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Abstract: This paper aims to study the  Spread of disease in prey-predator system with treatment given to 

infected prey and predator  population only .For these problem a system of five ordinary differential Equations  

has been proposed . Positivity, Boundedness of model equation has been analyzed. Existence of the solution has 

been checked using Derrick and Groosman theorem. Stability of all possible Equilibrium points of the model has 

been done. Local and global stability of disease free and endemic equilibrium points are performed. Numerical 

simulations are presented to clarify analytical results. 
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I. Introduction 
 However, in ecosystem, the interaction between the predator and prey is a nonlinear and complex 

process [1]. Mathematical study of such predator-prey populations has attracted attentions of ecologists and 

mathematicians from several years back [7]. As a result many mathematical model Equations have been 

developed, and these models have become a vital tools in analyzing the interaction of different prey-predator 

populations [3,7].There are Many  a predator-prey interaction of species can be  observed in ecological system 

throughout the world, such as a fox-rabbit relation, Cat -rate relation, Engel-hen relation  are some of them[8]. 

In a normal life, predator - prey species in a given ecosystem exhibit regular cycles of abundance or population 

increase and decrease [7].  

 Ecological prey-predator systems suffer from various infectious diseases [1, 7]. These diseases 

sometimes play a significant role in regulating size of prey-predator population [1, 7]. Within a predator-prey 

population, it is often to see that a parasite spreads between prey to prey, prey to predator, and predator to 

predator and all the populations becomes disease affected.  See for example rabbit fever and deer fly fever [13, 

17]. The prey populations could be affected due to the presence of both parasites and predators [8]. 

  Modified prey-predator models with disease have been introduced, example, the disease in prey [18], 

predators consume only infected preys [5], predators avoid infected prey [12], the disease in predators only [14], 

predators consume both Susceptible and infected preys but with Cosner type functional response [18].  

 In this present paper, we are going to study an eco-epidemiological mathematical model with treatment 

and disease infection in both Prey and Predator population with the assumption that diseases can be transmitted 

between susceptible predator and infected predator population by contact. This is an extension of the study of 

eco-epidemiological model which was studied by [1]. 

 

II. Model Formulation 
 The Prey-predator system contains two classes of populations. Let us denote the prey population density by 

 𝐹(𝑡)  since it is source of food for predator population. Let  𝑋(𝑡) denotes susceptible prey, 𝑊(𝑡) denotes 

infected prey then the total population of the prey is given by 

                                             𝐹 𝑡 = 𝑋 𝑡 + 𝑊(𝑡)                                                                                                       

(1) 

 Let 𝑃 𝑡  denotes population density of the predator, and  Y(t) denotes susceptible predator, 𝑧(𝑡) denotes 

infected predator. Then the total population of the predator is given by  

                                            𝑃 𝑡 = 𝑌 𝑡 + 𝑍 𝑡                                                                                                           

(2) 

Furthermore let the infected prey and infected predator population under treatment be denoted by 𝑇(𝑡). Then the 

total population under treatment is given by 

                                            𝑇 𝑡 = 𝑊 𝑡 + 𝑍(𝑡).                                                                                                       

(3) 

Also, the total number of prey and predator populations is given by 
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                                      𝑁 𝑡 = 𝐹 𝑡 + 𝑃 𝑡 = 𝑋 𝑡 + 𝑊 𝑡 + 𝑌 𝑡 + 𝑍(𝑡)                                                            

(4) 

In formulating the present model, the following assumptions have been made use of  

(i) When there is disease, the prey and predator population consists of two subclasses each:  𝑋(𝑡) susceptible 

prey, 𝑊(𝑡) infected prey,Y(t) susceptible predator, 𝑧(𝑡) infected predator [1]. 

(ii) When there is no diseases, prey population grows logistically with intrinsic growth rate  𝑟 > 0  and   

environmental carrying capacity 𝑘 > 0. 

(iii) Only susceptible prey  𝑋(𝑡)  can reproduce, and infected prey removed with death rate μ
2
   before 

predation, or before going to treatment and reproducing. However infected population  𝑊(𝑡) Contributes 

with 𝑋(𝑡) to population growth towards carrying capacity   k. 

(iv) Diseases spread among the prey populations and can be transmitted to predator during predation. Moreover 

the disease is not genetically inherited and infected populations can only recover through treatment [1]. 

(v) Susceptible prey becomes infected, when it comes in contact with the infected prey and this contact process 

is assumed to follow simple mass action kinetics with convolution rate β [1]. 

(vi) Susceptible predators become infected predator, when it comes in contact with the infected predator and 

this contact process is assumed to follow simple mass action kinetics with convolution rate α. 

(vii) The predator population  𝑌 𝑡  and   𝑍 𝑡  suffer due to the death rate  μ
3
  and  μ

4
 respectively. 

(viii) The predation functional response of the predator towards susceptible prey as well as infected prey are 

assumed to follow Michaelis – Menten kinetics and modeled using a Holling type II functional form with 

 p1 , p2, p3 be predation coefficients  and  m  be half-saturated constant . Consumed prey is converted into 

predator with efficiency   𝑞   [1, 8]. 

(ix) Infected prey and infected predators have (i) treatment rates of  a1  and a2 respectively (ii) removed without 

immunity(recovery rates) at rate of b1  and b2 respectively and (iii) death at rate of  both population under 

treatment  μ
1
   

 

Table 1 Notation and Description of model Variables 
Variables Descriptions 

𝐗 𝐭  Population size of susceptible prey 

𝐖 𝐭  Population size of infected  prey 

𝐘 𝐭  Population size of susceptible predator 

𝐙 𝐭  Population size of infected  predator 

𝑻(𝒕) Population size of  both infected prey and infected 

predator under treatment 

 

Table 2 Notations and Description of model parameters 

Parameter Description of parameter 

𝒓  Intrinsic growth rate of  susceptible prey 

𝒌 Carrying capacity of  susceptible prey 

𝜶  Convolution rate of susceptible  predator to be infected predator 

𝜷   Convolution rate of susceptible prey  to be infected prey 

𝐚𝟏  Treatment rate of infected prey 

𝐚𝟐 Treatment rate of infected predator 

𝒃𝟏  Recovery rate of infected prey 

𝒃𝟐 Recovery rate of infected predator 

𝒑𝟏 Predation coefficient of susceptible  prey due to susceptible  predator 

𝒑𝟐  Predation coefficients of infected prey due to predators(susceptible predator  & 
infected predator) 

𝒑𝟑 Predation coefficient of susceptible prey due to infected predator. 

