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Investigating Turbulent Convection in a Rectangular Enclosure 

Using Shear Stress Transport K-ω Model 
 

Muhoro John Nyaga and Awuor Kennedy Otieno  
Department of Mathematics and Actuarial Science, Kenyatta University, Kenya 

 

Abstract: Studies have been done on the aspect ratio effect on natural convection turbulence using standard k-ε 

model but further studies showed thatk-ω SST model performed better than both k-ε and k-ω model in the whole 

enclosure. Thus, there was need to do a numerical study on the natural convection fluid flow in a rectangular 

enclosure full of air using SST k-ω model. The left vertical wall of the enclosure was maintained at a steady 

high temperature Th of 323K while the right wall at a steady cool temperature Tc of 303K with the remaining 

walls adiabatic. Time-averaged energy, momentum and continuity equations with the two equation SST k-omega 

turbulence model were used to generate isotherms, streamlines and velocity magnitudes for different aspect 

ratios of the enclosure so as to be able to investigate effect of aspect ratio on turbulence. It was shown that as 

the aspect ratio of increased from 2, 4, 6 and 8 of the enclosure, the velocity of elements decreased and the 

vortices became smaller and more parallel thus concluded that an increase in aspect ratio decreased the 

turbulence. 

Key terms 

Convection: is heat transfer through movement of the heated sections of a fluid. 

Aspect ratio: Proportion of length of isothermal wall to the gap between them 

Turbulent Flow: A system of stream characterized by chaotic property changes flow for values of Reynolds 

number of above 4000 

Streamlines: A path followed out by a massless component as it moves with the stream.  

Isotherms: An isotherm is the curve on a graph that connects points of equal temperature. 

Vortices: A region in the fluid medium where the flow is mostly rotating around an axis line. 
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I. Introduction 
The mode of heat transfer in fluids (liquids and gases) is known as convection. When fluids are heated, 

they expand and thus density decreases. According to Archimedes’ principle, warmer and lighter part of the 

fluid will lead to rise through the neighbouring cooler fluid. 

According to Matthew P, Wilcox (2013), fluid stream can be categorized into two; turbulent and 

laminar flow. Motion of fluid elementsin laminar flow is very organized and movement of fluid is in sheets that 

relatively slideon each other. The stream happens at very low speeds where there are just minor unsettling 

influences and low to no local speed variations. 

Turbulence convection is an irregular or disturbed flow. It behaves with a chaotic and unpredictable 

motion. Turbulent convection in a fluid heated from a plane horizontal layer below, called Rayleigh-Bénard 

convection,is of great importance in severalindustrial and natural processes. The fluid becomes turbulent past a 

specific temperature difference. 

Natural convection study in an enclosure has several engineering applications from natural space 

warming of household rooms to sections of engineering and atomic installations. Such as, this type of flows 

happens in material processing cooling of electronic equipment and building technology. 

Turbulent flows are characterized by four main features: diffusion, dissipation, three-dimensionality 

and length scales. For numerical calculation of turbulent flows, an averaging of Navier-Stokes equations of 

motion is carried out with respect to time. This averaging leads to Reynolds Averaged Navier-Stokes equations 

(RANS). Additional terms with new variables occur in these partial differential equations because of the 

averaging. Consequently, there are suddenly more variables than equations. In order to close the motion 

equation system in this study, 𝑘 − 𝜔 turbulence modeling will be used. 

 

Objective 

Toinvestigate turbulent convection in a rectangular enclosure using SST k-ω model 
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II. Governing Equations 
The following are the set of governing equations 

