Projective and Inductive Limits of Uniform Spaces

Dr.Ranjankumarsingh

Department of Math RRM Campus, Janakpur (Nepal)

Abstract:

In this paper we consider the idea of projective and inductive limits of uniform spaces and show that If for each $\alpha \in I$, $f_{\alpha} : X \to (Y_{\alpha}, J_{\alpha})$ is a mapping from a set X into a topological space (Y_{α}, J_{α}) , there is a weakest topology on X, called the projective limit topology, denoted by P(J) under which every f_{α} is continuous. **Keywords**: Topological space, projective limits, inductive limits, uniformity, filter.

Date of Submission: 12-03-2020 Date of Acceptance: 27-03-2020

I. Introduction:

If for each $\alpha \in I$, $f_{\alpha} : X \to (Y_{\alpha}, J_{\alpha})$ is a mapping from a set X into a topological space (Y_{α}, J_{α}) , there is a weakest topology on X, called the projective limit topology, denoted by P(J) under which every f_{α} is continuous. By definition

 $\left\{f_{\alpha}^{-1}(U_{\alpha}): U_{\alpha} \in J \text{ and } \alpha \in I\right\}$ in an open subbase for the topology Jp(J).

On the other hand if for each $\alpha = I$, $g_{\alpha} : (Y_{\alpha}, J_{\alpha}) \to X$ is a mapping from a topological space (Y_{α}, J_{α}) into a set X, there is a finest topology on X, called the inductive limit topology, denoted by $\mathcal{G}(J)$ under which every g_{α} is continuous. Here $\mathcal{G}(J)$ open sets are of the form $V \subseteq X$.

Where $g_{\alpha}^{-1}(V) \in J_{\alpha}, \alpha \in I$

It is known that subspaces and product spaces of topological spaces are projective limits and quotient topological spaces are inductive limits. We shall extend these notions to uniform spaces. **Definition:**

For each $\alpha \in I$, let $f_{\alpha}: X \to (Y_{\alpha}, \mathcal{U}_{\alpha})$ be a mapping from a set X into a uniform space $(Y_{\alpha}, \mathcal{U}_{\alpha})$ The projective limit uniformity on X generated by the family $F = \{f_{\alpha}\}_{\alpha \in I}$ is the weakest uniformity for X under which every f_{α} is uniformity continuous. this uniformity on X is denoted by $\mathcal{U}_{\sigma(F)}$

On the other hand, if for each $\alpha \in I$

 $g_{\alpha}: (Y_{\alpha}, J_{\alpha}) \to X$ is a mapping from a uniform space $(Y_{\alpha}, \mathcal{U}_{\alpha})$ into a set X, the inductive limit uniformity of X, denoted by $\mathcal{U}_{g(F)}$ generated by the family $F = \{f_{\alpha}\}_{\alpha \in I}$ is the finest uniformity for X under which every f_{α} is uniformity continuous.

Proposition:

If $\mathcal{U}_{P(F)}$ is the projective limit uniformity on a set X generated by the family $F = \{f_{\alpha} : X \to (Y_{\alpha}, U_{\alpha})\}_{\alpha \in I}$

where \mathcal{U}_{α} is a uniformity on Y_{α} for each $\alpha \in I$, then

$$\left\{\bigcap_{k=1}^{n} \left(f_{\alpha_{k}} \times f_{\alpha_{k}}\right)^{-1} U_{\alpha_{k}} : U_{\alpha_{k}} \in U_{\alpha_{k}}, \alpha_{k} \in I\right\}$$

is a base for $\mathcal{U}_{P(F)}$

Proof:

Clearly every member of the filter base

$$\beta = \left\{ \bigcap_{k=1}^{n} \left(f_{\alpha_{k}} \times f_{\alpha_{k}} \right)^{-1} U_{\alpha_{k}} : U_{\alpha_{k}} \in U_{\alpha_{k}}, \alpha_{k} \in I \right\}$$

contains $\Delta \subseteq X \times X$, consider any $B = \left\{ \bigcap_{k=1}^{n} \left(f_{\alpha_{k}} \times f_{\alpha_{k}} \right)^{-1} U_{\alpha_{k}} \right\}$ in β since each $\mathcal{U}_{\alpha K}$ is a

uniformity on Y_{α_k} , it follows that

$$B^{-1} = \left\{ \bigcap_{k=1}^{n} \left(f_{\alpha_{k}} \times f_{\alpha_{k}} \right)^{-1} U_{\alpha_{k}} \right\}^{-1}$$
$$= \bigcap_{k=1}^{n} \left(f_{\alpha_{k}} \times f_{\alpha_{k}} \right)^{-1} U_{\alpha_{k}}^{-1} \in \beta$$

Moreover, there exist $V_{\alpha_k} \in \mathcal{U}_{\alpha K}$ such that $V_{\alpha k}^2 \subseteq \mathcal{U}_{\alpha K}$ and hence

$$\left\{\bigcap_{k=1}^{n} \left(f_{\alpha_{k}} \times f_{\alpha_{k}}\right)^{-1} V_{\alpha_{k}}\right\}^{2} \subseteq \bigcap_{k=1}^{n} \left\{\left(f_{\alpha_{k}} \times f_{\alpha_{k}}\right)^{-1} V_{\alpha_{k}}\right\}^{2} \subseteq \bigcap_{k=1}^{n} \left(f_{\alpha_{k}} \times f_{\alpha_{k}}\right)^{-1} U_{\alpha_{k}} = B$$

Thus β is the base for some uniformity \mathcal{U} for X which by definition is $\mathcal{U}_{P(F)}$. In fact, if V is a uniformity for X and every $f_{\alpha} \in F$ is V-uniformly continuous, then

$$(f_{\alpha_k} \times f_{\alpha_k})^{-1} U_{\alpha} \in V$$
 for all $\alpha \in I$ and $U_{\alpha} \in U_{\alpha}$ so that $\mathcal{U} \in \vartheta$.
Conclusion

Hence, if V is a uniformity for X and every $f_{\alpha} \in F$ is V-uniformly continuous, then $(f_{\alpha_k} \times f_{\alpha_k})^{-1} U_{\alpha} \in V$ for all $\alpha \in I$ and $U_{\alpha} \in \mathcal{U}_{\alpha}$ so that $\mathcal{U} \in \vartheta$.

References:

[1]. [2]. [3]. [4].	Pervin, W. J. Pachl, Jan Reed, G. M. (ed) Simmons, G. F.	: : :	 'Uniformities of nhd axioms', Math, Ann. 147 (1962), 313-315. Uniform spaces & measures, springer Scinece& Business media New-York 2013. 'Sureys in General Topology', Academic Press, 1980. 'Introduction to topology and Modern Analysis, MegrawHill Comp. 1963. 	
	'Introduction to topolog	roduction to topology and Modern Analysis, Tata McgrawHill comp. 2004.		
[5].	Thron, W.J.	:	'Topological structure', Holl, Rinehanton, Wirston, Inc. New York, 1966.	
[6].	HORVATH, J.	:	Topological vector spaces and Distribution, Addition Wesley Publishing company, 1966.	

Dr.Ranjankumarsingh. "Projective and Inductive Limits of Uniform Spaces." *IOSR Journal of Mathematics (IOSR-JM)*, 16(2), (2020): pp. 61-62.