𝒒 Efficiency of  predation 

𝒎  Half-saturation constant 

𝝁𝟏 Death rate of  both infected prey and  infected predator under treatment 

𝝁𝟐  Death rate of infected prey 

𝝁𝟑  Death rate of susceptible  predator 

𝝁𝟒 Death rate of  infected  predator 

 

According to the above assumptions, the description of variables and parameters the present model will have the 

flow diagram given in Figure 1. 
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Figure 1 Model Flow Chart 

 

From the flow chart the model will be governed by the following equations 

    dX dt = rX 1 −   X + W k   + b1T − βXW −   p1XY  m + X      −   p3XZ  m + X                                      
(5) 

    dW dt = βXW − a1W − μ
2

W −  p2WY  m + W   −  p2WZ  m + W                                                              

(6) 

    dY dt =   qp1XY  m + X   +  qp2WY  m + W   + b2T − αYZ − μ
3

Y                                                              

(7)     

    dZ dt =   qp2WZ  m + W   +  qp3XZ  m + W   + αYZ − a2Z − μ
4

Z                                                             

(8) 

    dT dt = a1W + a2Z − μ
1

T − b1T − b2T                                                                                                               

(9)                           

The initial conditions here areX 0 = Xo ≥ 0,   W 0 = W0 ≥ 0,   Y 0 = Y0 ≥ 0,   Z 0 = Z0 ≥ 0,   T 0 =
To ≥ 0, p1,  p2, p3 > 0  and 0 < q ≤ 1. 

 

III. Model Analysis 
Model (5) – (9) will be analyzed qualitatively to get insight into its dynamical features which will give 

better understanding on the effect of treatment of an infected prey and infected predator populations. In this 

section, we are going to analysis the following features of the model:  Positivity, Boundedness and Existence of 

solutions, Trivial Equilibrium point, Axial Equilibrium point, Disease free equilibrium points/boundary 

equilibrium points, Endemic equilibrium points, Global stability of disease free equilibrium point and Local 

stability of endemic equilibrium point. All these concepts are presented and discussed in the following sub-

sections. 

 

3.1 Positivity of solutions 

For model (5) - (9) to be epidemiologically meaningful and well posed, it is necessary to prove that all solutions 

of system with positive initial data will remain positive for all times  𝑡 >  0  . This will be established by the 

following theorem [1]: 

Theorem 1 Positivity Let X 0 >  0,    W (0)  >  0 ,    Y(0)  >  0,   Z(0)  >  0,    T(0)  >  0. Then the solutions 

X  t  ,   W t  ,   Y  t  , Z (t ) ,   T (t ) of system equations (5) – (9) are positive  ∀𝑡 ≥ 0 . 

Proof: Positivity of the model variables is shown separately for each of the model variables  𝑋 𝑡 ,   𝑊 𝑡 , 𝑌 𝑡 ,
𝑍 𝑡    and  𝑇 𝑡 . 
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Positivity of  𝑋 𝑡 : The model equation (5) given bydX dt = rX 1 −   X + W k   + b1T − βXW −
  p1XY  m + X      −   p3XZ  m + X        can be expressed without loss of generality, after eliminating the 

positive terms   (𝑟𝑋 + 𝑏1𝑇) which are appearing on the right hand side, as an inequality as  dX dt ≥
−  rX2 + rW k + βWX +   p1Y + p3Z X  m + X    . This inequality can also be written     𝑑𝑋 βWX  ≥
 dX   rX2 + rW k + βWX +   p1Y + p3Z X  m + X     ≥ −d𝑡. Then we have 𝑑𝑋 βWX ≥ −d𝑡  using 

separation of variable method and on applying integration, the solution of the foregoing differentially inequality 

can be obtained as   𝑋 𝑡 ≥  1 βW   exp(−βWt). Recall that an exponential function is always non–negative 

irrespective of the sign of the exponent, Hence, it can be concluded that  𝑋 𝑡 ≥ 0.                               

Positivity of  𝑊 𝑡 : The equation (6) given by  dW dt = βXW − a1W − μ
2

W −  p2WY  m + W   −

 p2WZ  m + W    can be expressed without loss of generality, after eliminating the positive term βXW which 

are appearing on the right hand side, as an inequality as 

  dW dt ≥ −  𝑎1 + 𝑢2 𝑊 +  𝑝2  𝑊(𝑌 + 𝑍)  𝑚 + 𝑊    . This inequality can be written as   𝑑𝑊 𝑎1𝑊  ≥
𝑑𝑊   𝑎1 + 𝑢2 𝑊 +  𝑝2  𝑊(𝑌 + 𝑍)  𝑚 + 𝑊    ≥ −dt   hence  𝑑𝑊 𝑎1𝑊 ≥ −dt  using variables separable 

method and on applying integration, the solution of the foregoing differential inequality can be obtained 

as    𝑊(𝑡) ≥ exp(−𝑎1t)  . Recall that an exponential function is always non–negative irrespective of the sign of 

the exponent, i.e., the exponential function  exp(−𝑎1t)   is a non-negative quantity. Hence, it can be concluded 

that  𝑊 𝑡 ≥ 0.  

Positivity of  𝑌 𝑡 : The model equation (7) given by dY dt =   qp1XY  m + X   +  qp2WY  m + W   +
b2T − αYZ − μ

3
Y  can be expressed without loss of generality, after eliminating the positive term 

qp1XY  m + X  + qp2WY  m + W  + b2T which are appearing on the right hand side, as an inequality as  

dY dt ≥ −αYZ − μ
3

Y  This inequality can be written as  dY dt ≥ − αZ + μ
3
 Y  hence  dY Y ≥ − αZ + μ

3
 dt 

. Using variables separable method and on applying integration, the solution of the foregoing differentially 

inequality can be obtained as𝑌(𝑡) ≥ exp[− αZ + μ
3
 t]. Recall that an exponential function is always non–

negative irrespective of the sign of the exponent, i.e., the exponential function  exp[− αz + μ
3
 t] is a non-

negative quantity. Hence, it can be concluded that  𝑌 𝑡 ≥ 0.  

Positivity of  𝑍 𝑡 : The model equation (8) given by dZ dt =   qp2WZ  m + W   +  qp3XZ  m + W   +
αYZ − a2Z − μ

4
Z  can be expressed without loss of generality, eliminating the positive term  

q p2WZ  m + W  + q p3XZ  m + W  + αYZ which are appearing on the right hand side, as an inequality 

as    dZ dt ≥ −(a2 + μ
4

)Z.  Using variables separable method and on applying integration, the solution of the 

foregoing differentially inequality can be obtained as  𝑍(𝑡) ≥ exp[−(a2 + μ
4

)t]  Recall that an exponential 

function is always non–negative irrespective of the sign of the exponent, i.e., the exponential function 

 exp[−(a2 + μ
4

)t] is a non-negative quantity. Hence, it can be concluded that  𝑍 𝑡 ≥ 0.  

