β p-regular spaces and β p-normal spaces in topology

Govindappa Navalagi

Department of Mathematics, KIT Tiptur-572202, Karnataka, India.

Abstract

The aim of this paper is to introduce and study some weak forms of regular spaces and weak forms of normal spaces, viz. βp -regular spaces, βp -normal spaces and βp -normal spaces by using β -closed sets, β -open sets, preclosed sets and preopen sets. Also, we studied some related functions like βp -closed functions, βp -continuous functions for preserving these regular spaces and normal spaces.

Mathematics Subject Classification (2010): 54 A 05, 54 C 08; 54 D 15

Key words and Phrases: preopen sets, β -closed sets, β -open sets, E.D. spaces ,PS-spaces , βgp -closedness , βp -continuity, β -continuity, β -irresoluteness, preirresoluteness

Date of Submission: 12-09-2020 Date of Acceptance: 29-09-2020

I. Introduction

In 1982, A.S.Mashhour et al [20] introduced and studied the concepts of preopen sets and precontinuity in topological spaces and in 1983, M.E.Abd El–Monsef et al [1] have introduced the concepts of β -open sets and β -continuity in topology . Latter , these β -open sets are recalled as semipreopen sets , which were introduced by D.Andrejevic in [6]. Further these preopen sets and β -open sets (= semipreopen sets) have been studied by various authors in the literature see [5, 7,11,12,13,24,26, 28, 29]. In 1970 and 1998 , respectively Levine [15] and T.Noiri et al. [34] have defined and studied the concept of g-closed sets and gp-closed sets in topology,respectively. The aim of this paper is to introduce and study some weak forms of regular spaces and weak forms of normal spaces , viz. βp - regular spaces , $p\beta$ -regular spaces , βp -normal spaces and $p\beta$ -normal spaces by using β -closed sets and preopen sets. Also , we studied some related functions like βgp -closed functions , βgp -continuous functions for preserving these regular spaces and normal spaces .

II. Preliminaries

Throughout this paper X,Y will denote topological spaces on which no separation axioms assumed unless explicitly stated. Let $f: X \to Y$ represent a single valued function. Let A be a subset of X. The closure and interior of A are respectively denoted by Cl(A) and Int(A).

The following definitions and results are useful in the sequel.

Definition 2.1: A subset A of X is called

- (i) semiopen (in short, s-open) set [16] if $A \subset ClInt(A)$.
- (ii) preopen (in short , p-open) set [20] if $A \subset IntCl(A)$.
- (iii) β -open [1] (=semipreopen [6]) set if $A \subset CIIntCl(A)$.

The complement of a s-open (resp. p-open , β -open) set is called s-closed[9] (resp. p-closed [11] , β -closed [1]) set. The family of s-open (resp. p-open , β -open) sets of X is denoted by SO(X) (resp. PO(X) , $\beta O(X)$) .

Definition 2.2: The intersection of all p-closed (resp. β -closed) sets containing a subset A of space X is called the p-closure [11] (resp. β -closure [2]) of A and is denoted by pCl(A) (resp. β Cl(A)).

Definition 2.3 : The union of all p-open (resp. β-open) sets which are contained in A is called the p-interior[22] (resp. the β-interior [2]) of A and is denoted by pInt(A) (resp. βInt(A)).

Definition 2.4 [34]: A subset A of a space X is called gp-closed if $pCl(A) \subset U$ whenever $A \subset U$, und U is open set in X.

Definition 2.5[3]: A space X is said to be β -regular if for each closed set F and for each $x \in X$ -F, there exist two disjoint β -open sets U and V such that $x \in U$ and $F \subset V$.

Definition 2.6 [18]: A space X is said to be **s**-regular if for each closed set F and for each $x \in X - F$, there exist two disjoint **s-open** sets U and V such that $x \in U$ and $F \subset V$.

Definition 2.7 [11]: A space X is said to be **p**-regular if for each closed set F and for each $x \in X$ -F, there exist two disjoint **p-open** sets U and V such that $x \in U$ and $F \subset V$.

Definition 2.8 [10]: A space X is said to be α -regular if for each closed set F and for each $x \in X$ -F, there exist two disjoint α -open sets U and V such that $x \in U$ and $F \subset V$.

Definition 2.9 [17]: A space X is said to be s-normal if for any pair of disjoint closed subsets A and B of X, there exist disjoint s-open sets U and V such that $A \subset U$ and $B \subset V$.

Definition 2.10 [**19**]: A space X is said to be β -normal if for any pair of disjoint closed subsets A and B of X, there exist disjoint β -open sets U and V such that $A \subset U$ and $B \subset V$.

Definition 2.11 [26&35]: A space X is said to be **p**-normal if for any pair of disjoint closed subsets A and B of X, there exist disjoint **p-open** sets U and V such that $A \subset U$ and $B \subset V$.

