0 ( )

E L

E L

I I S S
b b b

N N N

I I S S
dJ

N N N

d

   
      

  
  

        
  

     
 

     
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Evaluating the Jacobian at the DFE we have 

0

0 ( ) 0

0 (1 ) ( ) 0

0 ( )

DFE

b b b

d
J

d

   
 

    
    
 

     

 

The eigenvalues of the matrix 
0J  is obtained considering the determinant, 

0

0 ( ) 0
0

0 (1 ) ( ) 0

0 ( )

DFE

b b b

d
J

d

  

   
  

    

     

 

The matrix has eigenvalues  

𝜆1= b ,  𝜆2 =  ( )d  ,  𝜆3 = ( )d  ,  𝜆4 = −(𝜈 + 𝜇) 

For local asymptotic stability we require  𝜆1 ,  𝜆2< 0, that is, b< 0 and  

 ( )d  < 0 

Hence the disease free steady state is locally asymptotically stable only if  

(i) b< 0 => b <  and 

(ii)  ( )d  < 0 => < d ∎ 

That is, for the disease-free steady state to be stable, b < and < d . This means that for the disease to 

be under control and eradicated within a while from its outbreak, the per capita birth rate of bird (b) should be 

less than the death rate ( ) and the contact rate with infectious birds ( ) less than the sum of the progression 

rate from early to latter stage of the infection and the death rates ( d ). 

 

3.4 Local stability of endemic equilibrium (EE) 

 Here we consider a pure endemic case where the disease is prevalent in the bird population. This means 

re- infection will keep occurring which makes recovery impossible and the non – existence of the susceptible. 

That is S
* 
= R

*
 = 0.  

Setting S
*
= R

*
 = 0, we obtain the endemic equilibrium (EE) 

 𝜀∗= (S
*
,𝐼𝐸

∗ , 𝐼𝐿
∗, R

*
) 

 𝜀∗= (0,
𝜆[𝜈𝛿 𝐼𝐿

∗+ 𝜈+𝜇 𝑏]

 𝜈+𝜇   𝜆+𝜇 𝑘 −𝜆𝜈𝜏𝜌
  ,

𝜏(1 – 𝜌)𝐼𝐸
∗

 (𝛿+ 𝜇+𝑑) 
 , 0) 

Theorem 3.2: The endemic Steady (Equilibrium) state of the IBD model is locally asymptotically stable if

  b . 

Proof:  Evaluating the Jacobian matrix of the model at the Endemic equilibrium (EE) we have 

( ) 0 0

0 (1 ) ( ) 0

0 ( )

EE

b b b

d
J

d

  
 

    
    
 

     

 

Considering the determinant 

0

0 ( ) 0 0
0

0 (1 ) ( ) 0

0 ( )

EE

b b b

d
J

d



  
  

    

     

 

The matrix has eigenvalues  

𝜆1= b ,  𝜆2 = ( )d  ,  𝜆3 = ( )d  and  𝜆4 = −(𝜈 + 𝜇) 

Hence the endemic steady state is stable if; 

b< 0 => b -  <  => >𝑏 −  𝜇      ∎ 
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This means that if the contact rate of infectious birds ( ) with the susceptible birds is greater than or equal to 

the difference between the birth rate (b) and the natural death rate (𝜇) of the birds, the disease will be endemic.  

 

3.5 Global stability of the DFE 

Theorem 3.3: The DFE,𝜀0, of the model (3.1a) is globally asymptotically stable if R0≤1.  