Positivity of  𝑇 𝑡 : The model equation (9) given by  dT dt = a1W + a2Z − μ
1

T − b1T − b2T  can be 

expressed without loss of generality, after eliminating the positive term  a1W + a2Z  which are appearing the 

right hand side, as an inequality as    dT dt ≥ − μ
1

+ b1 + b2 T .  Using variables separable method and on 

applying integration, the solution of the foregoing differentially inequality can be obtained as   𝑇(𝑡) ≥
exp − 𝜇 1 + 𝑏1 + 𝑏2 𝑡  . Recall that an exponential function is always non–negative irrespective of the sign of 

the exponent, i.e., the exponential function  exp − 𝜇 1 + 𝑏1 + 𝑏2 𝑡  is a non-negative quantity. Hence, it can be 

concluded that   𝑇 𝑡 ≥ 0.    
Thus, the model variables 𝑋 𝑡 , 𝑊 𝑡 , 𝑌 𝑡 , 𝑍(𝑡) and 𝑇(𝑡)  representing population sizes of various types of 

prey and predator are positive quantities and will remain in  ℝ+
5   for all  𝑡. 

3.2 Boundedness of the Model 

In the theoretical eco-epidemiology, the boundedness of the system implies that the system is biologically valid 

and well behaved. Then, we first show the biological validity of the model by providing the Boundedness of the 

solution of the model (5) – (9) by the following theorem [1]: 

Theorem 2 Boundedness All solutions of the model (5) – (9) are uniformly bounded. 

Proof: To show that each population size is bounded if and only if the total population size is bounded. Hence, 

it is sufficient to prove that the total population size 𝑁 = 𝑋 𝑡 + 𝑊 𝑡 +  𝑌 𝑡 +  𝑍 𝑡 + 𝑇(𝑡) is bounded for 

all  𝑡. Now, summation of all the five model equations (5) – (9)   dN(t) dt =  dX dt  +  dW dt  +  dY dt  +
 dZ dt    gives   dN t dt + ηN t  ≤ rX +  qp1XY  m + X   +  qp2WY  m + W   +  qp2WZ  m + W   +
 qp3XZ  m + X   + ηN(t) = μ. It can be shown that all feasible solutions are uniformly bounded in a proper 

subset  Ω ∈ ℝ+
5   where the feasible region Ω is given by   Ω =    𝑋, 𝑊, 𝑌, 𝑍,   𝑇  ∈ ℝ+

5 ;   N ≤  μ η   . 
Without loss of generality, after eliminating the negative terms which are appearing on the right hand side, the 

foregoing equation can be expressed as an inequality as    dN(t) dt ≤  μ − ηN t  . Equivalently this inequality 

can be expressed as a linear ordinary differential inequality as general solution upon solving as   0 ≤
N X, W, Y, T ≤  μ η   1 − exp(−nt) + N(0)exp(−nt).  But, the term  𝑁(0) denotes the initial values of the 
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respective variable i.e., N t = N 0   at   t = 0. Thus, the particular solution can be expressed as  N t ≤
 μ η   1 − exp(−nt) + N(0)exp(−nt). Further, it can be observed that 𝑁(𝑡) →   μ η    as   𝑡 → ∞. That is, 

the total population size  𝑁 𝑡   takes off from the value N 0  at the initial time t = 0 and ends up with the 

bounded value    μ η   as the time  𝑡 grows to infinity. Thus it can be concluded that  𝑁 𝑡  is bounded as  0 ≤
𝑁(𝑡) ≤  μ η  . Therefore,    μ η    is an upper bound of 𝑁(𝑡). Hence, feasible solution of the system of model 

equations (5) – (9) remains in the positively invariant region  Ω. Thus, the system is biologically meaningful and 

mathematically well posed in the domain  Ω . Further, it is sufficient to consider the dynamics of the populations 

represented by the model system (5) – (9) in that domain. This proves the theorem. Therefore, it can be 

summarized the result of Theorem2 as “the model variables  𝑋 𝑡 ,   𝑊 𝑡 , 𝑌 𝑡 ,   𝑍(𝑡)  and   𝑇(𝑡) are bounded 

for all  𝑡. 

 

Theorem 3 Existence Solutions of the model equations (5) – (9) together with the initial conditions  𝑋 0 >
0,   𝑊 0 ≥ 0, 𝑌 0 ≥ 0, 𝑍 0 ≥ 0, 𝑇(0) ≥ 0 exist in   ℝ+

5   i.e., the model variables 𝑋 𝑡 ,   𝑊 𝑡 , 𝑌 𝑡 ,   𝑍(𝑡)  
and   𝑇(𝑡)  exist for all 𝑡  and will remain in  ℝ+

5 . 

Proof: Let the system of equation (5) – (9) be as follows: 

𝑓1 = rX 1 −   X + W k   + b1T − βXW −   p1XY  m + X      −   p3XZ  m + X    
𝑓2 = βXW − a1W − μ

2
W −  p2WY  m + W   −  p2WZ  m + W    

𝑓3 =  qp1XY  m + X   +  qp2WY  m + W   + b2T − αYZ − μ
3

Y 

 𝑓4 =  qp2WZ  m + W   +  qp3XZ  m + W   + αYZ − a2Z − μ
4

Z  

𝑓5 = a1W + a2Z − μ
1

T − b1T − b2T 

According to Derrick and Groosman theorem, let Ω  denote the region   Ω =    𝑋, 𝑊, 𝑌, 𝑍,   𝑇  ∈
ℝ+5;  N≤μη. Then equations (5) – (9) have a unique solution if   𝜕𝑓𝑖𝜕𝑥𝑗,  ∀  𝑖,  𝑗=1, 2, 3, 4, 5  are continuous 

and bounded in  Ω.. Here     𝑥1 = 𝑋,   𝑥2 = 𝑊, 𝑥3 = 𝑌,   𝑥4 = 𝑍,   𝑥5 = 𝑇.  The continuity and the boundedness 

can be verified as follows: 

For  𝑓1: 

   𝜕𝑓1  𝜕𝑋   =   r 1 −  X + W k  − rX k − βW − m p1Y + p3Z  m + X 2  < ∞ 

   𝜕𝑓1  𝜕𝑊   =   − r + kβ X k  < ∞ 
  𝜕𝑓1  𝜕𝑌   = | − p1X  m + X |  < ∞ 
  𝜕𝑓1  𝜕𝑍   =  −p3X  m + X   < ∞. 

