On (f,g)-Derivations in BG-algebras

Wellya Aziz¹, Sri Gemawati², Leli Deswita³

^{1,2,3}(Department of mathematics, University of Riau, Indonesia) Corresponding Author: Wellya Aziz

Abstract: In this paper, we discuss (l,r)-f-derivation, (r,l)-f-derivation, and (f,g)-derivation in BG-algebra, and investigate some of related properties. Also, the notions of left f-derivation and left (f,g)-derivation in BG-algebra are introduced and some of related properties are investigated. **Keyword:** BG-algebra, (l,r)-f-derivation, (r,l)-f-derivation5, (f,g)-derivation

Date of Submission: 17-07-2020 Date of Acceptance: 01-08-2020

I. Introduction

In 2002, the concept of *B*-algebra [1] was introduced by J. Neggers and H.S. Kim. *B*-algebra (X; *, 0) is an algebra of type (2, 0), that is, a nonempty set X together with a binary operation * and a constant 0 satisfying the following axioms for all $x, y, z \in X$: (*B*1) x * x = 0, (*B*2) x * 0 = x, and (*B*3) (x * y) * z = x * (z * (0 * y)). Furthermore, in 2008, C. B. Kim and H. S. Kim [2] introduced a new notion, called a *BG*-algebra which is a generalization of *B*-algebra, i.e., (*B*1), (*B*2), and (*BG*) (x * y) * (0 * y) = x, for all $x, y \in X$. In the same paper, the concept of homomorphism *BG*-algebras was also introduced. A mapping $d : X \to Y$ is called a *BG*-homomorphism if d(x * y) = d(x) * d(y), for any $x, y \in X$. A homomorphism d of *BG*-algebra X is called an endomorphism if $d : X \to X$.

The concepts of *BG*-algebra have been discussed by researchers, for instance the concept of derivation. The notion of derivation from the analytic theory was introduced by Posner to a prime ring in 1957. In [3], Jun and Xin applied the notion of derivation in ring and *near* ring theory to *BCI*-algebras. Abujabal and Al-Shehri [4] introduced left derivation in *BCI*-algebras. Then, Zhan and Liu [5] introduced the notion of *f*-derivation in *BCI*-algebras, where *f* is an endomorphism in *BCI*-algebras. In 2010, Al-Shehrie [6] introduced the notion of derivation in *B*-algebras which is defined in a way similar to the notion in *BCI*-algebras. Furthermore, Ardekani and Davvas [7] introduced the notion (*f*, *g*)-derivations in *B*-algebras, where *f*, *g* are two endomorphisms in *B*-algebras, and also investigated some properties related to this concept. In 2019, Kamaludin et al. [8] introduced the notion of derivation in *BG*-algebras which is defined in a way similar to the notion and and also investigated some properties related to this concept. In 2019, Kamaludin et al. [8] introduced the notion of derivation in *BG*-algebras which is defined in a way similar to the notion in *B*-algebras and investigated some of related properties.

The objective of this paper is to define f-derivation in BG-algebras, and then investigate left f-derivation in BG-algebras. Finally, we study (f, g)-derivation in BG-algebras and some related are explored.

II. Preliminaries

In this section, we recall the notion of *B*-algebra and *BG*-algebra and review some properties which we will need in the next section. Some definitions and theories related to (f, g)-derivation in *BG*-algebras that have been discussed by several authors [1, 2, 4, 7, 8, 9] will also be presented.

Definition 2.1. [1] A *B*-algebra is a non-empty set *X* with a constant 0 and a binary operation "*" satisfying the following axioms: for all $x, y, z \in X$,

- (B1) x * x = 0,
- (B2) x * 0 = x,
- (B3) (x * y) * z = x * (z * (0 * y)).

A non-empty subset S of B-algebra (X ; *, 0) is called a subalgebra of X if $x * y \in S$, for all $x, y \in S$. The concept of 0-*commutative* B-algebras was also introduced in [9].

Definition 2.2. [9] A *B*-algebra (X; *, 0) is said to be 0-*commutative* if x * (0 * y) = y * (0 * x), for any $x, y \in X$.

