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Abstract:In Mathematics, the wreath product of groups is a specialized product of two groups, based on a semi 

direct product. Factorization of wreath product seems to be nice source of examples, it may be interesting to 

investigate their nature in a systematic way and also its basic properties connected with the properties of 

factorization of each constituent. 
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I. Introduction 
Wreath product of groups have been used to explore some useful characteristics of finite group in 

connection with permutation designs and construction of lattices ( Praeger and scheider, 2002). As well as in the 

study of interconnection networks. In Mathematics, the wreath product of group theory is a specialized product 

of two groups, based on a semi direct product. Wreath products are used in the classification of permutation of 

groups and provide a way of constructing interesting examples of groups. 

We say that a group G is factorized by its subgroups 𝐺1 , . . .   , Gn. if 

G𝐺1,… ,𝐺𝑛{𝑔1,𝑔2,… ,𝑔𝑛  } ∀ 𝑔𝑖 ∈ 𝐺𝑖𝑖 = 1,… ,𝑛…………………………… ……………1.0 

ie G is a product of 𝐺𝑖′𝑠called a factorization of G. We called G factorizable if there exist a natural number n 2 

and subgroups G 𝐺1 …𝐺𝑛  of G satisfying  (1.0) 

The factorization of a wreath product G is called exact if each pair of Gi’sintersects trivially, that is Gi∩ Gj= {1}, 

i ≠ j. One can examine the nature of that factorization. Let us consider an exact factorization of a group by two 

subgroups namely G=KH. If both K and H are normal, then G is just their direct product. If one is normal, then 

G is a zappa - szip product of subgroups K, H. 

Since factorization of wreath product seems to be nice source of examples, it may be interesting to investigate 

their nature in a systematic way and also its basic properties connected with the properties of factorization of 

each constituent. 

Wreath product of two permutation groups, G¸ ≤Sym()and H ≤Sym() can be considered as 

permutation group acting on the set Π of functions from ∆ to (Cheryl and Csaba 2013). The action, usually 

called the product action of wreath product plays a very important role in the theory of permutation groups as 

several classes of primitive or quasi primitive groups can be described as subgroup of such wreath products. In 

addition, subgroup of wreath products in product action arise as automorphism groups of graph products and 

codes. In their paper, they consider subgroups X of full wreath products SymwrSym∆ in product action. A 

suitable conjugate of X the subgroup  ofSym induced by a stabilizer of a coordinate S∆ only depends on the 

orbit of  under the induced action of X on ∆. Hence if the action of X and ∆ is transitive, then X can be 

embedded into a much smaller wreath product. Further, if this X action is transitive, then X can be embedded 

into a direct product of such wreath product where the factor of the direct product corresponds to the X-orbits in 

∆. 

Definition 1.1: The wreath product of C by D denoted by W = C wᴦ D, is the semi-direct product of P by D, so 

that, W = {(f,d)|fP, dD}, with multiplication in W defined as; 

  (f1,d1) (f2,d2) = [(𝑓1𝑓2
𝑑1
−1

, d1d2) 

For all f1,f2 P and d1,d2 D, we can write fd instead of (f,d) for element of W. Where P is the Base 

group(Audu, M. S. 2001). 

Definition 1.2:Orbit:- Let  G Sym(). Then G acts faithfully on . We define a relation R on  by setting 

R if and only if ,  and there is an element g in G such that g = . Then R is an equivalence relation on 
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 and partition  into a disjoint equivalence classes. These equivalence classes are called the orbit of 

transitivity classes of action. 

Definition 1.3: The constituents : Let G Sym(). Let  be the orbits of G. Then each 

gG induces a permutation on  which we denoted by . The totality of all  formed for all g G is 

called the constituent of of G on . We can easily see that  is a permutation group on .. 

Definition 1.4: Transitivity of Wreath product on semi-direct product of ᴦ and ∆. Let (α₁₁) and (2,2) be two 

arbitrary points in  ∆. Then W will be transitive on  × ∆ if and only if there exits fd∈ 𝑊 i.e fP, d∆ such 

that (1 , 1) fd = (22), if and only if (1f (𝛿1), 1d) = (22), if and only if 1 (1) = 2,1d = 2. Thus (f,d) exist 

if C and ∆ are transitive in  and ∆ respectively which is necessary condition for W to be transitive on  ∆. 