  𝜕𝑓1  𝜕𝑇   = |b1| < ∞ 

For  𝑓2: 

  𝜕𝑓2  𝜕𝑋   =  βW < ∞ 

   𝜕𝑓2  𝜕𝑊   =  βX −  a1 + μ
2
 − mp2Y  m + W 2  < ∞ 

  𝜕𝑓2  𝜕𝑌   = | −p2W  m + W    | < ∞ 

  𝜕𝑓2  𝜕𝑍   =  0 < ∞ 
  𝜕𝑓2  𝜕𝑇   = 0 < ∞ 

 

For  𝑓3: 

  𝜕𝑓3  𝜕𝑋   = | mqp1Y  m + X 2 | < ∞ 

   𝜕𝑓3  𝜕𝑊   = 0 < ∞ 

   𝜕𝑓3  𝜕𝑌   =  qp1X  m + X  − μ
3
− αZ   < ∞ 

  𝜕𝑓3  𝜕𝑍   =  0 < ∞ 

  𝜕𝑓3  𝜕𝑇   = b2 

 

For  𝑓4:  

  𝜕𝑓4  𝜕𝑋   = | mqp3Z  m + X 2 | < ∞ 

  𝜕𝑓4  𝜕𝑊   = | mqp2Z  m + W 2 | < ∞ 
  𝜕𝑓4  𝜕𝑌   = 0 < ∞ 

   𝜕𝑓4  𝜕𝑍   =  qp2W  m + W  + qp3X  m + X  − (a2 + μ
4

)  < ∞ 

  𝜕𝑓4  𝜕𝑇   = 0 < ∞ 

For  𝑓5: 

  𝜕𝑓5  𝜕𝑋   = 0 < ∞ 

  𝜕𝑓5  𝜕𝑊   = a1 
  𝜕𝑓5  𝜕𝑌   = 0 < ∞ 

  𝜕𝑓5  𝜕𝑍   = |a2| < ∞ 

  𝜕𝑓5  𝜕𝑇   = | − (μ
1

+ b1 + b2)| < ∞ 
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Thus, all the partial derivatives   𝜕𝑓𝑖  𝜕𝑥𝑗  ,  ∀ 𝑖, 𝑗 = 1, 2, 3, 4 , 5   exist, continuous and bounded in  Ω.. 

Hence, by Derrick and Groosman theorem, a solution for the model (5) – (9) exists and is unique. 

3.3 Equilibrium Points 

Disease free equilibrium point of model (5) – (9) is obtained by solving dX dt = dW dt = dY dt = dZ dt =
dT dt = 0.  Model (5) – (9) possesses the following equilibrium points:  (i) Trivial equilibrium point 

𝐸𝑇 0, 0, 0, 0, 0    (ii) Axial equilibrium point 𝐸𝐴 𝑘, 0, 0, 0, 0    (iii) Boundary equilibrium 

points:   𝐸𝐵1 𝑋 , 0, 𝑌, 0, 0    -disease free equilibrium point and    𝐸𝐵2 𝑋
∗, 𝑊∗, 0, 0, 𝑇∗   predator 

free equilibrium point, and prey free equilibrium point  𝐸𝐵3 0, 0, 𝑌∗, 𝑍∗, 𝑇∗  ,  (iv) co-existence 

equilibrium point/endemic equilibrium point or positive equilibrium point  𝐸∗ =  𝑋∗, 𝑊∗, 𝑌∗, 𝑍∗, 𝑇∗    
equilibrium points are presented in [1]. 

1.3.1 Stability Analysis of Equilibrium Points 

 The local stability can be established by linearization of the model equations using Jacobian matrix. 

Let F(X, W, Y, Z, T) = rX 1 −   X + W k   + b1T − βXW −   p1XY  m + X      −   p3XZ  m + X    
G(X, W, Y, Z, T) = βXW − a1W − μ

2
W −  p2WY  m + W   −  p2WZ  m + W    

H(X, W, Y, Z, T) =  qp1XY  m + X   +  qp2WY  m + W   + b2T − αYZ − μ
3

Y                                                

I(X, W, Y, Z, T) =  qp2WZ  m + W   +  qp3XZ  m + W   + αYZ − a2Z − μ
4

Z 

J(X, W, Y, Z, T) = a1W + a2Z − μ
1

T − 𝑏1T − 𝑏2T 

The Jacobian matrix of the foregoing functions is given by 

 B X , W, Y, Z =

 

 
 

FX FW FY FZ FT

GX GW GY GZ GT

HX HW HY HZ HT

IX IW IY IZ IT

JX JW JY JZ JT

   

 

 
 

    

Here the components of the matrix  B X , W, Y, Z  are partial derivatives and they represent the following 

parametric expressions: 

FX = r 1 −  X + W k  −  rX k  − βW −  m p1Y + p3Z  m + X 2   
 

FW = −  r + kβ X k  

FY = −p1X  m + X     

FZ = −p3X  m + X      

FT = b1 

GX = βW   

GW = βX −  a1 + μ
2
 −  mp2Y  m + W 2     

GY = −p2W  m + W     

GZ = GT = 0 

HX =  mqp1Y  m + X 2    
HY = qp1X  m + X  − μ

3
− αZ   

HZ = HW = 0       
HT = b2 

IX = mqp3Z  m + X 2    

IW = mqp2Z  m + W 2    

Iz =  qp2W  m + W   +  qp3X  m + X   − (a2 + μ
4

)  

IT =   IY = 0   

JX = JY = 0 

JW = a1      

JZ = a2      

JT = −(μ
1

+ b1 + b2) 
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Theorem 4 [Trivial Equilibrium Point] The trivial equilibrium point   ET =  0 0 0 0 0  is unstable. 