Example 1. Let $A = \{0, 1, 2\}$ be a set with *Cayley* table as follows:

Table	1:	Cayley	table	for	(A	;	*,	0)	

*	0	1	2
0	0	2	1
1	1	0	2
2	2	1	0

From Table 1 we get the value of main diagonal is 0, such that A satisfies x * x = 0, for all $x \in A$ (*B1* axiom). In the second column we see that for all $x \in A$, then x * 0 = x (*B2* axiom) and it also satisfies (x * y) * z = x * (z * (0 * y)), for all $x, y, z \in A$. Hence, (A; *, 0) be a *B*-algebra. It easy to check (A; *, 0) satisfies x * (0 * y) = y * (0 * x), for all $x, y \in A$. Hence, A be a 0-commutative B-algebra.

Example 2. Let $X = \{0, 1, 2, 3, 4, 5\}$ be a set with *Cayley* table as follows:

Table 2: <i>Cayley</i> table for $(X; *, 0)$							
*	0	1	2	3	4	5	
0	0	2	1	3	4	5	
1	1	0	2	4	5	3	
2	2	1	0	5	3	4	
3	3	4	5	0	2	1	
4	4	5	3	1	0	2	
5	5	3	4	2	1	0	

Then, (X; *, 0) is a *B*-algebra and the set $S = \{0, 1, 2\}$ is a subalgebra of *X*.

The concept of (f,g)-derivation in *B*-algebra was discussed in [7]. For a *B*-algebra (X;*,0), one can define binary operation " \wedge " as $x \wedge y = y * (y * x)$, for all $x, y \in X$. A mapping *f* of a *B*-algebra *X* into itself is called an endomorphism of *X* if f(x * y) = f(x) * f(y), for all $x, y \in X$. Note that f(0) = 0.

Definition 2.3. [7] Let (X; *, 0) be a *B*-algebra. By a *left-right f*-derivation (briefly, (l, r)-*f*-derivation) of *X*, a self-map *d* of *X* satisfying the identity $d(x * y) = (d(x) * f(y)) \land (f(x) * d(y))$, for all $x, y \in X$, where *f* is an endomorphism of *X*. If *X* satisfies the identity $d(x * y) = (f(x) * d(y)) \land (d(x) * f(y))$, for all $x, y \in X$, then we say that *d* is a (r, l)-*f*-derivation. Moreover, if *d* is both a (l, r)-*f*-derivation and a (r, l)-*f*-derivation, we say that *d* is a *f*-derivation of *X*.

Definition 2.4. [7] Let (X; *, 0) be a *B*-algebra. By a (l, r)-(f, g)-derivation of *X*, a self-map *d* of *X* satisfying the identity $d(x * y) = (d(x) * f(y)) \land (g(x) * d(y))$, for all $x, y \in X$, where *f*, *g* are two endomorphisms of *X*. If *X* satisfies the identity $d(x * y) = (f(x) * d(y)) \land (d(x) * g(y))$, for all $x, y \in X$, then we say that *d* is a (r, l)-(f, g)-derivation. Moreover, if *d* is both a (l, r)-(f, g)-derivation and a (r, l)-(f, g)-derivation, we say that *d* is a (f, g)-derivation of *X*.

Definition 2.5. [2] A *BG*-algebra is a non-empty set X with a constant 0 and a binary operation "*" satisfying the following axioms: for all $x, y \in X$,

(B1) x * x = 0,(B2) x * 0 = x,(BG) (x * y) * (0 * y) = x.

Definition 2.6. [2] A *BG*-algebra (X; *, 0) is said to be 0-*commutative* if x * (0 * y) = y * (0 * x), for all $x, y \in X$.

A mapping *f* of a *BG*-algebra *X* into itself is called an endomorphism of *X* if f(x * y) = f(x) * f(y), for all $x, y \in X$. Note that f(0) = 0.

Example 3. Let $X = \{0, 1, 2, 3\}$ be a set with *Cayley* table as follows:

DOI: 10.9790/5728-1604031420

Table 5: Cayley table for $(X; *, 0)$						
*	0	1	2	3		
0	0	1	2	3		
1	1	0	3	2		
2	2	3	0	1		
3	3	2	1	0		

Table 3: *Cayley* table for (X; *, 0)

Then, from Table 3 it can be shown that (X; *, 0) is a *BG*-algebra.

Theorem 2.7. [2] If (X; *, 0) is a *BG*-algebra, then

(i) The right cancellation law hold, which is x * y = z * y implies x = z,

(ii) 0 * (0 * x) = x, for all $x \in X$,

(iii) If x * y = 0, then x = y, for all $x, y \in X$,

(iv) If 0 * x = 0 * y, then x = y, for all $x, y \in X$,

(v) (x * (0 * x)) * x = x, for all $x \in X$.

The Theorem 2.7 has been proved in [2].

