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Abstract: In this paper we developed a Modified Crank-Nicolson scheme for solving parabolic 

partial differential equations. The paper considers two solution methods for partial differential 

equations, one analytic and one numerical (finite difference method). The finite difference 

approximation, Modified Crank-Nicolson scheme, was implemented on the diffusion equation in 

order to solve it numerically. The aim was to compare exact solutions obtained by a classical 

method using separation of variables method, with the approximate solutions of Modified Crank-

Nicolson method. Solutions of the numerical method were obtained manually since the method is 

easy and fast. The temperatures at specific time-steps were compared with their analytical result 

counterpart. The results were tabulated and presented also. 
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I. Introduction 
Parabolic Partial Differential Equations are well known equations mostly, one dimensional 

heat equation (conduction equations). Problems involving time as one independent variable 

sometimes lead to this type of equations and it is said to be the simplest type of parabolic diffusion 

equation. This type of equation plays an important role in a broad range of practical application such 

as fluid mechanics. Solving parabolic equations is not easy analytically, only few can be solved in 

such way and the usefulness of these solutions is further restricted to problems involving shapes for 

which boundary conditions are satisfied. In such cases numerical methods are some of the very few 

means of solution. 

Crank-Nicolson Method for solving parabolic partial differential equations was developed by 

John Crank and Phyllis Nicolson in 1956. A practical method for numerical solution to partial 

differential equations of heat conduction type was considered by [1]. [2] Modified the simple 

explicit scheme and prove that it is much more stable than the simple explicit case, enabling larger 

time steps to be used. [3] Considered the stability and accuracy of finite difference method for 

option pricing. The Crank-Nicolson scheme, which is forward time central space (FTCS), 

According to Kreyszig (1993), the time derivative was replaced by forward difference in time 

because we have no information for negative ‘t’ at the start. The freedom to experiment with any 

value of r is one of the reasons the Crank-Nicolson scheme was chosen for this study, even though 

small values of ‘r’ yield more accurate results. Because of this unconditional stability and ease of 

implementation in a computer no matter how small ‘r’ becomes, in this work, we modified the 

classical Crank-Nicolson method and use it to solve a parabolic partial differential equations (Heat 

Equation in one dimension). We also compared the result obtained with the analytical solution. 

The results are presented in a table in this paper. 

There are many exhaustive texts on this subject such as [2], [11] and [13] to mention few. 

 

In this paper we considered the comparison of the modified Crank-Nicolson scheme to the exact 

solution. 
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II. Development Of Modified Crank-Nicolson Method 
This section presents the method of separation of variable and the Modified Crank-Nicolson method 

for solving Parabolic Partial differential equations. 

Partial differential equations occur frequently in Mathematics, natural science and engineering. These 

are problems involving rate of change of functions of several variables. For examples  

 Advection equation:  
𝜕𝑦

𝜕𝑡
 + v

𝜕𝑥

𝜕𝑥
 = 0 

 

 Heat equation:          
𝜕𝑓

𝜕𝑡
 = D

𝜕²𝑓

𝜕𝑥 ²
 

 

 Poisson equation:   - 
𝜕²𝑓

𝜕𝑥 ²
  - 

𝜕²𝑓

𝜕𝑦 ²
 = u(x, y) 

 

 Wave equation:         
𝜕²𝑓

𝜕𝑡 ²
 - 
𝜕²𝑓

𝜕𝑦 ²
 = 0 

In the above equations, x, y are space coordinates, v, D, c, are real positive constants and t, x are often 

said to be time and space coordinates respectively. The general second order linear partial differential 

equation with two independent variables and one dependent variable is given by 

                                          A
𝜕²𝑓  

𝜕𝑥 ²
 + B

𝜕²𝑓

𝜕𝑥𝜕𝑦
 + C

𝜕²𝑓

𝜕𝑦 ²
 + D = 0                                                       (1) 

Here, A, B, C are functions of independent variables, and x, y, D are functions of x, y, f, 
𝜕𝑦

𝜕𝑥
 and 

𝜕𝑓

𝜕𝑦
 . It is 

important to note that for a parabolic partial differential equation to be parabolic, b
2
 – 4ac = 0 is required. 