Proof: We consider the Lyaponuv function 

 L = C1IE + C2IL 

where C1 = 
𝑘2+𝜏(1−𝜌)

𝑘1𝑘2
 and C2 = 

1

𝑘2
 

Thus we have  

 L = 
𝑘2+𝜏(1−𝜌)

𝑘1𝑘2
IE + 

1

𝑘2
IL 

With Lyaponuv derivative given by  

𝐿  =  
𝑘2+𝜏(1−𝜌)

𝑘1𝑘2
𝐼𝐸 +  

1

𝑘2
𝐼𝐿  

  = 
𝑘2+𝜏(1−𝜌)

𝑘1𝑘2
[𝛽  

𝐼𝐸+𝐼𝐿

𝑁
 𝑆] – k1𝐼𝐸] + 

1

𝑘2
[τ(1 – ρ)𝐼𝐸  – k2𝐼𝐿] 

 = 
𝑘2+𝜏(1−𝜌)

𝑘1𝑘2
[𝛽  

𝐼𝐸+𝐼𝐿

𝑁
 𝑆] - 

[𝑘2+𝜏 1−𝜌 ]𝐼𝐸

𝑘2
 + 

𝜏(1 – 𝜌)𝐼𝐸

𝑘2
 - IL 

 = 
𝑘2+𝜏(1−𝜌)

𝑘1𝑘2
[𝛽  

𝐼𝐸+𝐼𝐿

𝑁
 𝑆] – IE - IL 

 = R0 (IE + IL)
𝑆

𝑁
 – (IE + IL) 

Since S ≤ 𝑁 = >
𝑆

𝑁
 ≤ 1 in the domain that forms the invariant set, it then follows that, 

 𝐿 ≤ R0 (IE + IL) – (IE + IL) 

    = (R0 – 1) (IE + IL) 

Therefore 𝐿 ≤ 0 for R0≤ 1 and 𝐿 = 0 if and only if IE = IL = 0. Furthermore, (S
*
, IE

*
, IL

*
, R

*
) → (

𝑏𝑁

µ
 , 0,0,0) as t 

→ ∞, since IE→ 0 as t → ∞ and IL→ 0 as t → ∞. Consequently, the largest invariant set in {(S, IE, IL, R) ∈ D: 𝐿  = 

0} is the singleton {𝜀0} and by Lassalle’s invariant principle 𝜀0 is globally asymptotically stable in D if R0≤ 1∎ 

The epidemiological implication of the above result is that infectious Bursal disease elimination is possible 

irrespective of the initial sizes of the sub-populations of the model whenever the threshold parameter, R0, is less 

than or equal to unity. 

 

3.6 Global stability of the endemic equilibrium 

We consider a special case where the disease – induced death rate (d) are assumed to be negligible and are set to 

zero. That is d = 0. Under this setting, the rate of change of the total population is given by 

 
𝑑𝑁

𝑑𝑡
= 𝑏 −  𝜇𝑁 

Hence, N →(b/𝜇) as t→ ∞. Thus we set N(t) = b/𝜇.  

Theorem 3.4: The endemic equilibrium of the model (3.1a) is globally asymptotically stable whenever R0> 1. 

Proof: Considering the Goh-Volterra type lyaponuv function, we have  

L = S – S
**

 - S
**

In 
𝑆

𝑆∗∗  + 𝜎(𝛽𝑆 −  𝛽𝑆∗∗)  𝐼𝐸  – 𝐼𝐸
∗∗  −  𝐼𝐸

∗∗𝐼𝑛  
𝐼𝐸

𝐼𝐸
∗∗   

         + 
 𝛽𝑆∗∗−𝛽𝑆 (1−𝜎𝛽𝑆 )

𝛿+ 𝜇
  𝐼𝐿  –  𝐼𝐿

∗∗  −  𝐼𝐿
∗∗𝐼𝑛  

𝐼𝐿

𝐼𝐿
∗∗   

where 𝜎 =  
1−𝜏(1−𝜌)

(𝛿+ 𝜇)(𝛽𝑆−𝜏𝜌−𝜇−𝛽𝑆𝜏  1−𝜌 )
, with Lyaponuv derivative, 

𝐿  = (𝑆  - 
𝑆∗∗

𝑆
𝑆)  + 𝜎(𝛽𝑆 −  𝛽𝑆∗∗)  𝐼𝐸  −  

𝐼𝐸
∗∗

𝐼𝐸
𝐼𝐸   +  

 𝛽𝑆∗∗−𝛽𝑆 (1−𝜎𝛽𝑆 )