Mass conservation (continuity equation) equation 
𝜕𝑢

𝜕𝑥
+

𝜕𝑣

𝜕𝑦
+

𝜕𝑤

𝜕𝑧
= 0          1 

Momentum (Navier stokes) equations 

𝜌  
𝜕𝑣

𝜕𝑡
+ 𝑣.∇𝑣 = 𝐹𝑖 − ∇𝑝 + 𝜇∆𝑣        2 

Energy equation 

𝜌𝐶𝑝  
𝜕𝑇

𝜕𝑡
+ 𝑢

𝜕𝑇

𝜕𝑥
+ 𝑣

𝜕𝑇

𝜕𝑦
+ 𝑤

𝜕𝑇

𝜕𝑧
 = 𝑘  

𝜕2𝑇

𝜕𝑥2 +
𝜕2𝑇

𝜕𝑦2 +
𝜕2𝑇

𝜕𝑧2 + μΦ  2   
∂u

∂x
 

2

+  
∂v

∂y
 

2

+  
∂w

∂z
 

2

 +  
∂v

∂x
+

∂u

∂y
 

2

+

∂w∂y+∂v∂z2+ ∂u∂z+∂w∂x2       3 

Time averaged continuity equation 
𝜕𝑢

𝜕𝑥
+

𝜕𝑣

𝜕𝑦
+

𝜕𝑤

𝜕𝑧
 = 0          4 

Time averaged momentum equation 

𝜌  
𝜕𝑣 

𝜕𝑡
+ 𝑣 .∇𝑣  = 𝐹𝑖 − ∇𝑝     + 𝜇∆𝑣 − ∇.ρ𝑣 𝑣                5 

Time averaged energy equation 

𝜌𝐶𝑝  
𝜕𝑇 

𝜕𝑡
+ 𝑢 

𝜕𝑇 

𝜕𝑥
+ 𝑣 

𝜕𝑇 

𝜕𝑦
+ 𝑤 

𝜕𝑇 

𝜕𝑧
 = 𝑘  

𝜕2𝑇 

𝜕𝑥2 +
𝜕2𝑇 

𝜕𝑦2 +
𝜕2𝑇 

𝜕𝑧2 −
𝜕𝑐𝑝𝑇 𝑢 

    

𝜕𝑥𝑖
+Φ     6 

𝜕𝑐𝑝𝑇 𝑢 𝑖
     

𝜕𝑥𝑖
represent the turbulent heat fluxes i.e.perturbations ofvelocity and temperature  

The stress tensor in turbulent flow  

Equation 5 can be written in tensor form as 

𝜌
𝐷𝑢𝑖

𝐷𝑡
= 𝐹𝑖 −

𝜕𝑝 

𝜕𝑥𝑖
+ 𝜇∆𝑢𝑖 − 𝜌  

𝜕𝑢𝑖𝑢𝑗

𝜕𝑥𝑖
         7 

Where 𝜇∆𝑢𝑖 − 𝜌  
𝜕𝑢𝑖𝑢𝑗

𝜕𝑥𝑖
 =𝜇

𝜕

𝜕xj
 
𝜕𝑢𝑖

𝜕𝑥𝑗
 − 𝜌

𝜕

𝜕𝑥𝑗
𝑢𝑖𝑢𝑗  

     =
𝜕

𝜕xj
 𝜇

𝜕𝑢𝑖

𝜕𝑥𝑗
− 𝜌𝑢𝑖𝑢𝑗        8 

The term in brackets in the above equation is known as total shear stress expressed as 𝜏𝑖𝑗 . 

Equation 5 can be written as  

𝜌
𝐷𝑢𝑖   

𝐷𝑡
= 𝐹𝑖 −

𝜕𝑝 

𝜕𝑥𝑖
+

𝜕

𝜕xj
𝜏𝑖𝑗          9 

With the approach of Eddy Viscosity principle, equation 9 is referred as Reynolds Averaged Navier Stokes 

equation (RANS).  

And  

𝜏𝑖𝑗 = 𝜇
𝜕𝑢𝑖

𝜕xj
+ 𝜌  𝑉𝑇  

𝜕𝑢𝑖

𝜕𝑥𝑗
+

𝜕𝑢𝑗

𝜕𝑥𝑖
 − 2

3 𝑘𝛿𝑖𝑗         10 

Where 𝛿𝑖𝑗  𝑖𝑠 𝑘𝑟𝑜𝑛𝑒𝑐𝑘𝑒𝑟 𝑑𝑒𝑙𝑡𝑎 𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛 

 𝑉𝑇  𝑖𝑠 𝑡𝑢𝑟𝑏𝑢𝑙𝑒𝑛𝑡 𝑒𝑑𝑑𝑦 𝑣𝑖𝑠𝑐𝑜𝑠𝑖𝑡𝑦 

 

Approach of Boussinesq 

A relative old approach to this principle of eddy viscosity, which in 1877 was formulated by Boussinesq and is 

still the basis of many turbulence models (Rodi 1993). 