Definition 2.12[23]: A space X is said to be α -normal if for any pair of disjoint closed subsets A and B of X, there exist disjoint α -open sets U and V such that $A \subset U$ and $B \subset V$.

Definition 2.13 [8]: A space X is said to be submaximal if every dense set of X is open in X (i.e., every preopen set of X is open in X).

Definition 2.14[39]: A space X is said to be extremally disconnected (in brief, E.D.,) space if Cl(G) is open set for each open set G of X.

Definition 2.15[5]: A space X is called PS-space if every preopen subset in it is semiopen.

Definition 2.16[31]: A space X is said to be β s-normal if for any pair of disjoint β -closed subsets A and B of X, there exist disjoint s-open sets U and V such that $A \subset U$ and $B \subset V$.

Definition 2.17 [31] : A space X is said to be β s-regular if for each β -closed set F and for each $x \in X$ -F, there exist s-open sets U and V such that $F \subset U$ and $x \in V$.

Definition 2.18 [31] : A space X is said to be β^* -regular if for each β -closed set F and for each $x \in X$ -F, there exist β -open sets U and V such that $F \subset U$ and $x \in V$.

Definition 2.19 [31]: A space X is said to be strongly β^* -regular if for each β -closed set F and for each $x \in X$ -F, there exists disjoint open sets U and V such that $F \subset U$ and $x \in V$.

Definition 2.20 [19]: A function $f: X \to Y$ is said to be β -irresolute if $f^{-1}(V)$ is is β -open set in X for each for each β -open set V in Y.

Definition 2.21[38]: A function $f: X \rightarrow Y$ is said to be preirresolute if $f^{-1}(V)$ is is p-open set in X for each for each p-open set V in Y.

Definition 2.22[22]: A function $f: X \rightarrow Y$ is said to be M-preopen if f(V) is is p-open set in Y for each for each p-open set V in X.

Definition 2.23[19]: A function $f: X \rightarrow Y$ is said to be M- β -closed if the image of each β -closed set of X is β -closed in Y.

Definition 2.24 [19]: A space X is called β -T₁ space if for each pair of distinct points x and y of X ,there exist β -open sets U and V such that $x \in U$ & $y \notin U$ and $y \in V$ & $x \notin V$.

Definition 2.25 [14]: A space X is called pre- T_2 space if for each pair of distinct points x and y of X ,there exist disjoint p-open sets U and V such that $x \in U$ and $y \in V$.

Lemma 2.26 [5] :For a space X the following conditions are equivalent :

- (i) X is E.D.-space
- (ii) every s-open subset is p-open
- (iii) every s-open subset is α -open
- (iv) every β-open subset is p-open

Lemma 2.27 [5]: For a space X the following conditions are equivalent:

- (i) X is PS-space
- (ii) every p-open subset is s-open
- (iii) every β -open subset is s-open
- (iv) every p-open subset is α -open

THEOREM 2.28 [13 & 32]: In an E.D.-space and submaximal-space X, then

 $\tau = \alpha O(X) = SO(X) = PO(X) = \beta O(X)$.

Lemma 2.29[20]: If $A \in SO(X)$ and $V \in PO(X)$ then $A \cap V$ is p-open in the subspace (A, τ_A) .

Lemma 2.30[11]: If $A \in \alpha O(X)$ and $V \in PO(X)$ then $A \cap V$ is p-open in the subspace (A, τ_A) .

III. Properties of βp-regular spaces

We, define the following.

Definition 3.1 : A topological space X is said to be βp -regular if for each β -closed set F of X and each point x in X - F, there exist disjoint p-open sets U and V such that $x \in U$ and $F \subset V$.

Definition 3.2: A topological space X is said to be $p\beta$ -regular if for each p-closed set F of X and each point x in X - F, there exist disjoint β -open sets U and V such that $x \in U$ and $F \subset V$.

Clearly, (i)every βp -regular $\rightarrow p$ -regular, (ii) βp -regular $\rightarrow \beta^*$ -regular ,(iii)strongly β^* -regular $\rightarrow \beta p$ -regular ,(iv) strongly β^* -regular \rightarrow regular , (v) β^* -regular and (vi) $\beta \alpha$ -regular $\rightarrow \beta s$ -regular as well as βp -regular.

We,recall the following.

Lemma 3.3 [2]: If A is subset of X and $B \in \beta O(X)$ such that $A \cap B = \emptyset$ then $\beta Cl(A) \cap B = \emptyset$. We, prove the following.

Theorem 3.4: For a topological space X the following statements are equivalent;

- (a) $X ext{ is } \beta p ext{-regular}$
- (b) For each $x \in X$ and for each β -open set U containing x there exists a p-open set V containing x such that $x \in V \subset pCl(V) \subset U$.
- (c) For each β -closed set F of X , $\cap \{pCl(V)/F \subset V \text{ and } V \in PO(X)\} = F$
- (d) For each nonempty subset A of X and each $U \in \beta O(X)$ if $A \cap U \neq \emptyset$ then there exists $V \in PO(X)$ such that $A \cap V \neq \emptyset$ and $pCl(V) \subset U$
- (e) For each nonempty subset A of X and each $F \in \beta F(X)$ if $A \cap F = \emptyset$ then there exists $V, W \in PO(X)$ such that $A \cap V \neq \emptyset$, $F \subset W$ and $V \cap W = \emptyset$.