𝛿+ 𝜇
  𝐼𝐿  −  

𝐼𝐿
∗∗

𝐼𝐿
𝐼𝐿  = 𝑏 −  𝛽𝑆  

𝐼𝐸+𝐼𝐿

𝑁
 −  𝜇𝑆  - 

𝑆∗∗

𝑆
( 𝑏 −  𝛽𝑆  

𝐼𝐸+𝐼𝐿

𝑁
 −  𝜇𝑆) + 𝜎(𝛽𝑆 −  𝛽𝑆∗∗)  𝛽𝑆  

𝐼𝐸+𝐼𝐿

𝑁
 − (𝜏𝜌 +    𝜇)𝐼𝐸 − 

𝐼𝐸
∗∗

𝐼𝐸
(𝛽𝑆  

𝐼𝐸+𝐼𝐿

𝑁
 −  𝜏𝜌 + 𝜇 𝐼𝐸)  + 

 
 𝛽𝑆∗∗−𝛽𝑆 (1−𝜎𝛽𝑆 )

𝛿+ 𝜇
  𝜏 1 –  𝜌 𝐼𝐸  – (𝛿 + 𝜇)𝐼𝐿   −  

𝐼𝐿
∗∗

𝐼𝐿
( 𝜏 1 –  𝜌 𝐼𝐸  –  𝛿 + 𝜇 𝐼𝐿)  

Simplifying we have  

𝐿  = 𝑏 −  𝛽𝑆  
𝐼𝐸+𝐼𝐿

𝑁
 −  𝜇𝑆 -  

𝑆∗∗

𝑆
𝑏 + 

𝑆∗∗

𝑆
 𝛽𝑆  

𝐼𝐸+𝐼𝐿

𝑁
  + 

𝑆∗∗

𝑆
𝜇𝑆 + 𝜎(𝛽𝑆 −  𝛽𝑆∗∗)  𝛽𝑆  

𝐼𝐸+𝐼𝐿

𝑁
 −  𝜏𝜌 +    𝜇 𝐼𝐸 −

 𝐼𝐸∗∗𝐼𝐸𝛽𝑆𝐼𝐸+𝐼𝐿𝑁+𝐼𝐸∗∗𝐼𝐸𝜏𝜌+𝜇𝐼𝐸) + 𝛽𝑆∗∗−𝛽𝑆(1−𝜎𝛽𝑆)𝛿+ 𝜇𝜏1 – 𝜌𝐼𝐸 –𝛿+𝜇𝐼𝐿  − 𝐼𝐿∗∗𝐼𝐿𝜏1 – 
𝜌𝐼𝐸+𝐼𝐿∗∗𝐼𝐿𝛿+𝜇𝐼𝐿) 

At steady states 

 𝑏 =  𝛽𝑆∗∗  
𝐼𝐸
∗∗+𝐼𝐿

∗∗

𝑁
 +  𝜇𝑆∗∗ 
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 (𝜏𝜌 +  𝜇) = 𝛽𝑆∗∗ +  
𝛽𝑆∗∗𝐼𝐿