Definition 1.5: The center of wreath product W denoted by Z (W) is defined by  

  Z (W) = {f d | (f, d) (f1,d1) = (f1,d1) (f d) for all  f1P, d1D}. Hence, f dZ (W)   

if and only i𝑓𝑑𝑑1  =𝑓1𝑓
𝑑1
−1
𝑑1𝑑 for all  f1P, d1D  

Definition 1.6: The stabilizer W (, ) of a point (∝, )∈×∆ under the action of W on  ∆, the stabilizer of 

any point (, ) in  ∆ denoted by W (, ) is given by  

    W (, )  = {f dW| (, ) f d = (, )} 

      = {fdW| (f (),d) = (, )} 

      = {fdW|f () = , d = } 

      = {F (𝛿)𝛼∆𝛿 } 

where F()is the set of all f() that stabilize , and ∆ is the stabilizer of  under the action of  and ∆ 

Definition 1.7: Faithfulness of W on  ∆ 

W is faithful on ᴦ ∆ if and only if the identity element of W is its only element that fixes every point of  ∆. If 

the identity element of W is 1 and thus, if W is to be faithful on ᴦ then for any (,) in  ∆, the stabilizer of W 

on  W (,) must be F() ∆ = 1 

Hence, F () = 1 and ∆ = 1 for all  D and F () = , d =  imply that f() = 1 and d = 1. Thus we deduce 

that W would be faithful on  ∆, if the stabilizer of any F and ∆ are the identity element in P and ∆ 

respectively. Therefore, we conclude that W is faithful on  ∆, if P or C and ∆ are faithful on ᴦ and ∆ 

respectively. 

Definition 1.8: The primitivity of W on  ∆ 

The product W would be primitive on  ∆, if and only if given any (,) in  ∆, W (,), the stabilizer of 

(,) is a maximal subgroup of W. 

 

II. Methodology 
The methods employed in the construction of group to investigate the factorization of wreath product of 

permutation group is to use a software program known as Group Algorithm Program (GAP).  

http://www.gap-system.orgmversion 4.3, 2002 

This is the program use in order  to generate the require group. 
gap> a:=SymmetricGroup(3); 
Sym( [ 1 .. 3 ] ) 
gap> Elements(a); 
[ (), (2,3), (1,2), (1,2,3), (1,3,2), (1,3) ] 
gap> Size(a); 
6 
gap>b:=Group((),(1,2)(3,4),(1,3)(2,4),(1,4)(2,3)); 
Group([ (), (1,2)(3,4), (1,3)(2,4), (1,4)(2,3) ]) 
gap> c:=WreathProduct(a,b); 
<permutation group of size 5184 with 12 generators> 
 

Meta Cyclic Wreath Product 

A wreath product G is called metacyclic if it has a normal cyclic subgroup k with cyclic quotients by taking 

generators a of k and b if k of G/K  whichhas a presentation of the form 

𝐺 =  𝑎, 𝑏/𝑎𝑚  = 1, 𝑏𝑠 = 𝑎𝑡 , 𝑏−1𝑎𝑏 = 𝑎 ,where the integers 𝑚, 𝑠, 𝑡 and 𝑟 satisfy 𝑟𝑠 ≡ 1(𝑚𝑜𝑑𝑚) and 𝑚|𝑡(𝑟 −
1) . If we let 𝐿 =  𝑏 , then the wreath product 𝐺can be written as 𝐺 = 𝐿𝐾. this decomposition is called a Meta 

cyclic factorization of𝐺. If 𝐿 ∩ 𝐾 = 1 then the Meta cyclic factorization is called split. 

Let G be a wreath product of group which acts transitively on a set . We say that the wreath product is 

primitive if G has no nontrivial blocks on ; otherwise G is called imprimitive. Note that we only use the term 

“primitive” and “imprimitive” with reference to a transitive group. 
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 ig
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To describe the relation between blocks and subgroups we shall require the following notation which extends 

the notation for a point-stabilizer. Suppose G is a wreath product of groups acting on a set and . Then 

the pointwise stabilizer of  in G is  

 
and the setwise stabilizer of  in G is  

 

It is readily seen that  are both subgroups of G and that . Note that 

. More generally for a finite  we shall often write 

. 