Proof : (a) \Rightarrow (b) Let X be βp - regular space. Let $x \in X$ and U be β -open set containing x implies X - U is β -closed such that $x \notin X$ - U. Therefore by (a) there exists two p-open sets V and W such that $x \in V$ and $X - U \subset W$ $\Rightarrow X - W \subset U$. Since $V \cap W = \emptyset \Rightarrow pCl(V) \cap W = \emptyset \Rightarrow pCl(V) \subset X - W \subset U$. Therefore, $x \in V \subset pCl(V) \subset U$.

- (b) \Rightarrow (c) Let F be a β -closed subset of X and $x \notin F$, then X F is β -open set containing x. By (b) there exists p-open set U such that $x \in U \subset pCl(U) \subset X$ -F implies $F \subset X$ $pCl(U) \subset X$ -U i.e $F \subset V \subset X$ -U where V = X- $pCl(U) \in PO(X)$ and $x \notin V$ that implies $x \notin pCl(V)$ implies $x \notin PCl(V) \cap F \subset V \in PO(X)$. Hence, $\alpha \in PCl(V) \cap F \subset V \in PO(X)$ if $\alpha \in V \in PO(X)$ is $\alpha \in V \in PO(X)$.
- (c) \Rightarrow (d) A be a subset of X and $U \in \beta O(X)$ such that $A \cap U \neq \emptyset$.
- \Rightarrow there exists $x_0 \in X$ such that. $x_0 \in A \cap U$. Therefore X-U is β -closed set not containing $x_0 \Rightarrow x_0 \notin \beta Cl(X-U)$. By (c) , there exists $W \in PO(X)$ such that $X-U \subset W \Rightarrow x_0 \notin pCl(W)$. Put V = X-pCl(W) , then V is p-open set containing $x_0 \Rightarrow A \cap V \neq \emptyset$ and $pCl(V) \subset pCl(X-pCl(W)) \subset pCl(X-W)$. Therefore , $pCl(V) \subset pCl(X-W) \subset U$.
- (d) \Rightarrow (e) Let A be a nonempty subset of X and F be β -closed set such that $A \cap F = \emptyset$. Then X-F is β -open in X and $A \cap (X-F) \neq \emptyset$. Therefore by (d) , there exist $V \in PO(X)$ such that $A \cap V \neq \emptyset$ and $pCl(V) \subset X$ –F. Put W = X-pCl(V) then $W \in PO(X)$ such that $F \subset W$ and $W \cap V = \emptyset$.
- (f) \Rightarrow (a) Let $x \in X$ be arbitrary and F be β -closed set not containing x. Let $A=X\setminus F$ be a nonempty β -open set containing x then by (e) ,there exist disjoint p-open sets V and W such that $F \subset W$ and $A \cap V \neq \emptyset \Rightarrow x \in V$. Thus X is a βp -regular.

Theorem 3.5: In a topological space X following statements are equivalent;

- (a) X is βp -regular
- (b) for each β -open set U of X containing x there exists p-open set V such that $x \in V \subset pCl(V) \subset U$

Proof : (a) \Rightarrow (b) Let $x \in X$ and U be β -open set of X containing $x \Rightarrow X - U$ is β -closed set not containing x. As X is βp - regular , there exist disjoint p-open sets V and W such that $x \in V$ and $X - U \subset W \Rightarrow X - W \subset U$. As $V \cap W = \emptyset \Rightarrow pCl(V) \cap W = \emptyset \Rightarrow pCl(V) \subset X - W \subset U$. Hence $x \in V \subset pCl(V) \subset U$.

(b) \Rightarrow (a) Let for each $x \in X$, F be β -closed set not containing x, therefore X-F is β -open set containing x hence from (b) there exists p-open set V such that $x \in V \subset pCl(V) \subset X$ -F. Let U = X - pCl(V) then U is p-open set such that $F \subset U$, $x \in V$ and $U \cap V = \emptyset$. Thus there exists disjoint p-open sets U and V such that $x \in V$ and $F \subset U$. Therefore X is βp - regular.

In [31] the folloing are proved:

Lemma 3.6: For a space X, the following are true:

- (i) If X is β^* -regular space then it is β -regular.
- (ii) If X is strongly β^* regular space then it is β^* -regular space.