∗∗

𝐼𝐸
∗∗  

 𝜏 1 –  𝜌 𝐼𝐸  =  𝛿 + 𝜇 𝐼𝐿
∗∗ 

Substituting the values for b, (𝝉𝝆 +  𝝁)and𝝉 𝟏 –  𝝆 𝑰𝑬 gives  

𝐿  = 𝛽𝑆∗∗  
𝐼𝐸
∗∗+𝐼𝐿

∗∗

𝑁
 +  𝜇𝑆∗∗ −  𝛽𝑆  

𝐼𝐸+𝐼𝐿

𝑁
 −  𝜇𝑆

𝑆∗∗

𝑆
(𝛽𝑆∗∗  

𝐼𝐸
∗∗+𝐼𝐿

∗∗

𝑁
 +  𝜇𝑆∗∗) + 

𝑆∗∗

𝑆
 𝛽𝑆  

𝐼𝐸+𝐼𝐿

𝑁
  + 

𝑆∗∗

𝑆
𝜇𝑆 + 𝜎 𝛽𝑆 −

 𝛽𝑆∗∗𝛽𝑆𝐼𝐸+𝐼𝐿𝑁−𝛽𝑆∗∗+𝛽𝑆∗∗𝐼𝐿∗∗𝐼𝐸∗∗𝐼𝐸− 
𝐼𝐸∗∗𝐼𝐸𝛽𝑆𝐼𝐸+𝐼𝐿𝑁+𝐼𝐸∗∗𝐼𝐸𝛽𝑆∗∗+𝛽𝑆∗∗𝐼𝐿∗∗𝐼𝐸∗∗𝐼𝐸)+𝛽𝑆∗∗−𝛽𝑆(1−𝜎𝛽𝑆)𝛿+ 𝜇𝛿+𝜇𝐼𝐿∗∗ –𝛿+𝜇𝐼𝐿  − 
𝐼𝐿∗∗𝐼𝐿𝛿+𝜇𝐼𝐿∗∗+𝐼𝐿∗∗𝐼𝐿𝛿+𝜇𝐼𝐿) 

