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Abstract: 
In this paper we consider the idea of projective and inductive limits of uniform spaces and show that If for each 

 , : ,I f X Y J     is a mapping from a set X into a topological space  ,Y J 
, there is a weakest 

topology on X, called the projective limit topology, denoted by  P J  under which every f  is continuous. 
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I. Introduction: 

 If for each  , : ,I f X Y J     is a mapping from a set X into a topological space  ,Y J 
, 

there is a weakest topology on X, called the projective limit topology, denoted by  P J  under which every 

f  is continuous. By definition 

   1 :f U U J and I      in an open subbase for the topology  Jp J . 

 On the other hand if for each I  ,  : ,g Y J X     is a mapping from a topological 

space  ,Y J 
 into a set X, there is a finest topology on X, called the inductive limit topology, denoted by 

𝒢 𝐽  under which every g  is continuous. Here 9(J)  open sets are of the form V X . 

 Where  1 ,g V J I  
    

 It is known that subspaces and product spaces of topological spacesare projective limits and quotient 

topological spaces are inductive limits.We shall extend these notions to uniform spaces. 

Definition: 

 For each I , let : ( ,f X Y  𝒰𝛼 ) be a mapping from a set X into a uniform space ( ,Y 𝒰𝛼 ) 

The projective limit uniformity on X generated by the family  
I

F f 
  is the weakest uniformity for X 

under which every f is uniformity continuous. this uniformity on X is denoted by 𝒰𝜎(𝐹) 

 On the other hand, if for each I  

  : ,g Y J X     is a mapping from a uniform space ( ,Y 𝒰𝛼 ) into a set X, the inductive limit 

uniformity of X, denoted by 𝒰𝑔(𝐹) generated by the family  
I

F f 
  is the finest uniformity for X under 

which every f  is uniformity continuous. 

Proposition: 

 If 𝒰𝑃(𝐹) is the projective limit uniformity on a set X generated by the family { : ( ,F f X Y  

𝒰𝛼 )} I  

 where 𝒰𝛼  is a uniformity on Y  for each I , then 
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  is a base for 𝒰𝑃(𝐹) 
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Proof: 

 Clearly every member of the filter base 
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 contains X X  , consider any  
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 in   since each 𝒰𝛼  𝐾  is a 

uniformity on 
k

Y , it follows that 
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 Moreover, there exist 
k

V 𝒰𝛼  𝐾  such that 
2

kV  𝒰𝛼  𝐾  and hence 
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 Thus   is the base for some uniformity 𝒰 for X which bydefinition is 𝒰𝑃(𝐹). In fact, if V is a 

uniformity for X and every f F   is V-uniformly continuous, then 

 
1

k k
f f U V  



   for all I  and U 𝒰𝛼  so that 𝒰 ∈ 𝜗. 

Conclusion 

Hence, if V is a uniformity for X and every f F   is V-uniformly continuous, then  
1

k k
f f U V  



   

for all I  and U 𝒰𝛼  so that 𝒰 ∈ 𝜗. 
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