Theorem 3.7: For a topological space X the following statements are equivalent;

- (a) $X \text{ is } p\beta\text{-regular}$
- (b) For each $x \in X$ and for each **p**-open set U containing x there exists a β -open set V containing x such that $x \in V \subset \beta Cl(V) \subset U$.
- (c) For each **p**-closed set F of X, $\cap \{\beta Cl(V)/F \subset V \text{ and } V \in \beta O(X)\} = F$
- (d) For each nonempty subset A of X and each $U \in PO(X)$ if $A \cap U \neq \emptyset$ then there exists $V \in \beta O(X)$ such that $A \cap V \neq \emptyset$ and $\beta Cl(V) \subset U$
- (e) For each nonempty subset A of X and each $F \in \mathbf{PF}(X)$ if $A \cap F = \emptyset$ then there exists $V, W \in \beta O(X)$ such that $A \cap V \neq \emptyset$, $F \subset W$ and $V \cap W = \emptyset$.

The routine proof of the Theorem is omitted.

We,prove the following.

Theorem 3.8: β -T₁ space and β p-regular space is pre-T₂ space.

Proof : Let X be β - T_1 space and β p-regular space. As X is β - T_1 space, every singleton set $\{x\}$ is β -closed set for all $x \in X$. X being β p-regular and $\{x\}$ is a β -closed subset of X and Y be any point of X- $\{x\}$, then $X \neq Y$. By definition of Y-regularity, there exist disjoint p-open sets Y and Y such that $\{x\} \subset Y$ and Y and Y is pre-Y-Y space.

We, prove some subspace theorems in the following.

Theorem 3.9: If X be a β p-regular space and $G \in SO(X)$, then G is β p-regular as subspace.

Proof: Let F be a β -closed set of G and $x \in (G-F)$ then there exists a β -closed set H of X such that $F = G \cap H$ and $x \notin H$. Since X is βp -regular, therefore for each β -closed set H of X and $x \notin H$ there exist p-open sets U_x and V_H of X such that $x \in U_x$ and $H \subset V_H$ with $U_x \cap V_H = \emptyset$. Now, put $A = U_x \cap G$ and $B = V_H \cap G$ then A and B are p-open subsets of G by Lemma-2.29 such that $x \in A$ and $F \subset B$ with $A \cap B = \emptyset$. This shows that G is βp -regular space.

Similarly, one can prove the following in view of Lemma-2.30.

Theorem 3.10 : If X be a β p-regular space and $G \in \alpha O(X)$, then G is β p-regular as subspace.

Next, we prove some preservation theorems in the following.

Theorem 3.11 : If $f: X \to Y$ is a M-preopen , β -irresolute bijection and X is βp -regular space , then Y is βp -regular .

Proof: Let F be any β -closed subset of Y and $y \in Y$ with $y \notin F$. Since f is β -irresolute, $f^1(F)$ is β -closed set in X. Again, f is bijective, let f(x) = y, then $x \notin f^1(F)$. Since X is βp -regular, there exist disjoint p-open sets U and V such that $x \in U$ and $f^1(F) \subset V$. Since f is M-preopen bijection, we have $y \in f(U)$ and $F \subset f(V)$ and $f(U) \cap f(V) = f(U \cap V) = \emptyset$. Hence, Y is βp -regular space.

We, define the following.

Definition 3.12: A function $f: X \to Y$ is said to be always- β -closed if the image of each β -closed subset of X is β -closed set in Y.

Now, we prove the following.

Theorem 3.13 : If $f: X \to Y$ is an always β -closed, preirresolute injection and Y is βp -regular space, then X is βp -regular.

Proof: Let F be any β -closed set of X and $x \notin F$. Since f is an always β -closed injection, f(F) is β -closed set in Y and $f(x) \notin f(F)$. Since Y is β -regular space and so there exist disjoint p-open sets U and V in Y such

that $f(x) \in U$ and $f(F) \subset V$. By hypothesis, $f^1(U)$ and $f^1(V)$ are p-open sets in X with $x \in f^1(U)$, $F \subset f^1(V)$ and $f^1(U) \cap f^1(V) = \emptyset$. Hence, X is β p-regular space.

We, define the following.

Definition 3.14 : A function $f: X \to Y$ is said to be β p-continuous if the inverse image of each β -open set of Y is p-open set in X.

Next, we give the following.

Theorem 3.15 : If $f: X \to Y$ is an always β -closed, βp -continuous injection and Y is β -regular space, then X is βp -regular.

Implication Result 3.16: In view of Lemma-2.26, we have:

- (i)Every β s-regular space $\rightarrow \beta$ p-regular space,
- (ii)Every β s-regular space $\rightarrow \beta \alpha$ -regular space,
- (iii)Every β^* -regular space $\rightarrow \beta p$ -regular space

Implication Result 3.17: In view of Lemma-2.27, we have:

- (i) Every βp -regular space $\rightarrow \beta s$ -regular space,
- (ii)Every β p-regular space $\rightarrow \beta \alpha$ -regular space,
- (iii)Every β^* -regular space $\rightarrow \beta$ s-regular space

Implication Result 3.18: In view of Th.-2.28, we have:

Regular space = α -regular space = β -regular space = β -regular space

IV. Properties of β p-normal spaces.

We, define the following.