Simplifying gives 

𝐿  = 𝛽 𝐼𝐸
∗∗ + 𝐼𝐿

∗∗ 𝑆∗∗ + 2𝜇𝑆∗∗ −  𝜇𝑆 −
𝛽𝑆∗∗2

𝑆
 𝐼𝐸

∗∗ + 𝐼𝐿
∗∗ − 

𝜇𝑆∗∗2

𝑆
−  𝜎 𝛽𝑆 −  𝛽𝑆∗∗ 

𝐼𝐸
∗∗

𝐼𝐸
𝛽𝑆 𝐼𝐸 + 𝐼𝐿 +  𝜎 𝛽𝑆 −

 𝛽𝑆∗∗𝐼𝐸∗∗𝛽𝑆∗∗+ 𝛽𝑆∗∗𝐼𝐿∗∗𝐼𝐸∗∗−𝛽𝑆∗∗− 𝛽𝑆1− 𝜎𝛽𝑆𝐼𝐿∗∗2𝐼𝐿+(𝛽𝑆∗∗− 𝛽𝑆)(1− 𝜎𝛽𝑆)𝐼𝐿∗∗ 

= 𝜇𝑆∗∗  2 − 
𝑆

𝑆∗∗ − 
𝑆∗∗

𝑆
  + 𝛽𝑆∗∗𝐼𝐸

∗∗  1 − 
𝑆∗∗

𝑆
 +  𝛽𝑆∗∗𝐼𝐿

∗∗  2 − 
𝑆∗∗

𝑆
− 

𝐼𝐿
∗∗

𝐼𝐿
 −  

𝑆

𝑆∗∗ +
𝑆𝐼𝐿

∗∗

𝑆∗∗𝐼𝐿
  +  

𝜎𝛽2𝑆∗∗𝐼𝐸
∗∗  2𝑆 −

𝑆2

𝑆∗∗ − 𝑆∗∗ −
𝑆2𝐼𝐿

∗∗

𝑆∗∗𝐼𝐸
+  

𝑆𝐼𝐿
∗∗

𝐼𝐸
  + 𝜎𝛽2𝑆∗∗𝐼𝐿

∗∗  
𝑆2

𝑆∗∗ − 𝑆∗∗ −
𝑆2𝐼𝐿

∗∗

𝑆∗∗𝐼𝐿
+ 

𝑆𝐼𝐿
∗∗

𝐼𝐿
  

Since the arithmetic mean exceeds the geometric mean, it follows then that  

 𝜇𝑆∗∗  2 − 
𝑆

𝑆∗∗ − 
𝑆∗∗

𝑆
 ≤ 0,    𝛽𝑆∗∗𝐼𝐸

∗∗  1 − 
𝑆∗∗

𝑆
 ≤ 0,    

𝛽𝑆∗∗𝐼𝐿
∗∗  2 − 

𝑆∗∗

𝑆
− 

𝐼𝐿
∗∗

𝐼𝐿
−

𝑆

𝑆∗∗
+ 

𝑆𝐼𝐿
∗∗

𝑆∗∗𝐼𝐿
 ≤ 0 

𝜎𝛽2𝑆∗∗𝐼𝐸
∗∗  2𝑆 −

𝑆2

𝑆∗∗
− 𝑆∗∗ −

𝑆2𝐼𝐿
∗∗

𝑆∗∗𝐼𝐸
+  

𝑆𝐼𝐿
∗∗

𝐼𝐸
 ≤ 0 

And  𝜎𝛽2𝑆∗∗𝐼𝐿
∗∗  

𝑆2

𝑆∗∗ − 𝑆∗∗ −
𝑆2𝐼𝐿

∗∗

𝑆∗∗𝐼𝐿
+ 

𝑆𝐼𝐿
∗∗

𝐼𝐿
 ≤ 0 

 Furthermore, since all the model parameters are non – negative, it follows that 𝐿 ≤ 0 for R0> 1. Hence 

L is a Lyaponuv function in D. Also, 𝐿 = 0 if and only if S = S
**

, IE = IE
**

, IL = IL
**

. Hence the largest invariance 

subset of the set where 𝐿 = 0 is the singleton {(S, IE, IL) = (S
*
, IE

*
, IL

*
)}. Similarly R→

(𝜏𝜌𝑘+ 𝛿)𝐼𝐸
∗

𝜐+𝜇
 = R

*
 as t → ∞. 

By Lasalle's invariance principle, it follows that every solution in D approaches 𝜀∗for R0> 1 as t → ∞. ∎ 

The result above implies that infectious bursal disease will be endemic in the poultry whenever the threshold 

quantity R0 is greater than unity.  

 

3.7 Sensitivity analysis or parametric dependence on R0 

 Sensitivity analysis tells us how important each parameter is to disease transmission. The sensitivity 

indices allows the measurement of the relative change in the basic reproduction number (R0), when a parameter 

changes. The normalized forward sensitivity index of R0 with respect to a parameter is the ratio of the relative 

change in R0 to the relative change in the parameter. Using the normalized forward sensitivity index we derive 

an analytical expression for the sensitivity of R0 with respect to each parameter that comprise it. 

Definition 3.1: The normalized forward-sensitivity index of a variable, v, which depends differentiable on a 

parameter, p, is defined as: 

 𝑟𝑝
𝑣 =

𝜕𝑣

𝜕𝑝
×  

𝑝

𝑣
 

In particular, sensitivity indices of the basic reproduction number, R0, with respect to the model parameters are 

computed as follows: 

 𝑟𝛽
𝑅0  = 

𝜕𝑅0

𝜕𝛽
× 

𝛽

𝑅0
 = 1 

 𝑟𝛿
𝑅0  = 

𝜕𝑅0

𝜕𝛿
× 

𝛿

𝑅0
 = −

𝛿𝑘1

(𝑘2+𝑘1)𝑘2
 

 𝑟𝜏
𝑅0  = 

𝜕𝑅0

𝜕𝜏
× 

𝜏

𝑅0
 =  

𝜏[𝑘3
2 1−𝜌 −𝑘2]

𝑘3[𝑘2+𝑘1]
 

 𝑟𝑑
𝑅0  = 

𝜕𝑅0

𝜕𝑑
× 

𝑑

𝑅0
 = −𝑑  

𝑘2
2+𝑘1𝑘3

(𝑘3𝑘2)(𝑘2+𝑘1)
  

 𝑟𝜇
𝑅0  = 

𝜕𝑅0

𝜕𝜇
× 

𝜇

𝑅0
 = −𝜇  

𝑘2
2+𝑘2𝑘3+𝑘1𝑘3

(𝑘3𝑘2)(𝑘2+𝑘1)
  

 The positive sign of Sensitivity index of the basic reproduction number to the model parameters 

indicates that an increase (or decrease) in the value of each of the parameter in this category will lead to an 

increase (or decrease) in the basic reproduction number of the disease. For example, 𝑟𝛽
𝑅0  = 1 suggests that 

increasing (or decreasing) the contact rate of infectious birds with susceptible birds by 10% increases (or 

decreases) the basic reproduction number, R0, by 10%. On the other hand, the negative sign of Sensitivity Index 
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of the basic reproduction number to the model parameters implies that an increase (or decrease) in the value of 

each of the parameter in this category leads to a corresponding decrease (or increase) in the basic reproduction 

number of the disease. Thus, sensitivity analysis of the disease model provides a very good insight into the 

transmission dynamics of the disease. 

