Construction of Two Infinite Classes of Strongly Regular Graphs Using Magic Squares

MIRKO LEPOVIĆ

Dedicated to French mathematician Philippe de La Hire

Abstract. We say that a regular graph G of order n and degree $r \ge 1$ (which is not the complete graph) is strongly regular if there exist non-negative integers τ and θ such

that $|S_i \cap S_j| = \tau$ for any two adjacent vertices *i* and *j* and $|S_i \cap S_j| = \theta$ for any two distinct nonadjacent vertices *i* and *j*, where S_k denotes the neighborhood of the vertex *k*. Using a method for constructing the magic and semi-magic squares of order 2k + 1, we have created two infinite classes of strongly regular graphs (*i*) strongly regular graph of order $n = (2k + 1)^2$ and degree r = 8k with τ = 2k + 5 and $\theta = 12$ and (*ii*) strongly regular graph of order $n = (2k + 1)^2$ and degree r = 6k with $\tau = 2k + 1$ and $\theta = 6$ for $k \ge 2$.

Date of Submission: 26-10-2020 Date of Acceptance: 05-11-2020

I. Introduction

Let G be a simple graph of order n with vertex set $V(G) = \{1, 2, ..., n\}$. The spectrum of G consists of the eigenvalues $\lambda_1 \ge \lambda_2 \ge \cdots \ge \lambda_n$ of its (0,1) adjacency matrix A and is denoted by $\sigma(G)$. We say that a regular graph G of order n and degree $r \ge 1$ (which is

not the complete graph K_n) is strongly regular if there exist non-negative integers τ and θ such that $|S_i \cap S_j| = \tau$ for any two adjacent vertices i and j, and $|S_i \cap S_j| = \theta$ for any two distinct non-adjacent vertices i and j, where $S_k \subseteq V(G)$ denotes the neighborhood

of the vertex k. We know that a regular connected graph G is strongly regular if and only if it has exactly three distinct eigenvalues [2]. Let $\lambda_1 = r$, λ_2 and λ_3 denote the distinct eigenvalues of a connected strongly regular graph G. Let $m_1 = 1$, m_2 and m_3 <u>d</u>enote the multiplicity of r, λ_2 and λ_3 . Further, let r = (n - 1) - r, $\lambda_2 = -\lambda_3 - 1$ and

 $\lambda_3 = -\lambda_2 - 1$ denote the distinct eigenvalues of the strongly regular graph \overline{G} , where \overline{G} denotes the <u>complement</u> of G. Then $\tau = n - 2r - 2 + \theta$ and $\theta = n - 2r + \tau$, where $\tau = \tau$ (G) and $\theta = \theta(G)$.

Remark 1. If G is a disconnected strongly regular graph of degree r then $G = mK_{r+1}$, where mH denotes the m-fold union of the graph H.

Remark 2. We also know that a strongly regular graph $G = \overline{mK_{r+1}}$ if and only if $\theta = r$. Since $\lambda_2 \lambda_3 = -(r - \theta)$ it follows that $G = \overline{mK_{r+1}}$ if and only if $\lambda_2 = 0$.

Remark 3. (i) A strongly regular graph G of order n = 4k + 1 and degree r = 2k with $\tau = k - 1$ and $\theta = k$ is called a conference graph; (ii) a strongly regular graph is a conference graph if and only if $m_2 = m_3$ and (iii) if $m_2 = m_3$ then G is an integral¹ graph.

Remark 4. The line graph of the complete bipartite graph K_{n,n} is called a lattice graph and is denoted² by L(n). It is a strongly regular graph of order n^2 and degree 2(n - 1)with $\tau = n - 2$ and $\theta = 2$.

Let $X = X [x_{ii}]$ be a square matrix of order n with all distinct x_{ii} which belong to the set $\{1, 2, ..., n^2\}$. Let G[X] be a graph obtained from the matrix X $[x_{ij}]$ in the following way: (i) the vertex set of the graph G[X] is $V(G[X]) = \{x_{ij} \ i, j = 1, 2, ..., n\}$ and (ii) The neighborhood of the vertex x_{ij} is $S_{x_{ij}} = S_{x_{i,-i}} \cup S_{x_{-i,j}}$ where

(1)
$$S_{x_{i,-i}} = \{x_{i1}, x_{i2}, \dots, x_{i,j-1}, x_{i,j+1}, \dots, x_{in}\},$$
(2)
$$S_{x_{i,-i}} = \{x_{1i}, x_{2i}, \dots, x_{i,j-1}, x_{i,j+1}, \dots, x_{in}\},$$