The one dimensional heat conduction equation of the form  

                                                        
  𝜕𝑓

𝜕𝑡
 = 

𝜕²𝑓

𝜕𝑥 ²
                        (2) 

is a well known example of a parabolic partial differential equation. The solution of these equation is a 

temperature function u(x, t) which is defined for values of x from 0 to l and for values of t from 0 to ∞. The 

solution is not defined in a closed domain but advances in an open-ended region from initial values satisfying 

the prescribed boundary conditions.  

 

2.1 DERIVATION OF MODIFIED CRANK-NICOLSON SCHEME: 

In this work, we derive a modified Crank-Nicolson scheme from the classical Crank-Nicolson scheme and use it 

to solve some problems on parabolic differential equations, we then compare the results obtain from the scheme 

with the exact solution. 

 

We first show the derivation of the classical Crank-Nicolson scheme using the implicit and explicit scheme 

  

                                             
𝑓𝑖 ,𝑗+1 − 𝑓𝑖 ,𝑗

𝑘
 = 

𝑓𝑖−1,𝑗   −  2𝑓𝑖 ,𝑗   + 𝑓𝑖+1,𝑗

ℎ²
                      (3) 

  and  

      
𝑓𝑖 ,𝑗+1 − 𝑓𝑖 ,𝑗

𝑘
 = 

𝑓𝑖−1,𝑗+1  −  2𝑓𝑖 ,𝑗+1  + 𝑓𝑖+1,𝑗+1

ℎ²
                             (4) 

adding (3) and (4) we get  

 

          
𝑓𝑖 ,𝑗+1 − 𝑓𝑖 ,𝑗

𝑘
 = 

1

2
 [ 

𝑓𝑖−1,𝑗   −  2𝑓𝑖 ,𝑗   + 𝑓𝑖+1,𝑗

ℎ²
 ] + 

1

2
 [
𝑓𝑖−1,𝑗+1  −  2𝑓𝑖 ,𝑗+1  + 𝑓𝑖+1,𝑗+1

 ℎ²
 ]                   

 

solving we have  

 

2(𝑓𝑖 ,𝑗+1 −  𝑓𝑖 ,𝑗 ) = 
𝑘

ℎ²
 ( 𝑓𝑖−1,𝑗  −  2𝑓𝑖 ,𝑗  + 𝑓𝑖+1,𝑗  + 𝑓𝑖−1,𝑗+1 −  2𝑓𝑖 ,𝑗+1 +  𝑓𝑖+1,𝑗+1) 

let  
𝑘

ℎ²
 = r, then  

 

2(𝑓𝑖 ,𝑗+1 −  𝑓𝑖 ,𝑗 ) = r ( 𝑓𝑖−1,𝑗  −  2𝑓𝑖 ,𝑗  + 𝑓𝑖+1,𝑗  + 𝑓𝑖−1,𝑗+1 −  2𝑓𝑖 ,𝑗+1 +  𝑓𝑖+1,𝑗+1) 

 

       2𝑓𝑖 ,𝑗+1 +  𝑟𝑓𝑖−1,𝑗+1 +  2𝑟𝑓𝑖 ,𝑗+1 −  𝑟𝑓𝑖+1,𝑗+1 = 2𝑓𝑖 ,𝑗  +  𝑟𝑓𝑖−1,𝑗 −  2𝑟𝑓𝑖 ,𝑗 +  𝑟𝑓𝑖+1,𝑗  

       

  r𝑓𝑖−1,𝑗+1 +  2 + 2𝑟 𝑓𝑖 ,𝑗+1 −  𝑟𝑓𝑖+1,𝑗+1 = r𝑓𝑖−1,𝑗  +   2 − 2𝑟 𝑓𝑖 ,𝑗 −  𝑟𝑓𝑖+1,𝑗  

        or 

    

  2(1 + r)𝑓𝑖 ,𝑗+1 +  𝑟[𝑓𝑖−1,𝑗+1 −  𝑓𝑖+1,𝑗+1 ] = 2(1 – r)𝑓𝑖 ,𝑗  +  𝑟[𝑓𝑖−1,𝑗  +  𝑓𝑖+1,𝑗  ]              (5) 
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Equation (5) is the Crank-Nicolson method. 