Proof:  Consider the Next generation matrix at   ET  and it takes the form as 

  B (ET) =

 

  
 

r 0 0 0 b1

0 −(a1 + μ
2

) 0 0 0

0 0 −μ
3

0 b2

0 0 0 −(a2 + μ
4

) 0

0 a1 0 a2 −(μ
1

+ b1 + b2) 

  
 

 

Now, the eigenvalues of  B  ET  are found by solving the corresponding characteristic equation  det B ET −
λI5=0 as follows: 

 

 

r − λ 0 0 0 b1

0 − a1 + μ
2
 − λ 0 0 0

0 0 −μ
3
− λ 0 b2

0 0 0 − a2 + μ
4
 − λ 0

0 a1 0 a2 − μ
1

+ b1 + b2 − λ

 

 
= 0 

The characteristic equation for the given model at trivial equilibrium point thus takes the form as  r −
λ−a1+μ2−λ−μ3−λ−a2+μ4−λ−μ1+b1+b2−λ=0. The eigenvalues are then obtained to be 

λ1 = r,    λ2 = − a1 + μ
2
 ,      λ3 = −μ

3
,     λ4 =   − a2 + μ

4
 ,    λ5 =  − μ

1
+ b1 + b2  

Here four eigenvalues are negative and one eigenvalue is positive so the trivial equilibrium point is not stable.  

 

Theorem 5 [Axial Equilibrium Point] Axial equilibrium point  EA =  k, 0, 0,   0, 0   is stable if the 

following three conditions hold (i)  βk −  a1 + μ
2
 < 0    (ii) qp1k − μ

3
 m + k < 0   and (iii)  qp3k − (a2 +

μ
4

)(m + k) < 0. 

Proof: Consider the Jacobian matrix at axial equilibrium point    𝐵 EA  

 𝐵 EA =

 
 
 
 
 
 
−r −(r + kβ) −p1k  m + k  −p3k  m + k  b1

0 βk − (a1 + μ
2

) 0 0 0

0 0  qp1k  m + k   − μ
3

0 b2

0 0 0  qp3k  m + k   − (a2 + μ
4

) 0

0 a1 0 a2 −(μ
1

+ b1 + b2) 
 
 
 
 
 

 

 

To find eigenvalues of  B EA    take     det B EA − λI5 = 0  and solve as follows: 

 

 

−r − λ − r + kβ − λ −p1k  m + k  −p3k  m + k  b1

0 βk −  a1 + μ
2
 − λ 0 0 0

0 0  qp1k  m + k   − μ
3
− λ 0 b2

0 0 0  qp3k  m + k   −  a2 + μ
4
 − λ 0

0 a1 0 a2 − μ
1

+ b1 + b2 − λ

 

 
=

0  

 

Thus,  −r − λ  βk −  a1 + μ
2
 − λ   qp1k  m + k   − μ

3
− λ   qp3k  m + k   −  a2 + μ

4
 −

λ−μ1+b1+b2−λ=0 is characteristic equation of the model at axial equilibrium point and the eigenvalues are 

obtained as                                    

λ1 = −r 

 λ2 = − μ
1

+ b1 + b2    

λ3 =   βk −  a1 + μ
2
  

 λ4 =  qp1k − μ
3
 m + k   m + k    

 λ5 =  qp3k − (a2 + μ
4

)(m + k)  m + k    

Therefore the axial equilibrium point   E𝐴   will have stable manifold in the direction of  𝐼  if (i)   βk −

 a1 + μ
2
 < 0    (ii)  qp1k − μ

3
(m + k) < 0  and (iii)      qp3k − (a2 + μ

4
)(m + k) < 0, otherwise it is 

unstable. 
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Theorem 6 [Disease- Free Equilibrium Point] Disease – free equilibrium point  𝐸𝐵1 =  𝑋 , 0, 𝑌 ,    0, 0  is 

stable   if  𝐼𝑍 𝐸𝐵1 < 0 ,   𝐺𝑊 𝐸𝐵1 < 0 , 𝐹𝑋 𝐸𝐵1 + 𝐻𝑌 𝐸𝐵1 > 0   
and   𝐹𝑋 𝐸𝐵1 ∗ 𝐻𝑌 𝐸𝐵1 +  𝑚𝑝1

2𝑘2  𝑚 + 𝑘 3  > 0. 

Proof:  Consider the next generation matrix at disease free equilibrium point   𝑋 , 0, 𝑌, 0, 0   

𝐵 𝐸𝐵1 =

 
 
 
 
 
 

𝐹𝑋 𝐸𝐵1 −r − βk −p1k  m + k  −p3k  m + k  b1

0 𝐺𝑊 𝐸𝐵1 0 0 0

mqp1k (m + k)2 0 𝐻𝑌 𝐸𝐵1 −αk b2

0 0 0 𝐼𝑍 𝐸𝐵1 0

0 a1 0 a2 𝐽𝑇 𝐸𝐵1  
 
 
 
 
 

      

 

Here in the matrix   𝐵 𝐸𝐵1  some elements are denoted by notations and their parametric expressions are given 

as follows: 

 

 𝐹𝑋 𝐸𝐵1 = −r −  p1k (m + k)2    
 𝐺𝑊 𝐸𝐵1 = βk −  a1 + μ2 −  p2k m     
 𝐻𝑌 𝐸𝐵1 =  qp1k  m + k   − μ3                                                                                             
𝐼𝑍 𝐸𝐵1 =  qp3k  m + k   −  a2 + μ4 + αk   
 𝐽𝑇 𝐸𝐵1 = −(μ1 + b1 + b2) 
 
To find eigenvalues of such matrix, compute    𝑑𝑒𝑡 B EB1 − λI5 = 0   using fourth row 

 

 

𝐹𝑋 𝐸𝐵1 − λ −r − βk −p1k  m + k  −p3k  m + k  b1

0 𝐺𝑊 𝐸𝐵1 − λ 0 0 0

mqp1k (m + k)2 0 𝐻𝑌 𝐸𝐵1 − λ −αk b2

0 0 0 𝐼𝑍 𝐸𝐵1 − λ 0

0 a1 0 a2 𝐽𝑇 𝐸𝐵1 − λ

 

 
= 0 

 

