Relation between Indutive Limits and Barrelled Spaces

Rajnish kumar^{*} and Pramod Kumar

(Assitant Proff., Katihar Engg. College, Katihar)

Abstract: In this paper we define inductive limits of locally convex spaces and relation between inductive limits and Barrelled Spaces.

Key words: Topological vector spaces, locally convex spaces, inductive limits, Barrelled spaces.

Date of Submission: 20-12-2019	Date of Acceptance: 03-01-2020

Some useful difinition :

(i) **Topological vector spaces** – A set E on which a structure of vector space over k and a topoloty are difined is a topological vector space if

(a) The map $(x, y) \rightarrow x + y$ from $E \times E$ into is continuous.

(b) The map $(\lambda, X) \rightarrow \lambda X$ from $K \times E$ into E is continuous.

(ii) **Locally convex spaces** – A topological vector space E said to be a locally convex topological vector space or simply locally convex space or convex space, if there is a fundamental system of convex neighbourhoods of the origin of E.

A topological vector space is locally convex if each point has a fundamental system of convex neighbourhoods (iii) **Barrelled** space – A locally conves space E is said to be a barrelled, if every barrel in E is a neighbourhood of 0.

(iv) Inductive limits of locally convex spaces – Let $\{X_i\}_{i \in I}$ be a family of locally convex spaces and

for each $i \in I$ let f_i be a linear mapping of X_i into a vector spaces X such that $\bigcup_{i \in I} f_i(X_i)$ span X. Then there is

finest.

localy convex topology on X $\,$ under which all the mapping f_i are continous.

The locally convex space X, with this topoloty is called the inductive limit of locally convex spaces X_i by the mapping f_i

Proof – Suppose U is a balanced nhd of origin in any topoloty on $f_i^{x-1}(\bigcup)$ for which all the f_i's is care continous. Then each X is nhd of origin in X_i.

Let u the family of all balanced, convex subsets V of X such that for each $i \in I$, $f_i^{-1}(v)$ is a nhd of zero in X_i . Then $U \in u$ and $f_i^{-1}(U)$ is absorbent in X_i and so U absorbs all thepts $f_i(X_i)$. Now, since $\bigcup_{i=1}^{i} f_i(X_i)$ spans X. U is absorbent in X. It is clear that for every $\alpha = 0$. $\alpha U \in \mu$.

Also if U, $V \in u$ then

 $f_i^{-1}(U) \cap f_i^{-1}(V) = f_i^{-1}(u \cap V)$ is a nhd of zero in X_i and $U \cap V$ is balanced and convex. Hence $U \cap V \in u$. Thus there exits a locally convex topoloty on X for which u is a fundamental system of nhds.of origin. This is therefore the finest locally convex topolot making each f_i continous.

If for each $i \in I$, υ_i is a fundamental system of balanced, convex nhds of origin in X_i then the set u of balanced, convex envelopes of sets of the form $\bigcup_{i \in I} f_i(V_i)$ (with $V_i \in \upsilon_i$) form a fundamental system of nhds of origin for the inductive limit topology on X.

In fact, the sets \mathcal{V} are nhds of origin in X. Moreover, if U is any balanced, convex nhd of origin in X, $f_i^{-1}(U)$ is a nhd of origin in X_i and hence $f_i^{-1}(U)$ contains a nhd. $V_i \in \mathcal{V}_i$. Hence the balance convex envelope of $\bigcup_{i \in I} f_i(V_i)$ is a set of \mathcal{V} contained in U. Thus \mathcal{V} is a fundamental system of nhds of origin in X for the inductive limit topoloty of X.

RESULTS (1):

An inductive limit of barrelled spaces is barrelled.