 

3.8 Formulation of optimal control problem  
We formulate the objective functional  

 J(𝑢1, 𝑢2) =  (𝑛𝐼𝐸 + 𝑚𝐼𝐿 +  𝑐1𝑢1
2 + 𝑐2𝑢2

2𝑇

0
)dt 

where n, m, c1, c2 are positive weights. We seek an optimal control (𝑢1
∗,𝑢2

∗) such that  

 J(𝑢1
∗ ,𝑢2

∗) = min {J(𝑢1, 𝑢2) : (𝑢1 , 𝑢2) ϵ u and U = { (𝑢1(𝑡), 𝑢2(𝑡)) | 0 ≤ 𝑢1 , 𝑢2 ≤1, t ∈ [0, T] } 

 

Pontryagin’s Maximum Principle 

We convert the objective functional minimization problem coupled with the state variable into a problem of 

minimizing point – wise a Hamiltonian H, 

H = n𝐼𝐸  + m𝐼𝐿  + 𝑐1𝑢1
2 +  𝑐2𝑢2

2 + 𝜆𝑆[𝑏(1 − 𝑢1)𝑆 − (1 − 𝑢2) 𝛽  
𝐼𝐸+𝐼𝐿

𝑁
 𝑆 −  𝑑𝑆 + νR]  

+ 𝜆𝐸  [(1 − 𝑢2)𝛽  
𝐼𝐸+𝐼𝐿

𝑁
 𝑆 – (τρ + τ(1 – ρ) + μ)𝐼𝐸] + 𝜆𝐿 [τ(1 – ρ)𝐼𝐸  – (𝑢2 + μ)𝐼𝐿]  

+ 𝜆𝑅  [𝜏𝜌𝐼𝐸 + 𝑢2𝐼𝐿 − (𝜐 + 𝑑)𝑅] 