Definition 4.1: A function $f: X \to Y$ is said to be βgp -continuous if for each β -closed set F of Y, $f^{-1}(F)$ is gp-closed set in X.

It is obvious that a function $f: X \to Y$ is βgp -continuous if and only if $f^{-1}(V)$ is gp-open in X for each β -open set V of Y.

Definition 4.2: A function $f: X \to Y$ is said to be βgp -closed if for each β -closed set F of X, f(F) is gp-closed set in Y.

We, recall the following.

Definition 4.3: A function $f: X \rightarrow Y$ is said to be:

(i)pre-gp-continuous [37] if the inverse image of each p-closed set F of Y is gp-closed in X.

(ii)pre-gp-closed [34] if the image of each p-closed set of X is gp-closed in Y.

Clearly, (i) every pre- β gp-continuous function is pre-gp-continuous,

(ii) every pre- β gp-closed function is pre-gp-closed, since in both cases every p-closed set is β -closed set.

We ,prove the following.

Theorem 4.4: A surjective function $f: X \to Y$ is βgp -closed if and only if for each subset B of Y and each β -open set U of X containing $f^1(B)$, there exists a gp-open set V of Y such that $B \subset V$ and $f^1(V) \subset U$.

Proof : Suppose f is β gp-closed function. Let B be any subset of Y and U be any β -open set in X containing f $^1(B)$. Put V = Y - f(X-U). Then , V is gp-open set in Y such that $B \subset V$ and $f^1(V) \subset U$.

Conversely, let F be any β -closed set of X. Put B=Y-f(F), then we have $f^1(B)\subset X$ —F and X-F is β -open in X. There exists a gp-open set V of Y such that $B=Y-f(F)\subset V$ and $f^1(V)\subset X$ —F. Therefore, we obtain that f(F)=Y-V and hence f(F) is gp-closed set in Y. This shows that f is β gp-closed function. We,define the following.

Definition 4.5: A function $f: X \rightarrow Y$ is said to be strongly β -closed if the image of each β -closed set of X is closed in Y.

Definition 4.6 [25]: A function $f: X \rightarrow Y$ is said to be always gp-closed if the image of each gs-closed set of X is gs-closed in Y.

Theorem 4.7: Let $f: X \rightarrow Y$ and $g: Y \rightarrow Z$ be two functions . Then the composition function $gof: X \rightarrow Z$ is βgp -closed if f and g satisfy one of the following conditions :

- (i) f is β gp-closed and g is always gp-closed.
- (ii) f is strongly β -closed and g is gp-closed.

Proof: (i)Let H be any β -closed set in X and f is β gp-closed, then f(H) is gp-closed set in Y. Again, g is always gp-closed function and f(H) is gp-closed set in Y, then gof (H) is gp-closed set in Z. This shows that gof is β gp-closed function.

(ii)Let F be any β -closed set in X and f is strongly β -closed function, then f(F) is closed set in Y. Again, g is gp-closed function and f(F) is closed set in Y, then gof (F) is gp-closed set in Z. This shows that gof is β gp-closed function.

We, define the following.

Definition 4.8 : A function $f: X \to Y$ is said to be $gp\beta$ -closed if for each gp-closed set F of X , f(F) is β -closed set in Y.

Theorem 4.9: Let $f: X \rightarrow Y$ and $g: Y \rightarrow Z$ be two functions. Then.

- (i) if f is β -losed and g is β gp-closed, then gof is gp-closed.
- (ii) if f is β gp-closed and g is strongly gp-closed, then gof is strongly β -closed.
- (iii) if f is M- β -closed and g is β gp-closed, then gof is β gp-closed.
- (iv) if f is alays gp-closed and g is $gp\beta$ -closed, then gof is $gp\beta$ -closed.

Proof : (i). Let H be a closed set in X , then f(H) be β -closed set in Y since f is β -closed function. Again , g is β -closed and f(H) is β -closed set in Y then g(f(H)) = gof(H) is β -closed set in Z . Thus, gof is gp-closed function.

- (ii)Let F be any β -closed set in X and f is β gp-closed function, then f(F) is gp-closed set in Y. Again , g is strongly gp-closed and f(F) is gp-closed set in Y , then gof(F) is closed set in Z. This shows that gof is strongly β -closed function.
- (iii)Let H be any β -closed set in X and f is M- β -closed function then f(H) is β -closed set in Y. Again, g is β -gp-closed function and f(H) is β -closed set in Y, then gof (H) is gp-closed set in Z. Therefore, gof is β -gp-closed function.
- (iv)Let H be any gp-closed set in X and f is always gp-closed function , then f(H) be gp-closed set in Y . Again , g is gp β -closed function and f(H) is gp-closed set in Y, then gof (H) is β -closed set in Z . This shows that gof is gp β -closed function.