 

  2.2 Modified Crank-Nicolson Method: 

We derive the modified Crank-Nicolson scheme as follows; we replace the left hand sides of both (3) and (4) by   
𝑓𝑖 ,𝑗  − 𝑓𝑖 ,𝑗−1

𝑘
  and add to get          

 

     
𝑓𝑖 ,𝑗  − 𝑓𝑖 ,𝑗−1

𝑘
 = 

1

2
 [ 
𝑓𝑖+1,𝑗−1  −  2𝑓𝑖 ,𝑗−1  + 𝑓𝑖−1,𝑗−1

ℎ²
 ] + 

1

2
 [
𝑓𝑖+1,𝑗   −  2𝑓𝑖 ,𝑗   + 𝑓𝑖−1,𝑗

 ℎ²
 ]                                                   (6)               

 

2(𝑓𝑖 ,𝑗  −  𝑓𝑖 ,𝑗−1) = 
𝑘

ℎ²
 ( 𝑓𝑖+1,𝑗−1 −  2𝑓𝑖 ,𝑗−1 +  𝑓𝑖−1,𝑗−1 +  𝑓𝑖+1,𝑗  −  2𝑓𝑖 ,𝑗  + 𝑓𝑖−1,𝑗 ) 

 

2𝑓𝑖 ,𝑗  −  2𝑓𝑖 ,𝑗−1 = r𝑓𝑖+1,𝑗−1 −  2𝑟𝑓𝑖 ,𝑗−1 +  𝑟𝑓𝑖−1,𝑗−1 + 𝑟𝑓𝑖+1,𝑗  −  2𝑟𝑓𝑖 ,𝑗  +  𝑟𝑓𝑖−1,𝑗 ) 

where r = 
𝑘

ℎ²
  

 

−2𝑟𝑓𝑖 ,𝑗−1 +  2𝑓𝑖 ,𝑗−1 +  𝑟𝑓𝑖+1,𝑗−1 +  𝑟𝑓𝑖−1,𝑗−1 = −𝑟𝑓𝑖+1,𝑗  +  2𝑓𝑖 ,𝑗  +  2𝑟𝑓𝑖 ,𝑗  −  𝑟𝑓𝑖−1,𝑗  

 

2 1 + 𝑟 𝑓𝑖 ,𝑗  −  𝑟(𝑓𝑖+1,𝑗  + 𝑓𝑖−1,𝑗  ) = 2 1 − 2𝑟 𝑓𝑖 ,𝑗−1 +  𝑟(𝑓𝑖+1,𝑗−1 + 𝑓𝑖−1,𝑗−1 )                    (7) 

Equation (7) is the modified Crank-Nicolson scheme. 

 

2.3 Stability of Modified Crank-Nicolson Scheme: 
Consider the equation (6) given as  

       

                               
𝑓𝑖 ,𝑗  − 𝑓𝑖 ,𝑗−1

𝑘
 = 

1

2
 [ 
𝑓𝑖+1,𝑗−1  −  2𝑓𝑖 ,𝑗−1  + 𝑓𝑖−1,𝑗−1

ℎ²
 ] + 

1

2
 [
𝑓𝑖+1,𝑗   −  2𝑓𝑖 ,𝑗   + 𝑓𝑖−1,𝑗

 ℎ²
 ]   

Worse case solution is given as 

                                                             𝑓𝑖 ,𝑗  = 𝜆𝑛+1(−1)𝑖                                                                (8) 

substituting (8) into (6) to get 

 