(2)
$$S = \{x_1, x_2, x_3, x_{3,1}, x_{3,1}, x_{3,2}, x_{3,3}, x_{3$$

for³ any i, j = 1, 2, ..., n. Since $|S_{x_{ij}}| = |S_{x_{ij-i}}| + |S_{x_{-ij}}| = (n - 1) + (n - 1)$ we note that G[X] is a regular graph of order n^2 and degree r = 2(n - 1). Let x_{st} be adjacent to x_{ii} . Then xst belongs to the i-th row or to the j-th column. Without loss of generality we may assume that x_{st} belongs to the i-th row. In this case we have s = i and t = j. So we obtain

$$|S_{x_{ij}} \cap S_{x_{it}}| = |S_{x_{i,-j}} \cap S_{x_{i,-t}}| + |S_{x_{i,-j}} \cap S_{x_{-i,t}}| + |S_{x_{-i,j}} \cap S_{x_{i,-t}}| + |S_{x_{-i,j}} \cap S_{x_{-i,t}}|$$

We note $|S_{x_{i,-i}} \cap S_{x_{-i,+t}}| = 0$ because $x_{it} \in S_{x_{it}}$ and $|S_{x_{-i,j}} \cap S_{x_{i,-t}}| = 0$ because $x_{ij} \in S_{x_{it}}$ $S_{x_{ij}}. \text{ Next, we have } |S_{x_{-_i,j}} \cap S_{x_{-_i,t}}| = 0 \text{ because } t = j. \text{ In the view of this we get } |S_{x_{ij}} \cap S_{x_{ij}}| = 0 \text{ because } t = j. \text{ In the view of this we get } |S_{x_{ij}} \cap S_{x_{ij}}| = 0 \text{ because } t = j. \text{ In the view of this we get } |S_{x_{ij}} \cap S_{x_{ij}}| = 0 \text{ because } t = j. \text{ In the view of this we get } |S_{x_{ij}} \cap S_{x_{ij}}| = 0 \text{ because } t = j. \text{ In the view of this we get } |S_{x_{ij}} \cap S_{x_{ij}}| = 0 \text{ because } t = j. \text{ In the view of this we get } |S_{x_{ij}} \cap S_{x_{ij}}| = 0 \text{ because } t = j. \text{ In the view of this we get } |S_{x_{ij}} \cap S_{x_{ij}}| = 0 \text{ because } t = j. \text{ In the view of this we get } |S_{x_{ij}} \cap S_{x_{ij}}| = 0 \text{ because } t = j. \text{ In the view of this we get } |S_{x_{ij}} \cap S_{x_{ij}}| = 0 \text{ because } t = j. \text{ In the view of this we get } |S_{x_{ij}} \cap S_{x_{ij}}| = 0 \text{ because } t = j. \text{ In the view of this we get } |S_{x_{ij}} \cap S_{x_{ij}}| = 0 \text{ because } t = j. \text{ In the view of this we get } |S_{x_{ij}} \cap S_{x_{ij}}| = 0 \text{ because } t = j. \text{ In the view of the view of the view } S_{x_{ij}} \cap S_{x_{ij}}| = 0 \text{ because } t = j. \text{$ $|S_{xit}| =$

 $|S_{x_{i,-i}} \cap S_{x_{i,-i}}|$. Since $x_{ij} \in S_{x_{ij}}$ and $x_{it} \in S_{x_{it}}$ we find that $|S_{x_{ij}} \cap S_{x_{it}}| = n - 2$ for any

two adjacent vertices x_{ij} and x_{st}.

Further, let us assume that x_{ii} and x_{st} are two distinct non-adjacent vertices of the graph G[X]. In this case x_{st} neither belongs to the i-th row of the matrix X nor belongs to the j-th column of the matrix X, which provides that s = i and t = j. So we obtain

$$|S_{x_{ij}} \cap S_{x_{st}}| = |S_{x_{i,-j}} \cap S_{x_{s,-t}}| + |S_{x_{i,-j}} \cap S_{x_{-s,t}}| + |S_{x_{-i,j}} \cap S_{x_{s,-t}}| + |S_{x_{-i,j}} \cap S_{x_{-s,t}}|$$