Proposition: For the optimal control (𝑢1
∗,𝑢2

∗) that minimizes J(𝑢1,𝑢2) over U, there exist adjoint variables 𝜆𝑆 , 𝜆𝐸  , 

𝜆𝐿 and 𝜆𝑅  satisfying the following adjoint system 
𝑑𝜆𝑆

𝑑𝑡
=  −

𝜕𝐻

𝜕𝑠
 =𝜆𝑆[𝑏𝑢1 +  1 − 𝑢2 𝛽  

𝐼𝐸+𝐼𝐿

𝑁
 +  𝑑] -  𝜆𝐸  [(1 − 𝑢2)𝛽  

𝐼𝐸+𝐼𝐿

𝑁
  

 
𝑑𝜆𝐸

𝑑𝑡
=  −

𝜕𝐻

𝜕𝐸
 =  -n +𝜆𝑆[(1 − 𝑢2) 𝛽  

𝑆

𝑁
 ] - 𝜆𝐸  [(1 − 𝑢2)𝛽  

𝑆

𝑁
 - (τρ + 

                      τ(1 – ρ) + μ)] -𝜆𝐿 (τ(1 – ρ)) - 𝜆𝑅(𝜏𝜌)  
𝑑𝜆𝐿

𝑑𝑡
=  −

𝜕𝐻

𝜕𝐿
 = -m + 𝜆𝑆[(1 −  𝑢) 𝛽  

𝑆

𝑁
 ] - 𝜆𝐸  [(1 − 𝑢2)𝛽  

𝑆

𝑁
  + 

𝜆𝐿(𝑢2 + μ) - 𝜆𝑅𝑢2  

 
𝑑𝜆𝑅

𝑑𝑡
=  −

𝜕𝐻

𝜕𝑅
 = 𝜆𝑆ν + (ν + d)𝜆𝑅  

Transversality conditions 

𝜆𝑆 𝑇 =  𝜆𝐸 𝑇 =  𝜆𝐿 𝑇 =  𝜆𝑅 𝑇 =  0 

The optimal control 𝑢1
∗ and 𝑢2

∗  can be solved from optimality conditions 
𝜕𝐻

𝜕𝑢1

= 0 ,
𝜕𝐻

𝜕𝑢2

= 0 

That is, 

 
𝜕𝐻

𝜕𝑢1
= 2c1𝑢1 - 𝜆𝑆𝑏𝑆 = 0 

𝜕𝐻

𝜕𝑢2
 = 2c1𝑢2 - 𝜆𝑆𝛽  

𝐼𝐸+𝐼𝐿

𝑁
 𝑆 + 𝜆𝐸𝛽  

𝐼𝐸+𝐼𝐿

𝑁
 𝑆 - 𝜆𝐿𝐼𝐿 - 𝜆𝑅𝐼𝐿  = 0 

Moreover the optimal control is given by 

𝑢1
∗ = 𝑚𝑖𝑛⁡ 1, 𝑚𝑎𝑥  0,

𝜆𝑆𝑏𝑆

2𝑐1

   

𝑢2
∗ = 𝑚𝑖𝑛

 
 
 
 
 

1, 𝑚𝑎𝑥

 

 
 

0,

(𝜆𝑆− 𝜆𝐸)  𝛽𝑆  
𝐼𝐸 + 𝐼𝐿

𝑁
  + (𝜆𝐿  −  𝜆𝑅)𝐼𝐿

2𝑐2

 

 
 

 
 
 
 
 

 

This implies that the optimal effort necessary to control the disease is 

𝑢1
∗ =  

𝜆𝑆𝑏𝑆

2𝑐1
and   𝑢2

∗ =  
(𝜆𝑆− 𝜆𝐸) 𝛽𝑆 

𝐼𝐸+𝐼𝐿
𝑁

  + (𝜆𝐿  − 𝜆𝑅)𝐼𝐿

2𝑐2
 

 

IV. Numerical Results on poultry productivity in the presence of Infectious Bursal Disease 

(IBD) 
 We have presented the results on the poultry productivity in the presence of IBD on the graphs 

represented in Figures 4.1-4.6. In the graphs so, presented we employed the optimal controls. The first control 

employed here is the use of vaccines (u1), and the second control denoted by (u2) represents the effort of 

supportive measures like increased heat, good ventilation, and adequate water consumption of poultrybirds, in 

enhancing the quick recovery of infected birds, since there is no specific treatment made available for the 

treatment of the disease (Morla et al 2016). 
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We have considered the following strategies in our simulation 

A. The use of vaccine, i.e. the vaccination control measure u1(t)≠0, when supportive measures u2(t) = 0 

B. Vaccination control measure u1(t) = 0 when supportive measures u2(t) ≠0 

C. Vaccination control , u1(t) ≠ 0 and supportive measures u2(t) ≠ 0 

These strategies, A – C has been combined conveniently and presented for each of the affected compartments in 

the model as presented in Figures 4.1-4.4 below. The parameter values used in the simulation of the model is 

presented here on Table 4.1. 

 

Table 4.1: Parameter values for Infectious bursal disease (IBD) 
Parameter Estimated value Reference 

b 

µ 

β 
d 

p 

τ 
ν 

ᵟ 

40 

0.02 

0.1 
0.5 

0.5 

0.033 
0.026 

0.004 

Estimated 

Bornall et al (2015) 

Sharma et al (2015) 
Qin & Zheng (2016) 

Elizabeth (2016) 

Elizabeth (2016) 
Elizabeth (2016) 

Elizabeth (2016) 

The graphs from simulating the model, given in Fig. 1-Fig. 6, help to compare the population of the infected 

birds in the early (IE) and latter (IL) stage of the infection both with controls and without controls. 