Theorem 4.10 : Let $f: X \rightarrow Y$ and $g: Y \rightarrow Z$ be two functions and let the composition function $gof: X \rightarrow Z$ is βgp -closed. Then, the following hold :

- (i) if f is β -irresolute surjection, then g is β gp-closed.
- (ii) if g is gp-irresolute injection, then f is β gp-closed.

Proof: (i) Let F be a β -closed set in Y . Since f is β -irresolute surjective, $f^{-1}(F)$ is β -closed set in X and (gof)($f^{-1}(B)$) = g(F) is gp-closed set in Z . This shows that g is β -gp-closed function.

(ii)Let H be a β -closed set in X .Then, gof (H) is gp-closed set in Z . Again , g is gp-irresolute injective , g $^1(gof(H)) = f(H)$ is gp-closed set in Y . This shows that f is β gp-closed function. We , define the following.

Definition 4.11: A space X is said to be βp -normal if for any pair of disjoint β -closed sets A and B of X ,there exist disjoint p-open sets U and V such that $A \subset U$ and $B \subset V$.

Definition 4.12: A space X is said to be pβ-normal if for any pair of disjoint p-closed sets A and B of X ,there exist disjoint β-open sets U and V such that $A \subset U$ and $B \subset V$.

We, recall the following.

Definition 4.13[30]: A space X is said to be β^* -normal if for any pair of disjoint β -closed sets A and B of X ,there exist disjoint β -open sets U and V such that $A \subset U$ and $B \subset V$.

We define the following.

Definition 4.14: A space X is said to be strongly β^* -normal if for any pair of disjoint β -closed sets A and B of X ,there exist disjoint open sets U and V such that $A \subset U$ and $B \subset V$.

Clearly, (i)every βp -normal $\rightarrow p$ -normal, (ii) βp -normal $\rightarrow \beta^*$ -normal, (iii)strongly β^* -normal $\rightarrow \beta p$ -normal, (iv) strongly β^* -normal \rightarrow normal, (v) β^* -normal and (vi) $\beta \alpha$ -normal $\rightarrow \beta s$ -normal as well as βp -normal.

We, recall the following.

Lemma 4.15 [34]: A subset A of a space X is gp-open iff $F \subset pInt(A)$ whenever $F \subset A$ and F is closed set in X.

Lemma 4.16 [4]: If X is submaximal and E.D. space, then every β -open set in X is open set.

We, characterize the βp-normal spaces in the following.

Theorem 4.17: The following statements are equivalent for a submaximal and E.D., space X:

- (i) X is βp-normal space,
- (ii) For any pair of disjoint β -closed sets A, B of X, there exist disjoint gp-open sets U, V such that $A \subset U$ and $B \subset V$,
- (iii) For any β -closed set A and any β -open set V containing A , there exists a gp-open set U such that $A \subset U \subset pCl(U) \subset V$.

Proof: (i) \rightarrow (ii). Obvious, since every p-open set is gp-open set.

(ii) \rightarrow (iii) . Let A be any β -closed set and V be any β -open set containing A . Since A and X-V are disjoint β -closed sets of X , there exist gp-open sets U and W of X such that $A \subset U$ and $X-V \subset W$ and $U \cap W = \square$. By Lemmas -4.12 and 4.13, we have $X-V \subset pInt(W)$. Since $U \cap pInt(W) = \square$, we have $pCl(U) \cap pInt(W) = \square$ and hence $pCl(U) \subset X$ - $pInt(W) \subset V$. Thus , we obtain that $A \subset U \subset pCl(U) \subset V$.

(iii) \rightarrow (i). Let A and B be any disjoint β -closed sets of X. Since X-B is β -open aet containing A, there exists a gp-open set G such that $A \subset G \subset pCl(G) \subset X$ -B. Then by Lemmas-4.12 and 13, $A \subset pInt(G)$. Put U = pInt(G) and V = X-pCl(G). Then , U and V are disjoint p-open sets such that $A \subset U$ and $B \subset V$. Therefore, X is βp -normal space.

We, characterize the β p-normal spaces in the following.

Theorem 4.18: The following statements are equivalent for a submaximal and E.D., space X:

- (i) X is $p\beta$ -normal space,
- (ii) For any pair of disjoint p-closed sets A , B of $\,X\,$, there exist disjoint g β -open sets $\,U\,$, V such that A $\,\subset\, U$ and B $\,\subset\, V$,
- (iii) For any p-closed set A and any p-open set V containing A , there exists a g β -open set U such that $A \subset U \subset \beta Cl(U) \subset V$.

We prove the following.

Theorem 4.19 : Every β -T₁ space and β p-normal space is β p-regular space.