−𝑟𝜆𝑗 (−1)𝑖−1[(−1)𝑖−1 + (−1)𝑖+1] + 2(1 + 𝑟)𝜆𝑗 (−1)𝑖  = 𝑟𝜆𝑗 −1(−1)𝑖−1[(−1)𝑖−1 + (−1)𝑖−1 ]  + 2 1 +
𝑟 𝜆𝑗−1 (−1)𝑖 
which gives 

 

         λ[-r (-1) – 1 + (1+2r) – r(-1) + 1] = r(-1) -1 + 2(1- r) + r(-1) + 1                   (9) 

the equation (9) above can be written as  

 

     λ = 
1−2𝑟

1+2𝑟
 

then  

    | λ = 
1−2𝑟

1+2𝑟
 | → |λ| < 1, ∀ λ > 0                   (10) 

 

III. Numerical Examples 
In this section, we present some numerical examples of the modified Crank-Nicolson Method and compared the 

results with the exact solutions. 

 

Example 1: Solve the partial differential equation using Modified Crank-Nicolson Method and compare the 

results with the exact solutions: 

 

     

1

2
 
𝜕²𝑓  

𝜕𝑥 ²
=  

𝜕𝑓

𝜕𝑡
 , 0 ≤ 𝑥 ≤ 4

𝑤𝑖𝑡ℎ     𝑓 𝑥, 0 = 𝑥(4 − 𝑥)

𝑎𝑚𝑑  𝑓 0, 𝑡 = 0 = 𝑓(4, 𝑡)

                    (11) 

Solution:  

Let 
 

      𝑓 =  𝑋𝑇                       (12) 

where X is a function of x and T is a function of t only.  Differentiating (12) w.r.t t we have 
𝜕𝑓

𝜕𝑡
 = XT

’
 and 

𝜕²𝑓

𝜕𝑥 ²
 = 

X
’’
T. Let XT’ = c

2
X’’T = z

2
 and separating variables, we get   
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𝑋 ′′

𝑋  
=  

1

𝐶2 
𝑇 ′′

𝑇 
=  −𝑧2 

    𝑇 ′ =  −𝑐2  𝑧2  𝑇 

    𝑚 =  −𝑐2𝑧2  

                                                 𝑇 = 𝑐1𝑒
−𝑐2𝑧²𝑡

 
Similarly,  

                                                 𝑋 ′′ =  −𝑧2 𝑥 

                                                 𝑚 =  ±𝑖𝑧  

    𝑋 =  𝑐2 𝑐𝑜𝑠𝑧𝑥 + 𝑐3 𝑠𝑖𝑛𝑧𝑥  

from (11),  𝑐2 =  
1

2
 ,   substitute for the values of  𝑋 and 𝑇 in (12) to get,  

    𝑓 = (𝑐2 cos 𝑧𝑥 +  𝑐3 sin 𝑧𝑥 ) 𝑐1𝑒
−𝑧2𝑡

2                    (13) 

now, put the value of 𝑓 0, 𝑡 = 0, where 𝑥 =  0 in equation (13), to get 

0 = 𝑐2𝑐1𝑒
−𝑧2𝑡

2  

Let 𝑐2 = 0, arbitrary constant, we have 

       𝑇 =  𝑐1𝑒
−𝑐2𝑧2𝑡    

 so, 𝑐1  ≠ 0, 

     𝑓 =  (𝑐3 sin 𝑧𝑥 ) 𝑐1𝑒
−𝑧2𝑡

2                                  (14) 

we now put  𝑓 4, 𝑡 = 0, in equation (14), to get 

                                             0 = 𝑐3 sin 4𝑧 𝑐1𝑒
−𝑧2𝑡

2 = 𝑠𝑖𝑛4𝑧 = 0 = sin 𝑛𝜋 

then 

𝑧 =  
𝑛𝜋

4
 

Put the value of z in equation (14) so that 

𝑓 =  𝑐3 sin(
𝑛𝜋

4
)𝑥 𝑐1𝑒

(
𝑛𝜋
4

)²𝑡
 

𝑓 =  𝑐1𝑐3 𝑠𝑖𝑛(
𝑛𝜋

4
)𝑥 𝑒

 
𝑛2𝜋2

32
 𝑡

 