For a *BG*-algebra (X; *, 0), we denote $x \land y = y * (y * x)$.

Definition 2.8. [8] Let (X; *, 0) be a *BG*-algebra. By a (l, r)-derivation of *X*, a self-map *d* of *X* satisfying the identity $d(x * y) = (d(x) * y) \land (x * d(y))$, for all $x, y \in X$. If *X* satisfies the identity $d(x * y) = (x * d(y)) \land (d(x) * y)$, for all $x, y \in X$, then we say that *d* is a (r, l)-derivation. Moreover, if *d* is both a (l, r)-derivation and a (r, l)-derivation, we say that *d* is a derivation of *X*.

Definition 2.9. [8] Let (X; *, 0) be a *BG*-algebra. By a left derivation in *X*, a self-map *d* of *X* satisfying the identity $d(x * y) = (x * d(y)) \land (y * d(x))$, for all $x, y \in X$.

Definition 2.10. [8] Let (X; *, 0) be a *BG*-algebra. A self-map *d* is said to be *regular* if d(0) = 0.

III. (f,g)-Derivation in BG-algebra

Let (X; *, 0) be a *BG*-algebra. Since a ring have two binary operations, then one can define binary operation " \wedge " as $x \wedge y = y * (y * x)$, for all $x, y \in X$. Let *d* is a self-map of *X* and *f* is an endomorphism of *X*, then by definition of derivation in ring we have

$d(x * y) = (d(x) * f(y)) \land (f(x) * d(y))$	(3.1)
From equation (3.1) we obtain all of <i>f</i> -derivations in <i>X</i> , i.e.,	
$d(x * y) = (f(x) * d(y)) \land (d(x) * f(y))$	(3.2)
$d(x * y) = (f(x) * d(y)) \land (f(y) * d(x))$	(3.3)
$d(x * y) = (d(y) * f(x)) \land (f(y) * d(x))$	(3.4)
$d(x * y) = (d(y) * f(x)) \land (d(x) * f(y))$	(3.5)
$d(x * y) = (d(x) * f(y)) \land (d(y) * f(x))$	(3.6)
Then, we investigate equations (3.1) to (3.6), for all $x, y \in X$:	
$1 \mathbf{D} (2.1) 1 (1.1) (1.1) \mathbf{C} (1.1) \mathbf{C} (1.1) \mathbf{C} \mathbf{C} $.1 * 1

1. By equation (3.1) we obtain $d(x * y) = (d(x) * y) \land (x * d(y))$. Since, this derivation begins from left to right, it is then called *left-right* derivation (briefly, (l, r)-derivation).

- 2. By equation (3.2) obtained $d(x * y) = (x * d(y)) \land (d(x) * y)$. Since, this derivation begins from right to left, it is then called *right-left* derivation (briefly, (r, l)-derivation).
- 3. If d is both a (l,r)-derivation and a (r,l)-derivation, we say that d is a derivation of X.
- 4. By equation (3.3) we yield $d(x * y) = (x * d(y)) \land (y * d(x))$, we say that d is a left derivation of X.
- 5. By equation (3.4) we obtain $d(x * y) = (d(y) * f(x)) \land (f(y) * d(x))$. If operation * is a *commutative* in X, then it is the same by equation (3.3).
- 6. By equation (3.5) we obtain $d(x * y) = (d(y) * f(x)) \land (d(x) * f(y))$. If operation * is a *commutative* in X, then it is the same by equation (3.2).
- 7. By equation (3.6) we obtain $d(x * y) = (d(x) * f(y)) \land (d(y) * f(x))$. If operation * is a *commutative* in X, then it is the same by equation (3.1).

From all of *f*-derivations in *BG*-algebras investigated from 1 to 7 above, we get the following definitions.

Definition 3.1. Let (X; *, 0) be a *BG*-algebra. By a (l, r)-*f*-derivation of *X*, a self-map *d* of *X* satisfying the identity $d(x * y) = (d(x) * f(y)) \land (f(x) * d(y))$, for all $x, y \in X$, where *f* is an endomorphism of *X*. If *X* satisfies the identity $d(x * y) = (f(x) * d(y)) \land (d(x) * f(y))$, for all $x, y \in X$, then we say that *d* is a (r, l)-*f*-derivation. Moreover, if *d* is both a (l, r)-*f*-derivation and a (r, l)-*f*-derivation, we say that *d* is a *f*-derivation of *X*.