Proof : Let X be β - T_1 space and β p-normal space . Let F be any β -closed set in X and $x \notin F \Rightarrow x \in X$ -F. As X is β - T_1 space, $\{x\}$ is β -closed set for all $x \in X$. Thus , F and $\{x\}$ are two disjoint β -closed sets of X. Since X is β p-normal space , there exist disjoint p-open sets G and H in X such that $\{x\} \subset G$ and $F \subset H$ i.e., $x \in G$ and $F \subset H$, this shows that X is β p-regular space.

Now , we prove some subspace theorem for βp -normality in the following

Theorem 4.20: Let X be βp -normal space and $Y \in \alpha O(X)$, then Y is βp -normal space.

Proof: Let X be βp -normal space and Y be an α -open subset of X. Let A_Y and B_Y be disjoint β -closed subsets of Y. Therefore, $A_Y = Y \cap A$ and $B_Y = Y \cap B$ where A and B are disjoint β -closed subsets of X. As X is βp -normal, there exist disjoint p-open subsets G and H of X such that $A \subset G$ and $B \subset H$ which implies that : $Y \cap A \subset Y \cap G$, $Y \cap B \subset Y \cap H$ where $Y \cap G$ and $Y \cap H$ are p-open subsets of Y by Lemma- 2.30 with $(Y \cap G) \cap (Y \cap H) = Y \cap (G \cap H) = \emptyset$. Therefore, Y is βp -normal space.

Similarly, one can prove the following in view of Lemma 2.29.

Theorem 4.21 : Let X be βp -normal space and $Y \in SO(X)$, then Y is βp -normal space.

Theorem 4.22 : If $f: X \to Y$ is a β -irresolute , β gp-closed surjection and X is β p-normal, then Y is β p-normal space.

Proof: Let A and B be any disjoint β -closed sets of Y. Then, $f^1(A)$ and $f^1(B)$ are disjoint β -closed sets of X since f is β -irresolute function . Since X is β -normal , there exist disjoint p-open sets U and V in X such that $f^1(A) \subset U$ and $f^1(B) \subset V$. By Th.4.4 , there exist gp-open sets G and H of Y such that $A \subset G$, $B \subset H$, $f^1(G) \subset U$ and $f^1(H) \subset V$. Then , we have $f^1(G) \cap f^1(H) = \emptyset$ and hence $G \cap H = \emptyset$. It follows from Th.4.14 that space Y is β p-normal.

Implication Result 4.23: In view of Lemma-2.26, we have:

- (i)Every β s-normal space $\rightarrow \beta$ p-normal space,
- (ii)Every β s-normal space $\rightarrow \beta \alpha$ -normal space,
- (iii)Every β^* -normal space $\rightarrow \beta p$ -normal space

Implication Result 4.24: In view of Lemma-2.27, we have:

- (i)Every β p-normal space $\rightarrow \beta$ s-normal space,
- (ii)Every β p-normal space $\rightarrow \beta \alpha$ -normal space,
- (iii)Every β *-normal space $\rightarrow \beta$ s-normal space

Implication Result 4.25: In view of Th.-2.28, we have:

Normal space = α -normal space = β -normal space = β -normal space

References

- [1]. M.E.Abd El-Monsef , S.N.El-Deeb and R.A.Mahamoud, β -open sets and β -continuous mappings, Bull.Fac.Sci. Assiut Univ. , 12(1983) ,77-90.
- [2]. M.E.Abd El-Monsef, R.A.Mahamoud and E.R. Lashin, β-closure and β-interior, J.Fac.Ed. Ain Shams Univ., 10(1986),235-245.
- [3]. M.E.Abd El-Monsef, A.N.Geaisa and R.A.Mahamoud, β-regular spaces, Proc. Math. Phys. Soc., Egypt, no. 60(1985), 47-52...
- [4]. M.E. Abd El-Mosef and A.M.Kozae,On extremally dixconnectedness, ro- equivalence and properties of some maximal topologies, 4th Conf.Oper. Res.Math.Methods,(Alex.Univ.,1988).
- [5]. T.Aho and T.Nieminen, Spaces in which preopen sets are semiopen, Ricerche Mat., 43,no.1(1994), 45-59.
- [6]. D.Andrijevic, Semi-preopen sets, Mat. Vesnik, 38(1986), 24 32.
- [7]. I.Arokiarani , K.Balachandran and J.Dontchev , Some characterizations of gp-irresolute and gp-continuous maps between topological spaces, Mem.Fac. Sci.Kochi Univ.(Math.),20 (1999), 93-104.
- [8]. N.Bourbaki, General Topology, Addison-Wesley, Mass (1966).
- [9]. S.G.Crossley and S.K.Hildebandand, Semiclosure, Texas J.Sci., 22 (1971), 99-112.
- [10]. R.Devi , K.Balachandran and H.Maki, Generalized α -closed maps and α -generalized closed maps ,Indian J.Pure Appl.Math., 29(1) (Jan-1998),37-49.
- [11]. S. N. El- Deeb, I. A. Hasanien, A.S. Mashhour and T. Noiri, On p-regular spaces, Bull. Math. Soc. Sci. Math. R. S. R. 27 (75) (1983), 311-315.
- [12]. S.Jafari and T.Noiri, On Quasi-β-irresolute functions, Mem.Fac.Sci. Kochi Univ.(Math.)21 (2000),53-62.
- [13]. D.S.Jankovic, On locally irreducible spaces, Ann.Soc. Sci.Bruxelles Ser.I(97) (1983) ,36-41.
- [14]. Ashish Kar and P.Bhattacharyya, Some weak separation axioms, Bull.Cal.Math. Soc., 82(1990), 415-422.
- [15]. N.Levine, Generalized closed sets in topology, Rend.Circ.Mat. Palermo, (2) 19 (1970), 89-96.
- [16]. N.Levine, Semi-open sets and semi continuity in topological spaces, Amer.Math. Monthly, 70 (1963), 36-41.
- [17]. S.N.Maheshwari and R.Prasad, On s-normal spaces, Bull.Math.Soc.Sci.R.S.Roumanie, 22(70), (1978),27-29.
- [18]. S.N.Maheshwari and R.Prasad,On s-regular spaces,Glasnik Mat., 30(10) (1975), 347-350.
- [19]. R.A.Mahmoud and M.E.Abd El-Monsef, β-irresolute and β- topological invariant, Proc. Pakistan Acad. Sci., 27(3)(1990), 285—296
- [20]. A.S.Mashhour, M.E.Abd El-Monsef and S.N.El-Deeb, On Precontinuous and Weak pre-continuous Mappings. Proc. Math. Phys.Soc. Egypt.53(1982).47-53.
- [21]. A.S.Mashhour , I.A.Hasanein and S.N.El-Deeb ,On α -continuous and α -open mapping, Acta Math.Hungar., 41(1983),213-218.
- [22]. A.S.Mashhour, M.E.Abd El-Monsef and I.A.Hasanein, On pretopological spaces, Bull. Math. Soc. Sci. R.S.R., 28(76) (1984), 39-45.
- [23]. G.B.Navalagi, Definition Bank in General Topology, Topology Atlas Preprint # 420(2000).
- [24]. G.B.Navalagi , On semipre-continuous functions and properties of generalized semi-preclosed sets in topology, I J M S , 29(2) (2002) , 85-98.
- [25]. Govindappa Navalagi and Mahesh Bhat , Generalized preopen functions, Indian J. of Math. and Math.Sci., Vol.3(2)(2007),109-
- [26]. Govindappa Navalagi, P-normal , almost p-normal and mildly p-normal spaces, Inte.J. of Math. Compu.Sci. and Information Technology, Vol.1 (1)(2008), 23-31.
- [27]. Govindappa Navalagi , βα-regular spaces and βα-normal spaces in topology, IJIRSET, Vol.9, Issue 9 (Sep.2020) ,8934-8942.
- [28]. Govindappa Navalagi and Mallavva, Semipre-regular and semipre-normal spaces, The Global of Appl.Math. and Math.Sci., Vol.2 (1-2)(2009), 27-39.
- [29]. Govindappa Navalagi , β *-normal spaces and some functions in topology, Amer.Journal of Math. Sci. and Applications , Vol.2(2), July-Dec. 2014, 93-96.
- [30]. Govindappa Navalagi, β^* -normal spaces and pre-g β -closed functions in topology, Amer.Journal of Math. Sci. and Applications , Vol.2(2), July-Dec.2014, 1-4.
- [31]. Govindappa Navalagi and Sujata Mookanagoudar , βs-regular spaces and βs-normal spaces in topology, International Journal of Mathematics, Engineering and IT,Vol.5, Issue 9, (Sept. 2018),1-11.
- [32]. A.A.Nasef and T.Noiri, Strong forms of faint continuity, Mem.Fac.Sci. Kochi Univ.Ser.A.Math.,19(1998),21-28.
- [33]. O.Njastad, On some classes of Nearly open set, Pacific J.Math., 15 (1965),961-970.
- [34]. T.Noiri, H.Maki and J.Umehara, Generalized preclosed functions, Mem.Fac.Sci.Kochi Univ.(Math.) 19(1998),13-20.
- [35]. T.M.Nour, Contributions to the Theory of Bitopological spaces, Ph.D.Thesis, Delhi Univ., India (1989).
- [36]. J.H.Park and Y.B.Park, On sp-regular spaces, J.Indian Acad.Math. 17No.2(1995), 212-218.
- [37]. J.H.Park and Y.B.Park and B.Y.Lee, On gp-closed sets and pre-gp-continous functions, Indian J.Pure Appl.Math., 33(1) (2002),3-12.
- [38]. I.L.Reilly and M.K.Vamanmurthy, On α -continuity in topological spaces, Acta Math.Hungar.45(1-2)(1985),27-32.
- [39]. S.Willard , General Topology , Addison-Wesley, Mass (1970).