We note $|S_{x_{i,-i}} \cap S_{x_{s,-t}}| = 0$ because s = i and $|S_{x_{-i,j}} \cap S_{x_{-s,t}}| = 0$ because t = j. Since $x_{it} \in S_{x_{i,-i}}$ and $x_{it} \in S_{x_{-s,t}}$, we find that $|S_{x_{i,-i}} \cap S_{x_{-s,t}}| = 1$. Since $x_{sj} \in S_{x_{-i,j}}$ and

 $x_{sj} \in S_{x_{s,-t}}$ we find that $|S_{x_{-i,j}} \cap S_{x_{s,-t}}| = 1$. Finally, we arrive at

$$|S_{x_{ij}} \cap S_{x_{st}}| = |S_{x_{i,-_i}} \cap S_{x_{-_s,t}}| + |S_{x_{-_i,j}} \cap S_{x_{s,-_t}}| = 1 + 1,$$

which provides⁴ that G[X] is a strongly regular graph of order n^2 and degree r = 2(n - 1)with $\tau = n - 2$ and $\theta = 2$. Therefore, according to Remark 4 it follows that G[X] = L(n)for $n \ge 2$.

II. Magic squares of order 2k + 1

Let $M_n = M_n[m_{ii}]$ be a square matrix of order n with all distinct m_{ii} which belong to the set $\{1, 2, ..., n^2\}$. The matrix M_n is called the magic square of order n if the sum of all elements in any row and column and both diagonals is the same. The matrix M_n is called the semi-magic square of order n if the sum of all elements in any row and column is the same. We shall now demonstrate how to construct a magic square of order 5 created by "the method of cyclic permutations" established by French mathematician Philippe de La Hire, as follows. Let $(\pi(1), \pi(2), \pi(3), \pi(4), \pi(5)) = (2, 5, 4, 1, 3)$ be a fixed permutation of the numbers 1, 2, 3, 4, 5 and let $(\pi(0), \pi(5), \pi(10), \pi(15), \pi(20)) = (20, 0, 10, 5, 15)$ be a fixed permutation of the numbers 0, 5, 10, 15, 20. Using the method of cyclic permutations we obtain the following two matrices

					 				_
2	5	4	1	3	20	0	10	5	1
4	1	3	2	5	5	15	20	0	1
3	2	5	4	1	0	10	5	15	2
5	4	1	3	2	15	20	0	10	ļ
1	3	2	5	4	10	5	15	20	

K[5][5] and L[5][5]

Then the matrix $M_5[m_{ij}] = K_5[k_{ij}] + L_5[_{ij}]$ is a magic square of order 5, where $K_5[k_{ij}] = K[5][5]$ and $L_5[_{ij}] = L[5][5]$.

We now proceed to obtain a new method for creating the semi-magic squares of order 2k + 1 for $k \ge 2$, which is based on "the method of cyclic permutations", as follows.

π(1)	π(2)		π(k)	π(k+1)	π(k+2)		π(2k)	π(2k+1)
π(k+1)	π(k+2)		π(2k)	π(2k+1)	π(1)		π(k-1)	π(k)
π(2k+1)	π(1)		π(k-1)	π(k)	π(k+1)		π(2k-1)	π(2k)
π(k)	π(k+1)		π(2k-1)	π(2k)	π(2k+1)		π(k-2)	π(k-1)
π(2k)	π(2k+1)		π(k-2)	π(k-1)	π(k)		π(2k-2)	π(2k-1)
π(k-1)	π(k)		π(2k-2)	π(2k-1)	π(2k)		π(k-3)	π(k-2)
:	z	÷	÷	÷	:	2	:	÷
π(3)	π(4)		π(k+2)	π(k+3)	π(k+4)		π(1)	π(2)
π(k+3)	π(k+4)		π(1)	π(2)	π(3)		π(k+1)	π(k+2)
π(2)	π(3)		π(k+1)	π(k+2)	π(k+3)		π(2k+1)	π(l)
π(k+2)	π(k+3)		π(2k+1)	π(1)	π(2)		π(k)	π(k+1)

First, let us assume that $(\pi(1), \pi(2), \ldots, \pi(2k+1))$ is a fixed permutation of the numbers $1, 2, \ldots, 2k + 1$. Let

K [2k+1][2k + 1]

Second, let us assume that $(\pi(0), \pi(2k+1), \ldots, \pi(2k(2k+1)))$ is a fixed permutation of the numbers $0, 2k+1, \ldots, 2k(2k+1)$. Let $\overline{k} = 2k+1$ and let