−𝑢 𝑖𝑢 𝑗=𝑉𝑇  
𝜕𝑢𝑖

𝜕𝑥𝑗
+

𝜕𝑢𝑗

𝜕𝑥𝑖
 − 2

3 𝑘𝛿𝑖𝑗………………………………………………….………11 

Where k is kinetic energy turbulence defined as 

𝑘 = 1
2  𝑢2   + 𝑣2   + 𝑤2              12 

𝑇𝑢𝑟𝑏𝑢𝑙𝑒𝑛𝑡 𝑒𝑑𝑑𝑦 𝑣𝑖𝑠𝑐𝑜𝑠𝑖𝑡𝑦,𝑉𝑇 , depends on the degree of turbulencei.e. it varies within the fluid flow and 

depending on the flow condition. The approach of calculating eddy viscosity 𝑉𝑇  is known as turbulence 

modeling. 

 

Applications and Approaches for turbulence modeling 

The zeroth models, following the approach of Boussinesq (1877) assume that flow of velocity is 

proportional to turbulent stresses. In one equation model additional p.d.e for velocity scale is used for 

turbulence. Another p.d.e for length scale is added for two equation models. This group also includes K-휀 and 

K-𝜔 models.Approaches to determine the turbulence eddy viscosity provides the described closer models 

zeroth, first and second order.  
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Shear Stress Transport k-ω Model 

It’s a two-equation eddy – viscosity model. It combines the standard k-ω and k- 휀 models. It activates 

k- 휀 model in the free stream and standard k-ω model near the wall. This makes sure that the suitable model is 

appliedall through the stream field. 

The transport equations of SST k-ω model are; 

𝜕

𝜕𝑡
 𝜌𝑘 +

𝜕

𝜕𝑥𝑗
 𝜌𝑘𝑢𝑖 =

𝜕

𝜕𝑥𝑗
 𝛤𝑘

𝑑𝑘

𝑑𝑥𝑗
 + 𝐺𝑘 − 𝑌𝑘 + 𝑆𝑘  

And 

𝜕

𝜕𝑡
 𝜌𝜔 +

𝜕

𝜕𝑥𝑗
 𝜌𝜔𝑢𝑖 =

𝜕

𝜕𝑥𝑗
 𝛤𝜔

𝑑𝜔

𝑑𝑥𝑗
 + 𝐺𝜔 − 𝑌𝜔 + 𝑆𝜔 + 𝐷𝜔  

𝐺𝑘 = 𝑚𝑖𝑛 𝐺𝑘 , 10𝜌𝛽∗𝑘𝜔 -reproduction of turbulent kinetic energy owed to average velocity gradients where 

𝐺𝑘 = −𝜌𝑢𝑖
′𝑢𝑗

′      𝜕𝑢𝑗
𝜕𝑥𝑖

 

𝐺𝜔 =
𝛼

𝑣𝑡
𝐺𝑘  is the generation of ω 

𝐷𝜔  denotes the cross-diffusion term. 

𝑌𝑘  and 𝑌𝜔  denotes the dissipation of k and ω due to turbulence. 

𝛤𝑘  and 𝛤𝜔denotes the effective diffusivity of k and ω respectively. 

For the SST k-ω model, the effective diffusivities are given by 

𝛤𝑘 = 𝜇 +
𝜇 𝑡

𝜎𝑘
  and 𝛤𝜔 = 𝜇 +

𝜇 𝑡

𝜎𝜔
 

Where; 

𝑆𝑘  and 𝑆𝜔  are user-defined source terms. 

𝜎ω&  𝜎kare turbulent Prandtl numbers for ω and k correspondingly. 

Constants are determined from experiment and their values are as per the table1 below. 

 

Table 1Turbulence model constants 

𝜎𝑘 ,1 1.176 

𝜎𝜔 ,1 2.0 

𝜎𝑘 ,2 1.0 

𝜎𝜔 ,2 1.168 

𝛼1 0.31 

𝛽𝑖 ,1 0.075 

𝛽𝑖 ,2 0.0828 

𝜶∞
∗  1 

𝛼∞  0.52 

𝛼0 
1

9
 

𝜷∞
∗  0.09 

𝑅𝛽  8 

𝑅𝑘  6 

𝑅𝜔  2.95 

휁∗ 1.5 

𝑀𝑡𝑜  0.25 



Investigating Turbulent Convection in a Rectangular Enclosure Using Shear Stress.. 