Definition 3.2. Let (X; *, 0) be a *BG*-algebra. By a left *f*-derivation in *X*, a self-map *d* of *X* satisfying the identity $d(x * y) = (f(x) * d(y)) \land (f(y) * d(x))$, for all $x, y \in X$, where *f* is an endomorphism of *X*.

Example 1. Let (Z; -, 0) be a set of integers Z with a subtraction operation and a constant 0. Then, it is easy to prove that Z is a BG-algebra. Let d is a self-map of X by d(x) = f(x) - 1, for all $x \in Z$, where f is an endomorphism of Z, then from Definition 3.1 we have d(x - y) = f(x - y) - 1 = f(x) - f(y) - 1, for all x, $y \in Z$ and we get

$$\begin{aligned} d(x - y) &= (d(x) - f(y)) \land (f(x) - d(y)) \\ &= (f(x) - 1 - f(y)) \land (f(x) - (f(y) - 1)) \\ &= (f(x) - f(y) - 1) \land (f(x) - (f(y) - 1)) \\ &= f(x) - f(y) - 1. \end{aligned}$$

Thus *d* is a (*l*, *r*)-*f*-derivation in *Z*. But, for all *x*, *y* \in *Z* we have that
 $(f(x) - d(y)) \land (d(x) - f(y)) &= (f(x) - (f(y) - 1)) \land (f(x) - 1 - f(y)) \\ &= (f(x) - f(y) + 1) \land (f(x) - f(y) - 1) \\ &= (f(x) - f(y) - 1) - ((f(x) - f(y) - 1) - (f(x) - f(y) + 1)) \\ &= (f(x) - f(y) - 1) - (-2) \\ &= f(x) - f(y) + 1 \\ &\neq d(x - y). \end{aligned}$
This shows that *d* is not a (*r*,*l*)-*f*-derivation in *Z*. Furthermore, from Definition 3.2 for all *x*, *y* \in *Z* we obtain
 $(f(x) - d(y)) \land (f(y) - d(x)) = (f(x) - (f(y) - 1)) \land (f(y) - (f(x) - 1)) \\ &= (f(x) - f(y) + 1) \land (f(y) - f(x) + 1) \\ &= (f(y) - f(x) + 1) - ((f(y) - f(x) + 1) - (f(x) - f(y) + 1))) \\ &= (f(y) - f(x) + 1) - (2f(y) - 2f(x)) \\ &= -f(y) - f(x) + 1 \\ &\neq d(x - y) \end{aligned}$

Hence, this shows that d is not a left f-derivation in Z.

Example 2. Let $X = \{0, 1, 2\}$ be a set with *Cayley* table as follows:

Table 4: Cayley table for $(X; *, 0)$								
	*	0	1	2				
	0	0	2	1				
	1	1	0	2				
	2	2	1	0				

Then, it is easy to show that X is a BG-algebra. Define a map $d, f: X \to X$ by

$$d(x) = f(x) = \begin{cases} 0 & \text{if } x = 0, \\ 2 & \text{if } x = 1, \\ 1 & \text{if } x = 2. \end{cases}$$

Then f is an endomorphism of X. Also, it can be shown that d is a (l, r)-f-derivation and a (r, l)-f-derivation of X, we say that d is a f-derivation of X. We can also show that d is a left f-derivation in X.

Theorem 3.3. Let (X; *, 0) be a *BG*-algebra, *d* is a self-map of *X* and *d* is a *regular*, where *f* is an endomorphism of *X*.

- (i) If *d* is a (l, r)-*f*-derivation in *X*, then $d(x) = d(x) \land f(x)$, for all $x \in X$,
- (ii) If *d* is a (*r*,*l*)-*f*-derivation in *X*, then $d(x) = f(x) \land d(x)$, for all $x \in X$.

Proof. Let *X* be a *BG*-algebra, where *f* is an endomorphism of *X*,

- (i) If *d* is a (l, r)-*f*-derivation in *X*, then $d(x * y) = (d(x) * f(y)) \land (f(x) * d(y))$, for all $x, y \in X$. Since *d* is a *regular*, then d(0) = 0, and by axiom *B*2 of *BG*-algebra we have
 - d(x) = d(x * 0) $= (d(x) * f(0)) \land (f(x) * d(0))$ $= (d(x) * 0) \land (f(x) * 0)$

 $= d(x) \wedge f(x).$

Hence, this shows that $d(x) = d(x) \wedge f(x)$.