Proof : of a barrelled space E. Therefore X is a barrelled space. Let X be the inductive limit of the barrelled spaces $X_i (i \in I)$ by the linear mappings f_i and let D be a barrel in X. Then D is absolutely convex, absorbent and closed in X. Since each f_i is continous for the inductive limit topoloty on X, $f_i^{-1}(D)$ is closed in X_i . In order to see that $f_i^{-1}(D)$ is absolutely convex in X_i let X_i , $y_i \in f_i^{-1}(D)$ and $|\alpha| + |\beta| \le 1$. Then $f_i(X_i), f_i(y_i) \in D$. Since D is absolutely convex. $\alpha f_i(x_i) + \beta f_i(y_i) \in D$.

Since f_i is linear. $\alpha f_i(x_i) + \beta f_i(y_i) = f_i(\alpha x_i + \beta y_i) \in \mathbf{D}$. Thus $\alpha x_i + \beta y_i \in f_i^{-1}\mathbf{D}$ Thus $f_i^{-1}(\mathbf{D})$ is absolutely convex.

Finally, to show that $f_i^{-1}(\mathbf{D})$ is absorbent let $x \in X_i$ be given. Then $f_i(x) \in \mathbf{X}$. Since D is absorbent in X there exists $\alpha > 0$ such that $f_i(x) \in \alpha \mathbf{D}$. Then $x \in \alpha$ $f_i^{-1}(\mathbf{D})$. Thus $f_i^{-1}(\mathbf{D})$ is absorbent in X_i.

We have thus shown that $f_i^{-1}(\mathbf{D})$ is absolutely convex, absorbent and closed in X_i for each $i \in \mathbf{I}$. Thus $f_i^{-1}(\mathbf{D})$ is a barrel in X_i for each $i \in \mathbf{I}$. Since X_i a barrelled space, each barrel in X_i is a nhd of origin in X_i . Thus $f_i^{-1}(\mathbf{D})$ is nhd. of origin in X_i . Hence D is a nhd of origin in X (by definition iv). Thus every barrel in X is a nhd of origin. Therefore X is a barrelled space.

RESUTLS (2):

A quotient space of a barrelled space is barrelled.

Proof. : Let X = E/M be the quotient space of barrelled space E with respect to a linear subspace M and let

 $\phi: E \to X$ be the canonical mapping of E onto X = E/M defined by $\phi(x) = x + M$ for all $x \in E$.

The quotient topoloty on X is the finest locally convex topology making ϕ continuos. Hence the quotient topoloty is an inductive limit topoloty. Thus X is an inductive limit

Acknowledgement

We are very greatful to Dr. Sntosh Kumar P.G.T. Chemistry Jawahar Navodaya Vidyalaya, Vaishali, Bihar for their valuable support in publishing in this research paper.

References

- A. Grothendick : Topological vector spaces. springer verlag, Berlin, 1964 [1].
- [2]. A. Mallics : Topological Algebras : Selected Topics (North Holland Mathematics) Studies. 124 (1986)
 - J.I. Nagata : Modern general topology. North-Holland Mathematics Library 33 (1985) Kothe. G : Topological vector spaces, Vol. I and II. Springer verlag, berlin, 1969
- [2]. [3]. [4]. Springer verlag, berlin, 1969 and 1989.
- Treves. F. :Topological vector spaces. Distributions and Kernels Academy press. 1987 [5].
- Ferrando, J.C.; Kakol,: On a problem of concerning barreled J, Pellicer, M spaces of vector valued continous functions. Vanishing at infinity Bull. B. Soc; Simon Stevin 11 (2004). [6].
- [7]. Parez Carreras, P. and: Barrelled locally convex Spaces.
- Bonet, J. Elsevier North Holland Publ. Co; Amsterdam, Newyork, Oxford, 1987. [8].
- Ferrando, J.C. and: Strong barrelledness properties on Lopez pellicer, M. $l_0^{\infty}(\mathbf{X}_1\mathbf{A})$ and bound, finite additive measures, [9]. Math. Ann. 287 (1990).

_____ Rajnish kumar. "Relation between Indutive Limits and Barrelled Spaces." IOSR Journal of Mathematics (IOSR-JM), 16(1), (2020): pp. 01-03.

DOI: 10.9790/5728-1601010103