where 𝑐1𝑐3 =   𝑏𝑛 therefore,  

                                                          𝑓 =   𝑏𝑛 𝑠𝑖𝑛(
𝑛𝜋

4
) 𝑥 𝑒

− 
𝑛2𝜋2

32
 𝑡

        

solving for 𝑏𝑛 using Fourier series we have , 

𝑏𝑛 =  
2

𝑙
 𝑓 𝑥 
𝑙

0

sin(
𝑛𝜋𝑥

𝑙
) 𝑑𝑥 

 

=
2

4
 𝑥(4 − 𝑥)

4

0

sin(
𝑛𝜋𝑥

4
)𝑑𝑥 

 

                               𝑏𝑛 =
1

2
 4𝑥

4

0
sin(

𝑛𝜋𝑥

4
) 𝑑𝑥 −  

1

2
 𝑥24

0
𝑠𝑖𝑛(

𝑛𝜋𝑥

4
)𝑑𝑥                                               (15) 

 

 

Integration the first part of the R.H.S of (15) we have 

                                                                                                         4 

                                                      𝐼1 = 2   −𝑥
𝑐𝑜𝑠 

𝑛𝜋𝑥

4
 

 
𝑛𝜋

4
 

+ 
𝑠𝑖𝑛  

𝑛𝜋𝑥

4
 

 
𝑛𝜋

4
 

2   

                                                                                                         
0 

                                                        𝐼1 = −32
𝑐𝑜𝑠 𝑛𝜋

𝑛𝜋
                          (16)

            

Integration second part we have 

 

𝐼2 =  
1

2
  −𝑥2

𝑐𝑜𝑠  
𝑛𝜋𝑥

4
 

 
𝑛𝜋
4
 

 −
8

𝜋
 −𝑥 

𝑠𝑖𝑛  
𝑛𝜋𝑥

4
 

 
𝑛𝜋
4
 

 +
8

𝜋
 

cos  
𝑛𝜋𝑥

4
 

 
𝑛𝜋
4
 

2    
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=  
1

2
 −16 

𝑐𝑜𝑠 𝑛𝜋

 
𝑛𝜋
4
 

+
8

𝑛𝜋
 

cos 𝑛𝜋

 
𝑛𝜋
4
 

2  −
64

𝑛3𝜋3
 

 

                            𝐼2 =   −32 
𝑐𝑜𝑠 𝑛𝜋

𝑛𝜋
+

64

𝑛3𝜋3  (𝑐𝑜𝑠 𝑛𝜋 − 1)             (17) 

 

substituting for (17), (16) in (15) we get, 

 

𝑏𝑛 = −32
𝑐𝑜𝑠 𝑛𝜋

𝑛𝜋
+  32 

𝑐𝑜𝑠 𝑛𝜋

𝑛𝜋
−

64

𝑛3𝜋3
(𝑐𝑜𝑠 𝑛𝜋 − 1) 

 

𝑏𝑛 = −
64

𝑛3𝜋3
(𝑐𝑜𝑠 𝑛𝜋 − 1)   

so at  𝑛 = 1, 𝑏1 =  
128

𝜋3  and finally, we have  

 

    𝑓 =
128

𝜋3 𝑠𝑖𝑛(
𝑛𝜋

4
) 𝑥 𝑒

− 
𝑛2𝜋2

32
 𝑡

             (18) 

 

Using Modified Crank-Nicolson method; 

we have 

2(1 + r)fi, j − r(fi−1, j + fi+1, j ) = 2(1 − r)fi, j−1 + r(fi−1, j−1  + fi+1, j−1) 

 at i = 1, j = 1 

2(1 +
1

2
)𝑓1,1 - 

1

2
𝑓2,1 - 

1

2
𝑓0,1   = 2(1 -

1

2
)𝑓1,0 + 

1

2
𝑓2,0 + 

1

2
𝑓0,0 

 