DOI: 10.9790/5728-1604013746                             www.iosrjournals.org                                                40 | Page 

III. Mathematical Formulation 
Figure 1 demonstrates a graphic outline of the issue under thought and the coordinate structure. 

Considering a 2D rectangular structure of width W and height H, where the left vertical temperature is kept at Th 

and the right at Tc, Th>Tc. No heat stream is accepted at the upper and lowerwall (adiabatic). The walls are 

unbending and no – slip circumstances are enforced at the limits.  

 

 
Fig. 1Geometry of the problem 

 

Dimensionless Energy, Momentum and Continuity Equations 

Non – dimensionalizing governing equations makes equations simpler and highlights which terms are 

the most important. The main objective behind non–dimensionalization is to lessen number of variables. The set 

of governing equations ought to be resolved to acquire the unknowns p, v, T and u. By applying Boussinesq 

estimation and then bringing up dimensionless constraintsP, V, U, 𝜏 ,θ, Y and X; 

𝑋 =
𝑥

𝐿
, 𝑌 =

𝑦

𝐿
, 𝑈 =

𝑢𝐿

𝛼𝑓
, 𝑉 =

𝑣𝐿

𝛼𝑓
 , 𝜃𝑓 =

𝑇𝑓−𝑇𝑐

𝑇ℎ−𝑇𝑐
 ., 𝜏 =

𝛼𝑓 𝑡

𝐿2 , p=
𝐿2𝑝

𝜌𝛼𝑓
2     13 

The set of governing equations in dimensionless form becomes: 
𝜕𝑈

𝜕𝑋
+

𝜕𝑉

𝜕𝑌
= 0           14 

𝜕𝑈

𝜕𝜏
+ 𝑈

𝜕𝑈

𝜕𝑋
+ 𝑉

𝜕𝑈

𝜕𝑌
= −

𝜕𝑃

𝜕𝑋
+ 𝑃𝑟  

𝜕2𝑈

𝜕𝑋2 +
𝜕2𝑈

𝜕𝑌2        15 

𝜕𝑉

𝜕𝜏
+ 𝑈

𝜕𝑉

𝜕𝑋
+ 𝑉

𝜕𝑉

𝜕𝑌
= −

𝜕𝑃

𝜕𝑌
+ 𝑃𝑟  

𝜕2𝑉

𝜕𝑋2 +
𝜕2𝑉

𝜕𝑌2 + 𝑅𝑎.𝑃𝑟.𝜃𝑓      16 

 
𝜕𝜃𝑓

𝜕𝜏
+ 𝑈

𝜕𝜃𝑓

𝜕𝑋
+ 𝑉

𝜕𝜃𝑓

𝜕𝑌
 = 𝑘  

𝜕2𝜃𝑓

𝜕𝑋2 +
𝜕2𝜃𝑓

𝜕𝑌2  + Φ      17 

Where,Pr and Ra denotesPrantdland Rayleigh numberscorrespondingly; andθf the is dimensionless fluid 

temperature.  

Streamfunction-Vorticity Relation and Vorticity Transport Equation 

The equation below of streamfunction is demonstrating the connection between dimensionless streamfunction 

and dimensionless vorticity. 
𝜕2𝜓

𝜕𝑋2 +
𝜕2𝜓

𝜕𝑌2 = −𝛺          18 

 

IV. Numerical Method 
Finite Difference Solution Method 

Using Taylor series expansion to approximate spatial derivatives with second order centered difference, we get 

𝜕2∅

𝜕𝑥2 =
∅𝑖−1,𝑗
𝑛+1 −2∅𝑖 ,𝑗

𝑛+1+∅𝑖+1,𝑗
𝑛+1

∆𝑥2 + 𝑜(ℎ2)        19 

And 

𝜕2∅

𝜕𝑦2 =
∅𝑖 ,𝑗−1
𝑛+1 −2∅𝑖 ,𝑗

𝑛+1+∅𝑖+1,𝑗
𝑛+1

∆𝑦2 + 𝑜(ℎ2)        20 

 

 

Y

y 

X 

Z 
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Finite Difference Solution Technique for Parabolic Differential Equations 

Since energy equation and the vorticity equation are alike,Mobedi (1994), they can be written in form of a single 

generic equation  
𝜕∅

𝜕𝜏
+ 𝑈

𝜕∅

𝜕𝑋
+ 𝑉

𝜕∅

𝜕𝑌
= 𝐶  

𝜕2∅

𝜕𝑋2 +
𝜕2∅

𝜕𝑌2 + 𝑓       21 

Where  ∅is a generic dependent variable representingΩ.  