 

Base and orders of 2-transitive Wreath Product of groups 

Lemma: Let n, d and t be positive integers. Let  be a set of size n, and suppose that F is a family of subsets of 

 such that each  lies in exactly t subsets from  F. Then 

for each  there exist  such that ||  ||||/n, 

if each F has at least d elements, then for each real c > 1 there exist a subfamily  Fc   F such that | Fc | < 

(nlogc)/d+1 and  

Proof (i) Let F() denote the set of  F with , and not that | F()| = t by hypothesis. Then  

F()| = t||. In particular, substituting  for  gives   . Hence, for general  we 

have  for some  and (i) follows. 

(ii)Define subsets   as follows. Put   for each  we use (i) to choose  

such that  and put  as long as 

. We claim that if we stop at the index k where then . Since the 

latter inequality is trivial for k = 1, we can suppose that k  2. The choice of  shows that for each i

 since g0 = 0 and k 2 this shows that 

Therefore . 

Lemma: Suppose that G Sym() has degree n 2 and that k  5. If G does not have a section Isomorphic to 

, then there exists  with ||  2k such that every orbit of  has length less than 0.63n. 

Proof: Suppose that no such set  exists. To simplify notation, put b = 0.63. Then we can define a sequence of 

subgroups  (i = 0,…,2k) of G such that G(0) = G and for each i 1, the group  is a point stabilizer of 

 (choose the point to lie in the largest orbit of . Then  for 

some subset  of size 2k, and . On the other hand, considering the action of G on the set 

 of 2k-subsets we have  

 
and so 
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Now the restriction map gives a homomorphism of   with kernel 

. By the hypothesis on G the group H cannot contain a subgroup 

Isomorphic to . Since k > 4, this implies that the index of H in Sym() is at least . Therefore 

. As we have  . Using this together with the last two inequalities 

for  we conclude that   this gives a contradiction. 

Thus there exist a set  for which  has all orbits of size < bn. 

 

Theorem: 4.1 
Let 𝐺 = ʅ 𝑖=1

𝑛 𝐺𝑖   be a finite wreath product of permutation groups ((𝐺𝑖 ,), 𝑖 ∈ 𝑁, each of which is factorized by 

at most m subgroups, that is ∀𝑖 ∈ 𝑁𝐺𝑖 = 𝐺𝑖1 ,𝐺𝑖2 ,…𝐺𝑖𝑚 , with some 𝐺𝑖𝑘  possibly trivial.  Now, let 

𝐺[1],𝐺[2],… ,𝐺[𝑚 ] be groups defined in the following way: 𝑔[𝑘] ∈ 𝐺[𝑘] if and only if 

𝑔[𝑘] =  𝑔1
 𝑘 ,𝑔2

 𝑘  𝑥1 ,𝑔3
 𝑘  𝑥1 , 𝑥2 ,… ,𝑔𝑛

 𝑘  𝑥𝑛−1, 𝑥𝑛  ,𝑔𝑖
(𝑘)

∈ 𝐺𝑖𝑘
1×…×𝑖−1  

Then  𝐺 = 𝐺[1]𝐺[2] …𝐺[𝑚 ]…………………………………………………………………..(1) 

 

Proof: 

Observe first that 𝐺[𝑘], 𝑘 = 1,… ,𝑚 are subgroups of𝐺, which is obvious since 𝐺𝑖𝑘 ,𝑘 = 1,… ,𝑚 are subgroups 

of 𝐺𝑖 . Taking ∀𝑖 ∈ 𝑁𝐺𝑖 = 𝐺𝑖1 ,𝐺𝑖2 ,…𝐺𝑖𝑚 ,  under consideration for every, 𝑔 ∈ 𝐺, we have [𝑔]𝑖 = 𝑔1
(1)

,… ,𝑔(𝑚), 

[𝑔]𝑛 = 𝑔𝑛
 1  𝑥 𝑛−1 …𝑔𝑛

 𝑚  𝑥 𝑛−1 ,𝑛 ≥ 2 ------------------------(2) 

Now, for a given 𝑔 ∈ 𝐺we define 𝐴(𝑘) ∈ 𝐺[𝑘] for 𝑘 = 1,2,… ,𝑚 in the following way: 

[𝐴 𝑘 ]1 = 𝑔1
 𝑘 

and for every natural 𝑛 ≥ 2. 