π(0)	π(F)		π((k-l) k)	π(k k)	π((k+l) k)		π((2k-1) k)	π(2k k)
π((k+1) k)	π((k+2) k)		π(2k F)	π(0)	π(Ε)		π((k-1) k)	π(k k)
π(Ε)	π(2 k)		π(k F)	π((k+l) k)	π((k+2) k)		π(2k F)	π(0)
π((k+2) k)	π((k+3) k)		π(0)	π(Ε)	π(2 E)		π(k E)	π((k+l) k)
π(2 k)	π(3 Ē)		π((k+l) k)	π((k+2) k)	π((k+3) k)		π(0)	π(k)
π((k+3) k)	π((k+4) k)		π(Ε)	π(2 Ε)	π(3 E)		π((k+l) k)	π((k+2) k)
:	:	:	:	:	:	:	:	:
π((2k-1) k)	π(2k k)		π((k-3) k)	π((k-2) k)	π((k-l) k)		π((2k-3) k)	π((2k-2) k)
π((k-1) k)	π(k 🕅)		π((2k-2) k)	π((2k-1) k)	π(2k F)		π((k-3) k)	π((k-2) k)
π(2k F)	π(0)		π((k-2) k)	π((k-l) k)	π(k k)		π((2k-2) k)	π((2k-1) k)
π(k k)	π((k+l) k)		π((2k-l) k)	π(2k k)	π(0)		π((k-2) k)	π((k-l) k)

L[2k+1][2k+1]

understanding that $0 = 0 \cdot (2k + 1)$ and $2k + 1 = 1 \cdot (2k + 1)$. Then we can see that the matrix $M_{2k+1}[m_{ij}] = K_{2k+1}[k_{ij}] + L_{2k+1}[_{ij}]$ is a semi-magic square of order 2k + 1, where $K_{2k+1}[k_{ij}] = K[2k+1][2k + 1]$ and $L_{2k+1}[_{ij}] = L[2k+1][2k + 1]$. Indeed, since

 $(k_{11}, k_{12}, \dots, k_{1,2k+1}) = (\pi(1), \pi(2), \dots, \pi(2k + 1))$ and since the i-th row of the matrix K_{2k+1} is a cyclic permutation of its first row, we get

$$\sum_{j=1}^{2k+1} k_{ij} = \sum_{j=1}^{2k+1} k_{1j} = \sum_{j=1}^{2k+1} \pi(j) = \sum_{j=1}^{2k+1} j = (k+1)(2k+1)$$

for i = 1, 2, ..., 2k + 1. According to K [2k + 1][2k + 1], we have that

$$k_{i1} = \begin{array}{c} \pi(k+2-t), & \text{if } i=2t\\ \pi(2k+2-t), & \text{if } i=2t+1 \end{array}$$

for t = 1, 2, ..., k. Since $k + 2 - t \le k + 1 < k + 2 \le 2k + 2 - t$ it follows that

 $\pi(k+2-t) = \pi(2k+2-t)$ for t = 1, 2, ..., k. So we find that $(k_{11}, k_{21}, ..., k_{2k+1,1})^{>}$ is a permutation $(\pi_c(1), \pi_c(2), ..., \pi_c(2k+1))$ of the numbers 1, 2, ..., 2k+1. Next, the j-th column of the matrix K [2k+1][2k+1] is a cyclic permutation of its first column. In the view of this, we get

$$\sum_{i=1}^{2k+1} k_{ij} = \sum_{i=1}^{2k+1} k_{i1} = \sum_{i=1}^{2k+1} \pi_c(i) = \sum_{i=1}^{2k+1} i = (k+1)(2k+1)$$

for j = 1, 2, ..., 2k + 1. We note (i) since the i-th row of the matrix K_{2k+1} is a cyclic permutation of its first row then⁵ any fixed number $p \in \{1, 2, ..., 2k + 1\}$ is presented in the i-th row of the matrix K_{2k+1} only one time and (ii) since the j-th column of the matrix K_{2k+1} is a cyclic permutation of its first column then⁶ any fixed number $p \in \{1, 2, ..., 2k + 1\}$ is presented in the j-th column of the matrix K_{2k+1} only one time.