Equation 21 can be reduced to the following form; 
𝜕∅

𝜕𝜏
= 𝛿𝑋

2∅ + 𝛿𝑌
2∅ + 𝑓          22 

where 

𝛿𝑋
2∅ = 𝐶

𝜕2∅

𝜕𝑋2 − 𝑈
𝜕∅

𝜕𝑋
          23 

𝛿𝑌
2∅ = 𝐶

𝜕2∅

𝜕𝑌2 − 𝑉
𝜕∅

𝜕𝑌
          24 

These can be referred as diffusion-convection terms since the terms 𝛿𝑌
2∅ and 𝛿𝑋

2∅ denoteconvection and 

diffusion transport in Y and X directioncorrespondingly. Several finite difference approaches can be used to 

solve the parabolic PDE. These approaches are commonlycategorized into 3categories, i.e., Alternating 

Direction Implicit (ADI), implicit and explicit approaches (Thiault 1985).  

 

Explicit Methods 

When the method is applied on Eqn21 for any point (i, j) in Cartesian coordinates when a simple forward 

difference for the time term is utilized can be expressed as; 
∅𝑖 .𝑗
𝑛+1−∅𝑖 ,𝑗

𝑛

∆𝜏
= 𝛿𝑋

2∅𝑖 ,𝑗
𝑛 + 𝛿𝑌

2∅𝑖 ,𝑗
𝑛 + 𝑓𝑖 ,𝑗

𝑛         25 

Where ∅𝑖 ,𝑗
𝑛  and ∅𝑖 .𝑗

𝑛+1denote the estimate of dependent parameter∅at node (i, j) at n
th

 and (n+1)
th

 time steps, 

correspondingly. By taking the numerical spatial derivatives of dependent parameter in the preceding time step, 

n
th

 inEqn25 the unknown estimate of dependent parameter at point (i, j),∅𝑖 .𝑗
𝑛+1can be found. Since values of the 

dependent parameter at all points of the computational area at n
th 

time step are identified, it’s easy to determine 

the unknown ∅𝑖 .𝑗
𝑛+1in Eqn25.  

 

Implicit Method 

Applying implicit techniquewholly on eqn21 for any point (i, j) in Cartesian coordinate, when a simple forward 

difference for time term is utilized, can be expressed as; 
∅𝑖 .𝑗
𝑛+1−∅𝑖 ,𝑗

𝑛

∆𝜏
= 𝛿𝑋

2∅𝑖 ,𝑗
𝑛+1 + 𝛿𝑌

2∅𝑖 ,𝑗
𝑛+1 + 𝑓𝑖 ,𝑗

𝑛+1       26 

 In implicit technique, the spatial derivative of dependent parameter at the same time step determines the 

dependent parametervalue at a new time step for a point (i, j),∅𝑖 ,𝑗
𝑛+1. Therefore, m nodal equations must be 

acquired and solutions found so as the value of dependent parametercan be determinedfor a new time step in the 

computational area with m points. Thus, parabolic differential equationsolution with implicit techniquemight be 

more complexcompared to explicit technique.  

 

ADI method 

The ADI method splits the finite difference equation into two, one having the x – direction and the 

other the y – direction. Every time step is divided into two sub-steps of equal duration 1 2 ∆𝑡 and approximating 

the spatial derivatives in a partially implicit manner while working sequentially and alternating in the x – and y 

– direction 

Use of ADI technique on Eqn21when simple forward difference for time term is utilized for any point (i, j) in 

Cartesian coordinatemay be expressed in 2stages as; 

∅𝑖 .𝑗
𝑛+1/2

−∅𝑖 ,𝑗
𝑛

∆𝜏/2
= 𝛿𝑋

2∅𝑖 ,𝑗
𝑛+1/2

+ 𝛿𝑌
2∅𝑖 ,𝑗

𝑛 + 𝑓𝑖 ,𝑗
𝑛        27 

∅𝑖 .𝑗
𝑛+1−∅𝑖 ,𝑗

𝑛+1/2

∆𝜏/2
= 𝛿𝑋

2∅𝑖 ,𝑗
𝑛+1/2

+ 𝛿𝑌
2∅𝑖 ,𝑗

𝑛+1 + 𝑓𝑖 ,𝑗
𝑛+1/2

      28 

Where Eqn27 is explicit for y - direction and implicit for x-direction and Eqn28 is explicit for x - direction and 

implicit for y-direction.  