 𝐼𝑍 𝐸𝐵1 − 𝜆   

𝐹𝑋 𝐸𝐵1 − λ −r − βk −p1k  m + k  b1

0 𝐺𝑊 𝐸𝐵1 − λ 0 0

mqp1k  m + k 2 0 𝐻𝑌 𝐸𝐵1 − λ b2

0 a1 0 𝐽𝑇 𝐸𝐵1 − λ

  = 0 

Now again use   second row to compute determinant  

 𝐼𝑍 𝐸𝐵1 − 𝜆  𝐺𝑊 𝐸𝐵1 − 𝜆  

𝐹𝑋 𝐸𝐵1 − λ −p1k  m + k  b1

mqp1k  m + k 2 𝐻𝑌 𝐸𝐵1 − λ b2

0 0 𝐽𝑇 𝐸𝐵1 − λ

 = 0 

Then use third row to find determinant 

 𝐼𝑍 𝐸𝐵1 − 𝜆  𝐺𝑊 𝐸𝐵1 − 𝜆  𝐽𝑇 𝐸𝐵1 − 𝜆  
𝐹𝑋 𝐸𝐵1 − λ −p1k  m + k  

mqp1k  m + k 2 𝐻𝑌 𝐸𝐵1 − λ
 = 0 

Finally, the characteristic equation is given by 

 𝐼𝑍 𝐸𝐵1 − 𝜆  𝐺𝑊 𝐸𝐵1 − 𝜆  𝐽𝑇 𝐸𝐵1 − 𝜆 ∗   𝐹𝑋 𝐸𝐵1 − 𝜆  𝐻𝑌 𝐸𝐵1 − 𝜆 +  𝑚𝑝1
2𝑘2  𝑚 + 𝑘 3    = 0 

Then the first three Eigenvalues are obtained as  
𝜆1 = 𝐼𝑍 𝐸𝐵1 ,     𝜆2 = 𝐺𝑊 𝐸𝐵1 ,    𝜆3 = 𝐽𝑇 𝐸𝐵1  

Remaining two roots are the solutions of the quadratic equation   𝐹𝑋 𝐸𝐵1 − 𝜆  𝐻𝑌 𝐸𝐵1 − 𝜆 +
 𝑚𝑝1

2𝑘2  𝑚 + 𝑘 3  = 0. Using Routh Hurwitz criterion stability the disease free equilibrium point 
at  𝐸𝐵1 =  𝑋 , 0, 𝑌 ,    0, 0    will be asymptotically stable if   𝐹𝑋 𝐸𝐵1 + 𝐻𝑌 𝐸𝐵1 > 0  , 𝐹𝑋 𝐸𝐵1 ∗
𝐻𝑌 𝐸𝐵1 +  𝑚𝑝1

2𝑘2  𝑚 + 𝑘 3  > 0  ,  provided that      𝜆1   ,   𝜆2   < 0  and  it is  know that  𝜆3 < 0.  
 

Theorem 7 Endemic Equilibrium Point The coexistence equilibrium point 𝐸 =  𝑋∗, 𝑊∗, 𝑌∗,   𝑍∗, 𝑇∗   is 

stable if 𝜆5 + 𝐴𝜆4 + 𝐵𝜆3 + 𝐶𝜆2 + 𝐷𝜆 + 𝐸 = 0  has to be stable and correspondingly the following conditions 

are satisfied otherwise not stable: (i)    𝐴 > 0    (ii)  𝐴𝐵 − 𝐶 > 0 (iii)  𝐴𝐵𝐶 + 𝐴𝐸 − 𝐴2𝐷 − 𝐶2 > 0    (iv) 

𝐻4 =  𝐶𝐷 − 𝐵𝐸  𝐴𝐵 − 𝐶 −  𝐴𝐷 − 𝐸 2 > 0 (v) 𝐷𝐻4 > 0
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Proof:  Consider Jacobian matrix at coexistence equilibrium point   𝑋∗, 𝑊∗, 𝑌∗,   𝑍∗, 𝑇∗  

 Let    𝐵 𝑋∗, 𝑊∗, 𝑌∗,   𝑍∗, 𝑇∗ =  
 

𝑐1 𝑐2 𝑐3 𝑐4 𝑐5

𝑐6 𝑐7 𝑐8 𝑐9 𝑐10

𝑐11 𝑐12 𝑐13 𝑐14 𝑐15

𝑐16 𝑐17 𝑐18 𝑐19 𝑐20

𝑐21 𝑐22 𝑐23 𝑐24 𝑐25

 
 . Here the notations used as the matrix 

elements represent the following parametric expressions: 
 
c1 = r 1 −  2X + W k  − βW −  m p1Y + p3Z  m + X 2  ,   c2 =  − r + kβ X k  , c3 = − p1X  m + X   ,
c4 = −  p3X  m + X   ,   c5 = b1 , c6 = βW,
c7 = βX −  a1 + μ2 −  mp2Y  m + W 2  ,   c8 = −p2W  m + W  ,    c9 = c10 = 0,   c11 =
 mqp1Y  m + X 2  ,   c12 = 0,   c13 =  qp1X  m + X   − μ3 − αZ,     c14 = αY,     c15 = b2 ,   c16 =
 mqp3Z  m + X 2  ,   c17 =  mqp2Z  m + W 2  ,   c18 = 0,   c19 = qp2W  m + W  + qp3X  m + X  −
 a2 + μ4 , c20 = c21 = 0, c22 = a1, c23 = 0,    c24 = a2,   c25 = −(μ1 + b1 + b2). 
 
Then evaluation of the determinant of the characteristic equation  𝐵 − 𝜆I  = 0 gives a fifth order 
algebraic equation of the form   𝜆5 + 𝐴𝜆4 + 𝐵𝜆3 + 𝐶𝜆2 + 𝐷𝜆 + 𝐸 = 0.  Using the Hurwitz criterion the 
coexistence will be stable if the following conditions are satisfied: (i) 𝐴 > 0  (ii) 𝐵 − 𝐶 > 0 (iii) 
   𝐴𝐵𝐶 + 𝐴𝐸 − 𝐴2𝐷 − 𝐶2 > 0  (iv)    𝐻4 =  𝐶𝐷 − 𝐵𝐸  𝐴𝐵 − 𝐶 −  𝐴𝐷 − 𝐸 2 > 0 (v)     𝐷 ∗ 𝐻4 > 0. 
Otherwise it is not stable. 