Further, since $(1_1, 1_2, ..., 1_{2k+1}) = (\pi(0), \pi(2k + 1), ..., \pi(2k(2k + 1)))$ and since the i-th row of the matrix L_{2k+1} is a cyclic permutation of its first row, we get

$$\sum_{j=1}^{2k+1} \sum_{j=1}^{i} = \sum_{j=1}^{2k+1} \sum_{j=1}^{i} \pi((j-1)(2k+1)) = (2k+1) \sum_{j=1}^{2k+1} (j-1) = k(2k+1)^{2}$$

for i = 1, 2, ..., 2k + 1. According to L[2k + 1][2k + 1], we have that

$$r_{i1} = \frac{\pi((k + t)(2k + 1))}{\pi(t(2k + 1))}, \text{ if } i = 2t$$

for t = 1, 2, ..., k. Next, since t $\leq k < k + 1 \leq k + t$ it follows that $\pi(t(2k + 1)) = \pi((k+t)(2k+1))$ for t = 1, 2, ..., k. So we find that $(1_1, 2_1, ..., 2_{k+1,1})$ is a permutation $(\pi_c(0), \pi_c(2k+1), ..., \pi_c(2k(2k+1)))$ of the numbers 0, 2k + 1, ..., 2k(2k+1). Since the

j-th column of the matrix L[2k + 1][2k + 1] is a cyclic permutation of its first column, we obtain

$$\sum_{i=1}^{2k+1} \sum_{i=1}^{i} \sum_{i=1}^{2k+1} \sum_{i=1}^{2k+1} \pi_{c}((i - 1)(2k + 1)) = (2k + 1) \sum_{i=1}^{2k+1} (i - 1) = k(2k + 1)^{2}$$

for j = 1, 2, ..., 2k + 1. We note (i) since the i-th row of the matrix L_{2k+1} is a cyclic permutation of its first row then⁷ any fixed number $q \in \{0, 2k + 1, ..., 2k(2k + 1)\}$ is presented in the i-th row of the matrix L_{2k+1} only one time and (ii) since the j-th column of the matrix L_{2k+1} is a cyclic permutation of its first column then⁸ any fixed number $q \in \{0, 2k + 1, ..., 2k(2k + 1)\}$ is presented in the j-th column of the matrix L_{2k+1} only one time. Since $m_{ij} = k_{ij} + i_{j}$ we get

$$\sum_{i=1}^{2k+1} m_{ii} = \frac{2k+1}{j=1} m_{ii} = (k+1)(2k+1) + k(2k+1)^2 = (2k+1) \frac{2k+1}{2}$$

for i, j = 1, 2, ..., 2k + 1. It remains to show that $m_{ij} \in \{1, 2, ..., (2k + 1)^2\}$ and that m_{ij} are mutually different for i, j = 1, 2, ..., 2k + 1. Indeed, since $k_{ij} \in \{1, 2, ..., 2k + 1\}$ and $\hat{k}_{ij} \in \{0, 2k + 1, ..., 2k(2k + 1)\}$ we have $m_{ij} \in \{1, 2, ..., (2k + 1)^2\}$ for i, j = 1, 2, ..., 2k + 1. Next, according to K [2k + 1][2k + 1] we have that