(ii) If d is a (r,l)-f-derivation in X, then obtained $d(x * y) = (f(x) * d(y)) \land (d(x) * f(y))$, for all $x, y \in X$. Since d is a *regular*, then d(0) = 0, and by axiom B2 of BG-algebra we have

d(x) = d(x * 0) $= (f(x) * d(0)) \land (d(x) * f(0))$ $= (f(x) * 0) \land (d(x) * 0)$ $= f(x) \land d(x).$

Thus, this shows that $d(x) = f(x) \wedge d(x)$.

The converse of Theorem 3.3 need not to be true in general.

From definition of *f*-derivation in *BG*-algebra, we construct a definition of (f,g)-derivation in *BG*-algebra. **Definition 3.4.** Let (X; *, 0) be a *BG*-algebra. By a (l, r)-(f, g)-derivation of *X*, a self-map *d* of *X* satisfying the identity $d(x * y) = (d(x) * f(y)) \land (g(x) * d(y))$, for all $x, y \in X$, where *f*, *g* are two endomorphisms of *X*. If *X* satisfies the identity $d(x * y) = (f(x) * d(y)) \land (d(x) * g(y))$, for all $x, y \in X$, then we say that *d* is a (r, l)-(f, g)-derivation. Moreover, if *d* is both a (l, r)-(f, g)-derivationand a (r, l)-(f, g)-derivation, we say that *d* is a (f, g)-derivation of *X*.

Definition 3.5. Let (X; *, 0) be a *BG*-algebra. By a left (f,g)-derivation in *X*, a self-map *d* of *X* satisfying the identity $d(x * y) = (f(x) * d(y)) \land (g(y) * d(x))$, for all $x, y \in X$, where f, g are two endomorphisms of *X*.

Example 3. Let $X = \{0, 1, 2, 3\}$ be a set with *Cayley* table as follows:

Table 5: <i>Cayley</i> table for $(X; *, 0)$							
*	0	1	2	3			
0	0	2	1	3			
1	1	0	3	2			
2	2	3	0	1			
3	3	1	2	0			

Then, it is easy to show that *X* is a *BG*-algebra. Define a map $d, f: X \to X$ and *g* by

$$d(x) = f(x) = \begin{cases} 0 & \text{if } x = 0, \\ 2 & \text{if } x = 1, \\ 1 & \text{if } x = 2, \\ 3 & \text{if } x = 3, \end{cases} \text{ and } g(x) = \begin{cases} 0 & \text{if } x = 0 \\ 3 & \text{if } x = 1, 2, 3. \end{cases}$$

Then, we can prove that f and g are two endomorphisms of X and d is both a f-derivation and a (f,g)-derivation in X.

Theorem 3.6. Let (X; *, 0) be a *BG*-algebra, *d* be a (l, r)-(f,g)-derivation in *X*, and *d* is a *regular*, then for all $x \in X$, $d(x) = d(x) \land g(x)$, where *f* and *g* are two endomorphisms of *X*.

Proof. Let X be a BG-algebra, d be a (l, r)-(f,g)-derivation in X, where f and g are two endomorphisms of X, then obtained $d(x * y) = (d(x) * f(y)) \land (g(x) * d(y))$, for all $x, y \in X$. Since d is a regular, then d(0) = 0, and by axiom B2 of BG-algebra we have

d(x) = d(x * 0) $= (d(x) * f(0)) \land (g(x) * d(0))$ $= (d(x) * 0) \land (g(x) * 0)$ $= d(x) \land g(x).$ Hence, this shows that $d(x) = d(x) \wedge g(x)$.

Let (X;*,0) be a *BG*-algebra, *d* be a (r,l)-(f,g)-derivation in *X*, and *d* is a *regular*, then $d(x*y) = (f(x)*d(y)) \land (d(x)*g(y))$, for all $x, y \in X$. Since *d* is a *regular*, then d(0) = 0, and by axiom *B2* of *BG*-algebra we have

d(x) = d(x * 0) $= (f(x) * d(0)) \land (d(x) * g(0))$ $= (f(x) * 0) \land (d(x) * 0)$ $= f(x) \land d(x).$

Thus, if d is a regular, then $d(x) = f(x) \wedge d(x)$, which is notion in a way similar to the notion in Theorem 3.3(ii) for d be a (r,l)-f-derivation.

Theorem 3.7. Let (X;*,0) be a *BG*-algebra. If *d* is a left (f,g)-derivation in *X* and *d* is a *regular*, then d(0) = f(x) * d(x) for all $x \in X$, where *f* and *g* are two endomorphisms of *X*.