1.3.2 Global Stability Analysis 

Here, the global stability analysis of the system of model equations (5) – (9) around the positive 
equilibrium point   𝐸 =  𝑋∗, 𝑊∗, 𝑌∗, 𝑍∗, 𝑇∗   or the coexistence equilibrium is conducted.  Consider the 
following theorem on the Lyapunov function L. 
Theorem 8 Global Stability Suppose  𝐿 =  𝑋 − 𝑋∗ 2 2 + 𝛼1 𝑊 − 𝑊∗ 2/2 + 𝛼2 𝑌 − 𝑌∗ 2/2 +
𝛼3 𝑍 − 𝑍∗ 2/2 + 𝛼4 𝑇 − 𝑇∗ 2/2    where  𝛼1 , 𝛼2 , 𝛼3 , 𝛼4  are all positive ,and  chosen properly such that   
𝑑𝐿 𝑑𝑡 = 0 where   𝐸 =  𝑋∗, 𝑊∗, 𝑌∗, 𝑍∗, 𝑇∗  𝐿 =  𝑋,   𝑊, 𝑌,   𝑍,   𝑇 > 0, ∀ 𝑋, 𝑊, 𝑌, 𝑍, 𝑇 / 𝐸     and  
𝑑𝐿 𝑑𝑡 ≤ 0  ∀ 𝑋, 𝑊, 𝑌, 𝑍, 𝑇 ∈ Γ+,  𝑑𝐿 𝑑𝑡 = 0 ∀ 𝑋∗, 𝑊∗, 𝑌∗, 𝑍∗, 𝑇∗ ∈ Γ+  .This implies  𝐸∗  of the system is 
Lyapunove stable and 𝑑𝐿 𝑑𝑡 < 0 , ∀ 𝑋, 𝑊, 𝑌, 𝑍, 𝑇 ∈ Γ+   near 𝐸∗This implies 𝐸∗ is globally stable [1]. 
Proof:    𝐿 =  𝑋 − 𝑋∗ 2 2 + 𝛼1 𝑊 − 𝑊∗ 2/2 + 𝛼2 𝑌 − 𝑌∗ 2/2 + 𝛼3 𝑍 − 𝑍∗ 2/2 + 𝛼4 𝑇 − 𝑇∗ 2/2 
𝑑𝐿 𝑑𝑡  =   𝑋 − 𝑋∗ 𝑑𝑋 𝑑𝑡 + α1 𝑊 − 𝑊∗ 𝑑𝑊 𝑑𝑡 +   α2 𝑌 − 𝑌∗ 𝑑𝑌 𝑑𝑡 + α3 𝑍 − 𝑍∗ 𝑑𝑍 𝑑𝑡 +
α4 𝑇 − 𝑇∗ 𝑑𝑇 𝑑𝑡       (10)          
Now substitute the model equation (5) - (9) into equation (10) 
dL dt =  𝑋 − 𝑋∗  rX 1 −   X + W k   + b1T − βXW −   p1XY  m + X      −   p3XZ  m + X     

+α1 𝑊 − 𝑊∗  βXW − a1W − μ
2

W −  p2WY  m + W   −  p2WZ  m + W     

+α2 𝑌 − 𝑌∗   qp1XY  m + X   +  qp2WY  m + W   + b2T − αYZ − μ
3

Y  

                                              +α3 𝑍 − 𝑍∗   qp2WZ  m + W   +  qp3XZ  m + W   + αYZ − a2Z − μ
4

Z   

+α4 𝑇 − 𝑇∗ [a1W + a2Z − μ
1

T − b1T − b2T] 

Take out     𝑋,     𝑊,     𝑌,     𝑍,     𝑇  and put as change      
dL dt =  𝑋 − 𝑋∗  𝑋 − 𝑋∗  r 1 −   X + W k   +  b1T X  − βW −  p1Y  m + X   −  p3Z  m + X     

+α1 𝑊 − 𝑊∗  𝑊 − 𝑊∗  βX − a1 − μ2 −  p2Y  m + W   −  p2Z  m + W     
+α2 𝑌 − 𝑌∗  𝑌 − 𝑌∗   q p1X  m + X   +  q p2W  m + W   +  b2T Y  − αZ − μ3    

+α3 𝑍 − 𝑍∗  𝑍 − 𝑍∗   q p2W  m + W   +  q p3X  m + W   + αY − a2 − μ4  
+α4 𝑇 − 𝑇∗  𝑇 − 𝑇∗   a1W T  +  a2Z 𝑇  − μ1 − b1 − b2  

By rearranging, it could be obtained 
dL dt = − 𝑋 − 𝑋∗ 2 −r 1 −   X + W k   −  b1T X  + βW +  p1Y  m + X   +  p3Z  m + X     

−α1 𝐼 − 𝐼∗ 2 −βX + a1 + μ2 +  p2Y  m + W   +  p2Z  m + W     
−α2 𝑌 − 𝑌∗ 2 − q p1X  m + X   −  q p2W  m + W   −  b2T Y  + αZ + μ3   

−α3 𝑍 − 𝑍∗ 2 − q p2W  m + W   −  q p3X  m + W   − αY + a2 + μ4  
−α4 𝑇 − 𝑇∗ 2 − a1W T  −  a2Z T  + μ1 + b1 + b2  

Thus it is possible to set  𝛼1 , 𝛼2 , 𝛼3,   𝛼4  such that  dL dt ≤ 0 and endemic equilibrium point is globally 
stable. It is to be noted that the parameters  k, m , q  play a vital role in controlling the stability aspects of 
the system. 
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1.3.3 Reproduction number or Threshold number𝑹𝟎 

   If 𝑅0 < 1 then each infected individual produces on average less than one new infected individual so 

it is expected that the disease would die out. On the other hand if  𝑅0 > 1 then each individual produces more 

than one new infected individual so it is expected that the disease would continue spreading in the population. 

Theorem 9 Infected Prey Threshold The Reproduction number for infected prey at Disease free equilibrium 

point is given by 𝑅0 = mβX  (a1 + μ
2

)m + p2Y   .  

Proof: Consider infected prey equation (6)  dW dt = βXW − a1W − e2W −  p2WY  m + W   −

 p2WZ  m + W   =  βX −  a1 + μ
2

+  p2Y  m + W   + p2Z m + W   W .    Now Let  𝐹 = βX      and      

V = a1 + μ
2

+  p2Y  m + W   +  p2Z m  + W. Evaluate 𝐹   and  V   at Disease equilibrium 

point    𝑋 0 𝑌     0 0 , then   𝐹 =  βX      and    𝑉 = a1 + μ
2

+ p2Y m . It is known that   𝑅0 = 𝐹𝑉−1 and 

hence    𝑅0 = mβX  (a1 + μ
2

)m + p2Y    

Theorem 10 Infected Predator Threshold The Reproduction number for infected predators at disease free 

equilibrium point takes the form as 𝑅0 =  𝑞p3X + mαY  𝑚(a2 + μ
4

)  .  