 

4.1 Graph of the Simulation 

 
Figure 4.1: A graph showing birds at the early stage of the infection with and without control 

 

 From Figure 4.1 we observe that the number of birds at the early stage of the infection increases rapidly 

and drops to a particular level. Applying the both control measures reduces the number to zero. This strategy 

shows a significant reduction in the number of birds at the early stage of the infection with control.  
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Figure 4.2: A graph showing birds at the latter stage of the infection with and without control 

 

 It is observed from figure 4.2 that the number of birds at the latter stage of the infection reduces with 

and without control. Without control the reduction is as a result of high mortality rate at this stage of the 

infection. With control the number reduces and drops to zero. Therefore we may conclude that applying both 

controls the infectious birds will drop to zero over time. 

 

 
Figure 4.3: A graph showing the effect of only vaccination (ie u1≠0 with u2=0) on birds at the early stage of the 

Infection. 
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Figure 4.4: A graph showing the effect of only vaccination (ie u1≠0 with u2=0) on birds at the latter stage of the 

Infection. 

 

 We observe from Figure 4.3 that the number of infectious bird will keep reducing as the use of 

vaccination increases. At the optimal application of vaccines the number of infectious birds becomes less than 5 

and remains at that level over time. From Figure 4.4, at the optimal application of only vaccines, the number of 

birds at the latter stage of the infection will drop to zero. This implies that strategy B (that is, when supportive 

measures to enhance recovery infectious birds are not applied) will be more effective on the infectious birds at 

the latter stage of the infection than on birds at the early stage of the infection. 

 
Figure 4.5: A graph showing the effect of only supportive measures (ieu1=0 with u2≠0) on birds at the 

earlystage of the infection 

 
Figure 4.6: A graph showing the effect of only supportive measures (ieu1=0 with u2≠0) on birds at the 

latterstage of the infection 
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 We observe that from Figure 4.5, that the number of birds at the early stage of the infection will also 

reduce when only supportive measures are applied but will increase the number of infectious birds gradually 

after about 10 days. When only supportive measures are applied in IL, we see from Figure 4.6 that the number 

drops to zero faster even at the early application of the strategy. Hence we can deduce that this strategy is more 

effective on birds at the latter stage of the infection and less effective on birds at the early stage of infection. 

 

5.1 Summary  

 In this thesis, we considered the theoretical analysis of compartmental Infectious bursal disease 

(IBD).The study is briefly summarised below; 

 Firstly, stability analysis was carried out using the Lyaponuv function theory and Lasslle’s invariance 

principle for each of these disease model.. Subsequently optimal control problems were formulated for the 

control models and was analysed using the pontryagin’s maximum principle. Sensitivity analysis was also 

carried out to find out how important each model parameters are to the disease transmissions. This was done 

using the normalized forward- sensitivity index.  

 

5.2 Conclusion 

 In the case of Infectious bursal disease (IBD), we developed a relatively simple but reliable model 

which we analysed. From the stability analysis, the DFE and EE will be locally asymptotically stable if (i) b <μ 

and (ii) β <  τ + μ + d and if β > b − μ respectively. Using the lyaponuv function we established the global 

stability of the model. The DFE and EE were established to be globally asymptotically stable if the threshold 

quantity R0<1, and R0>1, respectively. 

 In the control model, we employed two strategies as control measures which are, the vaccination 

control (u1) and supportive measures (u2). The numerical results established that the combination of vaccines 

and supportive measures will reduce the incidence rate of the disease to zero over time, but where only 

supportive measures are carried out, without vaccination, the disease will still persist in the poultry.  

  

5.3 Recommendations 

 The work was motivated by the possibility that mathematical modelling could improve the 

understanding of the dynamics of these diseases, particularly the impact of infection on poultry productivity. 

Based on the analysis of this study, we can conclude that poultry productivity can still be achieved even in the 

presence of perverse disease outbreak, if appropriate control measures are applied. Hence we recommend that 

control programs that follow the strategies stated for each of the diseases in this study, can be used effectively to 

prevent and reduce the spread of these diseases, in order to enjoy high poultry productivity in our poultry 

industries. 
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