Proof. Let (X; *, 0) be a *BG*-algebra, f, g are two endomorphisms of X, and d be a left (f,g)-derivation in X, then we have $d(x * y) = (f(x) * d(y)) \land (g(y) * d(x))$, for all $x, y \in X$. Since d is a *regular*, then d(0) = 0, and by axioms *B*1 and *B*2 of *BG*-algebra we obtain d(0) = d(x + y)

$$\begin{aligned} & d(0) = d(x * x) \\ & 0 = (f(x) * d(x)) \land (g(x) * d(x)) \\ & (g(x) * d(x)) * (g(x) * d(x)) = (g(x) * d(x)) * ((g(x) * d(x)) * (f(x) * d(x))) \\ & (g(x) * d(x)) = (g(x) * d(x)) * (f(x) * d(x)) \\ & (g(x) * d(x)) * 0 = (g(x) * d(x)) * (f(x) * d(x)) \\ & 0 = f(x) * d(x) \\ & d(0) = f(x) * d(x). \end{aligned}$$

Hence, d(0) = f(x) * d(x), for all $x \in X$.

Corollary 3.8. Let (X;*,0) be a *BG*-algebra, *d* be a left (f,g)-derivation in *X*, where *f*, *g* are two endomorphisms of *X*, and *d* is a *regular*, then

- (i) f(x) * d(x) = f(y) * d(y), for all $x, y \in X$,
- (ii) d is a one-one function.
- (iii) f(x) = d(x), for all $x, y \in X$.

Proof.

- (i) Let X be a BG-algebra, d be a left (f,g)-derivation in X, then from Theorem 3.7 obtained d(0) = f(x) * d(x), for all $x \in X$. Then, replacing x by $y \in X$ we have that d(0) = f(y) * d(y), such that f(x) * d(x) = f(y) * d(y).
- (ii) Let $x, y \in X$ such that d(x) = d(y). By Theorem 3.7 and Corollary 3.8 (i) obtained d(0) = f(x) * d(x) and d(0) = f(y) * d(y), such that

$$d(0) = d(0),$$

$$f(x) * d(x) = f(y) * d(y),$$

$$f(x) * d(x) = f(y) * d(x),$$

$$f(x) = f(y),$$

$$x = y.$$

Hence, this shows that d is a one-one function.

(iii) Since *d* is a *regular*, then d(0) = 0, by Theorem 3.7 and the axiom *B1* of *BG*-algebra, for all $x \in X$ obtained

$$d(0) = f(x) * d(x), 0 = f(x) * d(x), f(x) * f(x) = f(x) * d(x), f(x) = d(x).$$

Proving the corollary.

IV. Conclusion

The notion of (f,g)-derivation in BG-algebra, which is defined in a way similar to the notion in B-algebra has similarities in some of related properties, such as if d is a regular, then $d(x) = f(x) \wedge d(x)$, for d be a (r,l)-f-derivation or a (r,l)- (f,g)-derivation in BG-algebra. However, they also have some different properties.

References

- [1] J. Neggers and H. S. Kim, On B-algebras, Matematicki Vesnik, 54, 2002, 21-29.
- [2] C. B. Kim and H. S. Kim, On BG-algebras, Demonstratio Mathematica, 41, 2008, 497-505.
- [3] Y. B. Jun and X. L. Xin, On derivations of BCI-algebras, Information Sciences, 159, 2004, 167-176.
- [4] H. A. S. Abujabal and N. O. Al-Shehri , On Left Derivations of *BCI*-algebras, *Soochow Journal Of Mathematics*, 33, 2007, 435-444.
- [5] J. Zhan and Y. L. Liu, f-derivations of BCI-algebras, International Journal of Mathematics and Mathematical Sciences, 11, 2005, 1675-1684.
- [6] N. O. Al-shehrie, Derivation of *B*-algebras, *JKAU: Sci*, 22, 2010, 71-82.
- [7] L. K. Ardekani and B. Davvas, On (f,g)-derivations of *B*-algebras, *Matematk Bechk*, 2, 2014, 125-132.
- [8] Kamaludin, S. Gemawati, and Kartini, Derivations in BG-algebras, International Journal of Algebra, 13, 2019, 249-257.
- [9] K. Iseki, On BCI-algebras, *Mathematics Seminar Notes*, 8, 1980, 125-130.
- [10] H. S. Kim and H. G. Park, On 0-commutative B-algebras, Scientiae Mathematicae Japonicae Online, 18, 2005, 31-36.