[𝐴 1 ]𝑛 = 𝑔𝑛
 1  𝑥 𝑛−1 , [𝐴 𝑘 ]𝑛 = 𝑔𝑛

 𝑘 (𝑥 𝑛−1

 𝑔𝑛−1
− 1 

…𝑔𝑛−1
− 𝑘−1 

 
−1

)-----------------------------  (3)  

Note that the definition of [𝐴 𝑘 ]𝑛  is correct since 𝑥𝑛−1
𝑢 𝑛−1 ∈ 1 × …× 𝑛−1 for every 𝑢 ∈ 𝐺. Thus by the rule of 

multiplication in the finite wreath product we have [𝐴(1) …𝐴 𝑚 ]1 = 𝑔1
(1)

,… ,𝑔 𝑚 = [𝑔]1 and for every natural 

𝑛 ≥ 2 [𝐴 1 …𝐴 𝑚 ]𝑛 = 𝑔𝑛
 1  𝑥 𝑛−1 𝑔𝑛

 2  (𝑥 𝑛−1

 𝑔1
 1 

 
−1

)𝑔1
 1 

 …𝑔𝑛
 𝑚 

 (𝑥 𝑛−1

 𝑔𝑚−1
 1 

…𝑔𝑚−1
 𝑚−1 

 
−1

)𝑔 𝑚
 1 

…𝑔 𝑚−1
 𝑚−1 

 =

𝑔𝑛
 1  𝑥 𝑛−1 𝑔𝑛

 2  𝑥 𝑛−1 …𝑔𝑛
 𝑚  𝑥 𝑛−1 = [𝑔]𝑛  ------------------------------------------------ (4) 

Where 𝑔 = 𝐴(1)𝐴(2) …𝐴(𝑚) which proves (1) as required. 

Corollary 4.2 

Let 𝐺 = ʅ 𝑖=1
𝑛 𝐺𝑖  be a finite iterated wreath product of permutation groups  𝐺𝑖 ,𝑖 , 𝑖 ∈ 𝑁, each of which is 

factorized by at most m permutation groups, that is ∀𝑖 ∈ 𝑁 𝐺𝑖 = 𝐺𝑖1𝐺𝑖2 …𝐺𝑖𝑚  

If the factorization of each 𝐺𝑖 is exact, then the factorization of 𝐺 is exact. 

If each 𝐺𝑖 is a zappa-Szep product of its subgroups, then G is a zappa-Szep product of its subgroups. 

Proof: 

By theorem 4.1, G = 𝐺[1]𝐺[2] …𝐺 𝑚 . 

Take 𝑔 =  𝑔1,𝑔2 𝑥1 ,…𝑔𝑛 𝑥𝑛  ∈ 𝐺 𝑗  ∩ 𝐺 𝑖 , 𝑗 ≠ 𝑖. Then 𝑔1 belongs both to 𝐺1𝑗𝑎𝑛𝑑𝐺1𝑖  for every 𝑥 𝑖−1 ∈ 1 ×

…× 𝑖−1 and every natural 𝑖 ≥ 2. that means that the only possible value of each function 𝑔𝑖  is 1, so𝑔 = 𝑒, 
which means that the factorization is exact. 

To prove that it is enough to show that for each𝑖,𝑘 the group 𝐺𝑖𝑘  intersects trivially with the group generated by 

𝐺𝑖𝑗 , j≠ 𝑘. the proof is analogue to that of (1). 
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Corollary 4.3  

Let 𝐺 =  ʅ 𝑖=1
𝑛 𝐺𝑖be finitely iterated wreath product of permutation groups  𝐺𝑖 ,𝑖 , i∈ 𝑁 each which is factorized 

by at most on permutation groups. Then ʅ 𝑖=1
𝑛 𝑓𝐺𝑖  can be factorized by m subgroups. Moreover, if each 𝐺𝑖  is 

zappa-Szep product of its subgroups, so is ʅ 𝑖=1
𝑛 𝑓𝐺𝑖  

Proof: 

By theorem 1, 𝐺 = 𝐺[1]𝐺[2] …𝐺 𝑚 , where each 𝐺[𝑘] consist of 

𝑔(𝑘) =  𝑔1
 𝑘 ,𝑔2

 𝑘  𝑥1 ,𝑔3
 𝑘  𝑥1 , 𝑥2 ,… ,𝑔𝑛

 𝑘  𝑥𝑛−1, 𝑥𝑛  ,𝑔𝑖
(𝑘)

∈ 𝐺𝑖𝑘
1×…×𝑖−1  

Now consider any element if ʅ 𝑖=1
𝑛 𝑓𝐺𝑖  then it can be written as a product of those elements each 𝐺[𝑘] which have 

only a finite number of non-trivial components. Thus if 𝐺𝑓
[𝑘]

is   subset of 𝐺[𝑘] consisting of all elements with 

only a finite number of nontrivial components, then it is actually a subgroup of 𝐺[𝑘], which gives the required 

factorization. The last part follows from corollary 4.2, part 2). 