                                         2
3

2
f1,1 − 0.5f0,1 − 0.5f2,1 =f1,0 + 0.5f2,0 

                                           3f1,1  − 0, 5f2,1 = 5                     (19) 

at i = 2, j = 1 

3f2,1 − 0.5f1,1 − 0.5f3,1 = f2,0 + 0.5f1,0 + 0.5f3,0 

                                 3f2,1  − 0.5f1,1  − 0.5f3,1 = 7                                                         (20) 

 

 

 

at i = 3, j = 1 

3f3,1  −  0.5f2,1 = 5                         (21) 

 

solving the equations above we have, f1,1 = 2.1765, f2,1 = 3.0588, f3,1 = 2.1765 next step is at i = 1, j = 

2 

3f1,2 − 0.5f0,2 − 0.5f2,2 = f1,1 + 0.5f0,1 + 0.5f2,1 

3f1,2  − 0.5f2,2 − = 3.7059                        (22) 

 

at i = 2, j = 2 

3f2,2  − 0.5f1,2  − 0.5f3,2 = 5.2353                         (23) 

 

at i = 3, j = 2 

                                                3f3,2  −  0.5f2,2 = 3.7059                          (24) 

 

Table 1: Results of Exact solution and Modified Crank-Nicolson scheme 
Exact solution 2.1356 3.0326 2.1356 

Modified Crank-Nicolson 2.1765 3.0588 2.1765 

i=1, j=2 Modified Crank-Nicolson Method 1.6159 2.2837 1.6159 

i=1, j=3 Modified Crank-Nicolson Method 1.2027 1.7008 1.2027 
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Example 2:  

Solve the partial differential equation using modified Crank-Nicolson method 

                                            

 
𝜕²𝑓  

𝜕𝑥 ²
=  

𝜕𝑓

𝜕𝑡
 , 0 ≤ 𝑥 ≤ 1

𝑤𝑖𝑡ℎ     𝑓 𝑥, 0 = sin𝜋𝑥

𝑎𝑚𝑑  𝑓 0, 𝑡 = 0 = 𝑓(1, 𝑡)

                                                       (25) 

 

If the exact solution of equation (25) is given by 𝑒𝜋²𝑡  sin𝜋𝑥, then from (7) we have at i=1, j=1 and using 𝑟 =
𝑘

ℎ²
,  

    2.2𝑓1,1 −  0.1𝑓2,1 = 0.61498 

at i=2, j=1 

2.2𝑓2,1 −  0.1𝑓3,1 −  0.1𝑓1,1 = 1.16984 

for 3≤ 𝑖 ≤ 10, we have 

2.2𝑓3,1 −  0.1𝑓4,1 −  0.1𝑓2,1 = 1.61009 

2.2𝑓4,1 −  0.1𝑓5,1 −  0.1𝑓3,1 = 1.89288 

2.2𝑓5,1 −  0.1𝑓6,1 −  0.1𝑓4,1 = 1.99022 

2.2𝑓6,1 −  0.1𝑓7,1 −  0.1𝑓5,1 = 1.89288 

2.2𝑓7,1 −  0.1𝑓8,1 −  0.1𝑓6,1 = 1.61009 

2.2𝑓8,1 −  0.1𝑓9,1 −  0.1𝑓7,1 = 1.16984 

2.2𝑓9,1 −  0.1𝑓10,1 −  0.1𝑓8,1 =0.61498 

solving the above tridiagonal matrix, we have that 𝑓1,1= 0.3060, 𝑓2,1= 0.5821, 𝑓3,1 = 0.8011, 𝑓4,1 = 0.9418, 𝑓5,1= 