Proof: Consider the infected predator model equation (8) 

dZ dt =  q p2WZ  m + W   +  q p3XZ  m + W   + αYZ − a2Z − μ
4

Z 

                                                           =   q p2W  m + W   +  q p3X  m + W   + αY − (a2 + μ
4

) Z 

                                           Let   𝐹 =   q p2W  m + W   +  q p3X  m + W   + αY      and   V = a2 + μ
4
 

Evaluate F and V at disease free equilibrium point    𝑋 0 𝑌     0 0   ,     then    𝐹 =  q p3X m + αY    

and  V = a2 + μ
4
. It is known that    𝑅0 = 𝐹𝑉−1 and hence    𝑅0 =  𝑞p3X + mαY   𝑚(a2 + μ

4
)   

 

IV. Numerical simulations 
In this section, Numerical simulation of model equations (5) - (9) is carried out using the software DEDiscover 

version: 2.6.4. Model equation and parameters were arranged for DEDiscover software in this way for 

simulation purpose: 

dX/dt=r*X*(1-(X+W)/k)+b_1*T-beta*X*W-P_1*X*Y/(m+X)-P_3*X*Z/(m+X) // Susceptible prey 

dW/dt=beta*X*W-a_1*W-u_1*W-P_2*W*Y/(m+W)-P_2*W*Z/(m+W) // Infected prey                       (12) 

dY/dt=b_2*T+q*P_1*X*Y/(m+X)+q*P_2*W*Y/(m+W)-u_3*Y+alpha*Y*Z // Susceptible predator 

dZ/dt=q*P_2*W*Z/(m+W)+q*P_3*X*Z/(m+X)-a_2*Z-u_4*Z-alpha*Y*Z // Infected predator 

dT/dt=a_1*W+a_2*Z-b_1*T-b_2*T-u_1*T //  Treatment  

 

Table 1  Initial Conditions for the given Variables 
Name Current Initial Conditions Source 

𝑋[𝑡𝑜] 50.0000 Assumed 

𝑊[𝑡𝑜 ] 90.0000 Assumed 

𝑇[𝑡𝑜] 40.0000 Assumed 

𝑌[𝑡𝑜 ] 5.0000 Assumed 

𝑍[𝑡𝑜] 65.0000 Assumed 

 

Table 4 Model Parameters and Their Descriptions and Values 

Parameters 
Parameter 

value 
Description of parameters Source 

𝑟 11.2000 Intrinsic growth rate of  susceptible prey 
Mukhopadhyay and 

Bhattacharyya(2009) 

k 30.0000 Carrying capacity of  susceptible prey 
Mukhopadhyay and 

Bhattacharyya(2009) 

𝑏1 0.0010 Recovery rate of infected prey Estimated 

𝛽 1.2000 Convolution rate of susceptible prey  to be infected prey 
Mukhopadhyay and 

Bhattacharyya(2009) 

𝑝1 0.4000 
Predation coefficient of susceptible   prey due to susceptible  

predator 

Mukhopadhyay and 

Bhattacharyya(2009) 

𝑝3 0.2000 
Predation coefficient of susceptible prey due to infected 
predator. 

Estimated 

m 0.5000 Half-saturation constant 
Mukhopadhyay and 
Bhattacharyya(2009) 

a1 0.0100 Treatment rate of infected prey Estimated 

𝜇2 0.4000 Death rate of infected prey 
Mukhopadhyay and 

Bhattacharyya(2009) 

𝑝2 0.6000 Predation coefficients of infected prey due to  predator 
Mukhopadhyay and 

Bhattacharyya(2009) 

𝑏2 0.0020 Recovery rate of infected predator Estimated 



Mathematical Eco-Epidemic Model on Prey-Predator System 

DOI: 10.9790/5728-1601012234                                  www.iosrjournals.org                                            32 | Page 

q 0.2500 Efficiency of predation. 
Mukhopadhyay and 

Bhattacharyya(2009) 

𝛼 1.3000 
Convolution rate of susceptible  predator to be infected 
predator 

Assumed. 

𝜇3 0.0800 Death rate of susceptible  predator 
Mukhopadhyay and 
Bhattacharyya(2009) 

a2 0.0300 Treatment rate of infected predator Estimated 

𝜇4 0.0100 Death rate of  infected  predator Estimated 

𝜇1 0.0500 Death rate of  both infected prey and  infected predator Estimated 

 

 

 
Figure 1a   Infected prey-predator with increasing treatment        Figure 1b Infected prey-predator with 

less treatment 
 

It can be seen from figure 1a, as the number of treatment increase on the infected prey – predator, there 

will be a decrease in the infected population slowly. Meaning disease dies out and infected pry-predator recover 

from disease. and from figure 1b it has been observed that if we neglect treatment to the infected population, 

then the population decrease very soon, which means the infected population will get more disease that leads to 

more death on both infected prey and predator. In any of the cases the population of infected prey and predator 

decreases .Therefore infected prey-predator population always decrease independent of treatment. 

 

Figure 2a Susceptible prey-predator with initial 50    Figure 2b Susceptible prey-predator with all initial 5 
 

In figure 2a applying treatment Continuously, then susceptible predators will be strong, increase in 

number, and got the capacity to predate the susceptible prey easily that leads to the  loss of many susceptible  

preys.  From figure 2b, the decrease in level of treatment differently, there is no big influence on susceptible 

prey and predator, especially on susceptible prey will be free from predation by infected predator that improves 

the prey to grow well logistically. This ensures susceptible prey is the only population that can reproduce. 
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        Figure 3a prey-predator with initial data 90                        Figure3b.prey-predator with initial data 5     

 

From figure 3a As long as the infected prey and predator populations are treated constantly, the 

infected prey dies out from disease which is blue in color or the susceptible predator increase in population due 

to more recovered predators goes in to susceptible predator class labeled turquoise in color.  From  Figure 3b,it 

is clear  that increase the susceptible prey population X, leads for susceptible predator Y got more food   

sufficiently, again this  improves healthy prey-predator system which turns out  disease  dies out from infected 

prey-predator i.e. decrease in  W and  Z. 

 

V. Conclusions 
 The Boundedness, positivity, and existence of solutions of the system are shown to hold implying that 

the system is biologically well behaved. Disease free equilibrium points were obtained and their stability 

analysis has been done.  

 It is observed that giving treatment to infected prey and infected predator into the system save the 

population from extinction.  Increasing the rate of treatment in the infected prey and predator leads to increase 

susceptible prey and predator density populations but decreasing the infected prey and predator population that 

results the infected prey and predator recover from disease or disease dies out.  

  A numerical simulation of the model was carried out and it was observed that the increase of the 

number of infected prey tends to lower the whole population. It can be concluded that the disease can be 

eradicated in a population through treatment.  

 

VI. Recommendations 
  One can extend this work by assuming the predator grows logistically or by adding parameters like 

natural death rate on the prey or by including other variables like vaccination, immigration, migration on prey-

predator populations. And these things can be considered as limitation of this paper. 
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