 

Corollary 4.4. 

Let ʅ 𝑖=1
𝑛 𝑓𝑠𝐺 be a finite state iterated wreath power of a permutation group (G,), which is factorized by m 

permutation subgroups. Then ʅ 𝑖=1
𝑛 𝑓𝑠𝐺 can be factorized by m subgroups. Moreover, if G is a zapper-Szep 

product of its subgroups, so is ʅ 𝑖=1
𝑛 𝑓𝑠𝐺 

Proof: 

If 𝐺 = 𝐺𝑖 …𝐺𝑚 , then by theorem 1,ʅ 𝑖=1
𝑛 𝐺 = 𝐺[1]𝐺 2 …𝐺 𝑚 , where each 𝐺 𝑘 , consists of elements of the form 

𝑔(𝑘) = [𝑔1
 𝑘 ,𝑔2

 𝑘  𝑥1 ,𝑔3
 𝑘  𝑥1 , 𝑥2 ,…𝑔𝑛

 𝑘  𝑥𝑛−1, 𝑥𝑛 ] 

𝑔𝑖
(𝑘)

∈ 𝐺𝑘
𝑖−1  

Now consider any element of ʅ 𝑖=1
𝑛 𝑓𝑠𝐺𝑖then it can be written as a product of those elements from each 𝐺[𝑘] 

which have only a finite number of states. Thus if 𝐺𝑓𝑠
[𝑘]

 is a subset of 𝐺[𝑘] consisting of all elements with only a 

finite number of states, then it is actually a subgroup of 𝐺[𝐾], which gives the required factorization. The last 

part follows from corollary 4.2, part 2). 

 

Example 1: 

Take ʅ 𝑖=1
𝑛 (𝑆3 ,) where  =  1,2,3  since 𝑆3 is soluble of order 6, it can be factorized by its sylow 2 and 3- 

subgroups, which are both cyclic. Although 𝑆3 is a semi direct product of    1,2,3  , , a cyclic group of order 

3 (which is normal), by    1,2  , , a cyclic group of order 2, the group ʅ 𝑖=1
𝑛 (𝑆3 ,) is not a semi direct of 

ʅ 𝑖=1
𝑛 ((<  1,2,3 >,) and ʅ 𝑖=1

𝑛    1,2  , . But it is a zappa-Szep product, which follows from 2. In corollary 

4.2, that means ʅ 𝑖=1
𝑛  𝑆3 , ≅ (ʅ 𝑖=1

𝑛  𝐶3, ) ⋈ (ʅ 𝑖=1
𝑛  𝐶2, ). 

 

Example 2: 

Take under considerationʅ 𝑖=1
𝑛  𝐴4, ,  =  1,2,3,4 . Each of sylow 3-subgroups of 𝐴4 has order 3 (there are 4 

of them), which makes it cyclic. Choose any and denote it by 𝐶3. Sylow 2-subgroups has order 4 and there is 

only such subgroup (where it is normal), namely   1 ,  1,2  3,4 ,  1,3  2,4 ,  1,4  2,3  , which is the Klein 4-

group. Thus  

𝐴4 ≅ 𝐶3 × 𝑉4 Since  𝐶3  𝑉4 = |𝐴4| and 𝐴4 is generated by these two subgroups. Therefore ʅ 𝑖=1
𝑛  𝐴4, ≅

 ʅ 𝑖=1
𝑛  𝑉4,  ⋈  ʅ 𝑖=1

𝑛  𝐶3,  . 

 

III. Conclusion 
Based on this finding so for, on  thiswork we have seen that wreath product of group can be factorized 

using the basic properties of factorization and also retained the properties of permutation group. More so we 

have observed that the factorized wreath product is either an exact factorization or zappa-Szep. 
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