Eqns 27 and 28 can be organized as;  

 1 −
∆𝜏

2
𝛿𝑋

2 ∅𝑖 ,𝑗
𝑛+1/2

=  1 +
∆𝜏

2
𝛿𝑌

2 ∅𝑖 ,𝑗
𝑛 +

∆𝜏

2
𝑓𝑖 ,𝑗
𝑛       29 

 1 −
∆𝜏

2
𝛿𝑌

2 ∅𝑖 ,𝑗
𝑛+1 =  1 +

∆𝜏

2
𝛿𝑋

2 ∅𝑖 ,𝑗
𝑛 +

∆𝜏

2
𝑓𝑖 ,𝑗
𝑛+1/2

      30 

As it can be seen, the most importantbenefit of ADI techniqueis that result of the equations can be found after 

two stages with regard to a fully implicit technique. 
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V. Discussionof Results 
Isotherms  

In figure 2, 3, 4 and 5 the maximum temperature is 117K, 56.7K, 42.6K and 34.2K respectively. The 

high temperatures are evident on the left side wall. In all cases two round motion in opposite directions 

(anticlockwise and clockwise direction). There is rises up of hot less dense particles which losses its heat with 

distance as shown by change in color. In between the two isothermal walls there is mixing of air particles which 

is a region of thermal equilibrium and is a relatively warm region. In fig 4 and 5, temperature uniformity is 

achieved. In conclusion, it is evident that maximum temperature decreases with increase in aspect ratio.  

 

Fig. 2Isotherm of aspect ratio 2 

 
 

Fig. 3Isotherm of aspect ratio 4 

 
 

Fig. 4Isotherm of aspect ratio 6 
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Fig. 5Isotherm of aspect ratio 8 

 
 

Contours of Velocity Magnitudes 

In figures 6, 7, 8 and 9, the highest velocity of air particles is 0.456m/s, 0.352m/s, 0.308m/s and 0.303 

m/s respectively.Vortices are more for aspect ratio of 2 which become parallel as aspect ratio increases. At this 

point it is evident that as aspect ratio increases the flow becomes less turbulent. 

 

Fig. 6Contours of velocity magnitude of aspect ratio 2 

 
 

Fig. 7Contours of velocity magnitude of aspect ratio 4 
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Fig. 8Contours of velocity magnitude of aspect ratio 6 

 
 

Fig. 9Contours of velocity magnitude of aspect ratio 8 

 
 

Streamline Distribution 

The lowestspeed of an element indicated here for aspect ratio of 2 is 0.158Kg/s followed by that of 

aspect ratio 4 which is 0.185Kg/s. This value increases as aspect ratio increases as depicted by that of aspect 

ratio 6 which is 0.246Kg/s and the highest speed which is 0.278 Kg/s as shown by that of aspect ratio 8.  In fig 

10, the vortices are big in size and they assume a circular path which deforms as distance increases from their 

centers. Infig 11, radius of circle reduces which as well decreases as the aspect ratio increases to 8 as seen in fig 

12. In fig 13 the two centre cell deforms and takes an oval shape. The vortices become parallel as aspect ratio 

increases. 
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Fig. 10Contours of streamlines of aspect ratio 2 

 
 

Fig. 11Contours of streamlines of aspect ratio 4 

 
 

Fig. 12Contours of streamlines of aspect ratio 6 
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Fig. 13Contours of streamlines of aspect ratio 8 

 
 

VI. Conclusion 
Streamlines, isotherms and velocity magnitudes for aspect ratio 2, 4, 6, and 8 were generated and 

showed that the increase in aspect ratio decreased the turbulence.The results showed that increased aspect ratio 

decreased speed and vortices became more parallel thus decreasing turbulence. So, the aspect ratio has 

animportantinfluence in temperature field and fluid stream in horizontal enclosures heated from the side. 
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