0. 9903, 𝑓6,1 = 0.9418, 𝑓7,1= 0.8011,  𝑓8,1=0.5821,  𝑓9,1= 0.3060 

for next step we have, 

at i=1, j=2 

    2.2𝑓1,2 −  0.1𝑓2,2 = 0.60901 

at i=2, j=2 

2.2𝑓2,2 −  0.1𝑓3,2 −  0.1𝑓1,2 = 1.87438 

for 3≤ 𝑥 ≤ 10, we have 

2.2𝑓3,2 −  0.1𝑓4,2 −  0.1𝑓2,2 = 1.59437 

2.2𝑓4,2 −  0.1𝑓5,2 −  0.1𝑓3,2 = 1.87438 

2.2𝑓5,2 −  0.1𝑓6,2 −  0.1𝑓4,2 = 1.9709 

2.2𝑓6,2 −  0.1𝑓7,2 −  0.1𝑓5,2 = 1.87438 

2.2𝑓7,2 −  0.1𝑓8,2 −  0.1𝑓6,2 = 1.59437 

2.2𝑓8,2 −  0.1𝑓9,2 −  0.1𝑓7,2 = 1.15849 

2.2𝑓9,2 −  0.1𝑓10,2 −  0.1𝑓8,2 = 0.60901 

on solving, we have that 𝑓1,2 = 0.3030, 𝑓2,2= 0.5764,  𝑓3,2=0.7933,  𝑓4,2=0.9326, 𝑓5,2= 0.9802, 𝑓6,2=0. 9326,  

𝑓7,2=0.7933,  𝑓8,2=0.5764, 𝑓9,2 =0.3030 

The table below show the results for I = 1,2,…0 and 3 ≤ 𝑗 ≤ 8 

 

Table 2: Results of Modified Crank-Nicolson Solution 
i fi, j=1 fi, j=2 fi, j=3 fi, j=4 fi, j=5 fi, j=6 fi, j=7 fi, j=8 

1 0.3060 0.3030 0.3001 0.2972 0.2943 0.2914 0.2886 0.2858 

2 0.5821 0.5764 0.5708 0.5652 0.5597 0.5542 0.5488 0.5435 

3 0.8011 0.7933 0.7856 0.7779 0.7703 0.7628 0.7554 0.7480 

4 0.9418 0.9326 0.9235 0.9145 0.9056 0.8968 0.8880 0.8793 

5 0.9903 0.9806 0.9710 0.9615 0.9521 0.9428 0.9336 0.9245 

6 0.9418 0.9326 0.9235 0.9145 0.9056 0.8968 0.8880 0.8793 

7 0.8011 0.7933 0.7856 0.7779 0.7703 0.7628 0.7554 0.7480 

8 0.5821 0.5764 0.5708 0.5652 0.5597 0.5542 0.5488 0.5435 

9 0.3060 0.3030 0.3001 0.2972 0.2943 0.2914 0.2886 0.2858 

 

Table 3: Results of Modified Crank-Nicolson Solution and Exact solution at x=0.5, 
t Modified Crank-nicolson Method Exact Solution Error 

0.005 0.9521 0.9518 0.0003 

0.006 0.9428 0.9425 0.0003 

0.007 0.9336 0.9332 0.0004 

0.008 0.9245 0.9241 0.0004 
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IV. Discussion of Results 
From table 1 and 3, we will observe that the Modified Crank-Nicolson method is effective for 

solving parabolic partial differential equations; both tables demonstrate the Modified Crank-Nicolson 

method performs well, consistent and agree with the exact solution. Better like the classical Crank-

Nicolson method, it provides a fast convergence and better accuracy and also requires the solutions of 

tridiagonal system at every level. 

 

V. Conclusion 
On the basis of the above discussion we get the result obtained by analytical methods is 

always providing accurate solution and the Modified Crank-Nicolson method provides approximate 

results and fast convergence compared to the classical Crank-Nicolson method. Since it is not possible 

to solve every partial differential equation analytically so numerical methods providing a good 

agreement in those cases where solutions do not exist or where Partial differential equations cannot be 

solve analytically. The results of our method also agree with existing findings in literature that smaller 

time step produces more accurate results. This can always be achieved when the value of 𝑟 =
𝑘

ℎ²
 is 

kept reasonably small for a close approximation to the solution of the partial differential equation as 

seen in table 3. 
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