(3)
$$k_{ij} = \begin{cases} \pi(k+1-t+j), & \text{if } i = 2t \land k+1-t+j \le 2k+1 \\ \pi(k+1-t+j-(2k+1)), & \text{if } i = 2t \land k+1-t+j > 2k+1 \\ \pi(2k+1-t+j), & \text{if } i = 2t+1 \land 2k+1-t+j \le 2k+1 \\ \pi(2k+1-t+j-(2k+1)), & \text{if } i = 2t+1 \land 2k+1-t+j > 2k+1 \\ \pi(2k+1-t+j-(2k+1)), & \text{if } i = 2t+1 \land 2k+1-t+j > 2k+1 \\ \pi(2k+1-t+j-(2k+1)), & \text{if } i = 2t+1 \land 2k+1-t+j > 2k+1 \\ \pi(2k+1-t+j-(2k+1)), & \text{if } i = 2t+1 \land 2k+1-t+j > 2k+1 \\ \pi(2k+1-t+j-(2k+1)), & \text{if } i = 2t+1 \land 2k+1-t+j > 2k+1 \\ \pi(2k+1-t+j-(2k+1)), & \text{if } i = 2t+1 \land 2k+1-t+j > 2k+1 \\ \pi(2k+1-t+j-(2k+1)), & \text{if } i = 2t+1 \land 2k+1-t+j > 2k+1 \\ \pi(2k+1-t+j-(2k+1)), & \text{if } i = 2t+1 \land 2k+1-t+j > 2k+1 \\ \pi(2k+1-t+j-(2k+1)), & \text{if } i = 2t+1 \land 2k+1-t+j > 2k+1 \\ \pi(2k+1-t+j-(2k+1)), & \text{if } i = 2t+1 \land 2k+1-t+j > 2k+1 \\ \pi(2k+1-t+j-(2k+1)), & \text{if } i = 2t+1 \land 2k+1-t+j > 2k+1 \\ \pi(2k+1-t+j-(2k+1)), & \text{if } i = 2t+1 \land 2k+1-t+j > 2k+1 \\ \pi(2k+1-t+j-(2k+1)), & \text{if } i = 2t+1 \land 2k+1-t+j > 2k+1 \\ \pi(2k+1-t+j-(2k+1)), & \text{if } i = 2t+1 \land 2k+1-t+j > 2k+1 \\ \pi(2k+1-t+j-(2k+1)), & \text{if } i = 2t+1 \land 2k+1-t+j > 2k+1 \\ \pi(2k+1-t+j-(2k+1)), & \text{if } i = 2t+1 \land 2k+1-t+j > 2k+1 \\ \pi(2k+1-t+j-(2k+1)), & \text{if } i = 2t+1 \land 2k+1-t+j > 2k+1 \\ \pi(2k+1-t+j-(2k+1)), & \text{if } i = 2t+1 \land 2k+1-t+j \\ \pi(2k+1-t+j-(2k+1)), & \text{if } i = 2t+1 \land 2k+1-t+j \\ \pi(2k+1-t+j-(2k+1)), & \text{if } i = 2t+1 \land 2k+1-t+j \\ \pi(2k+1-t+j-(2k+1)), & \text{if } i = 2t+1 \land 2k+1-t+j \\ \pi(2k+1-t+j-(2k+1)), & \text{if } i = 2t+1 \land 2k+1-t+j \\ \pi(2k+1-t+j-(2k+1)), & \text{if } i = 2t+1 \land 2k+1-t+j \\ \pi(2k+1-t+j-(2k+1)), & \text{if } i = 2t+1 \land 2k+1-t+j \\ \pi(2k+1-t+j-(2k+1)), & \text{if } i = 2t+1 \land 2k+1-t+j \\ \pi(2k+1-t+j-(2k+1)), & \text{if } i = 2t+1 \land 2k+1-t+j \\ \pi(2k+1-t+j-(2k+1)), & \text{if } i = 2t+1 \land 2k+1-t+j \\ \pi(2k+1-t+j-(2k+1)), & \text{if } i = 2t+1 \land 2k+1-t+j \\ \pi(2k+1-t+j-(2k+1)), & \text{if } i = 2t+1 \land 2k+1-t+j \\ \pi(2k+1-t+j-(2k+1)), & \text{if } i = 2t+1 \land 2k+1-t+j \\ \pi(2k+1-t+j-(2k+1)), & \text{if } i = 2t+1 \land 2k+1-t+j \\ \pi(2k+1-t+j-(2k+1)), & \text{if } i = 2t+1 \land 2k+1-t+j \\ \pi(2k+1-t+j-(2k+1)), & \text{if } i = 2t+1 \land 2k+1-t+j \\ \pi(2k+1-t+j-(2k+1)), & \text{if } i = 2t+1 \land 2k+1-t+j \\ \pi(2k+1-t+j-j-(2k+1)), &$$

for t = 1, 2, ..., k and j = 1, 2, ..., 2k + 1. Next, according to L[2k + 1][2k + 1] we have that

(4)
$$\hat{i}_{ij} = \begin{cases} \pi((k+t+j-1)(2k+1)), & \text{if } i = 2t \land k+t+j-1 \le 2k \\ \exists \pi((k+t+j-1-(2k+1))(2k+1)), & \text{if } i = 2t \land k+t+j-1 > 2k \\ \exists \pi((t+j-1)(2k+1)), & \text{if } i = 2t+1 \land t+j-1 \le \pi((t+j-1-(2k+1))(2k+1)), & \text{if } i = 2t+1 \land t+j-1 > 2k \\ \exists \pi((t+j-1-(2k+1))(2k+1)), & \text{if } i = 2t+1 \land t+j-1 > 2k \\ \exists \pi((t+j-1-(2k+1))(2k+1)), & \text{if } i = 2t+1 \land t+j-1 > 2k \\ \exists \pi((t+j-1)(2k+1))(2k+1)), & \text{if } i = 2t+1 \land t+j-1 > 2k \\ \exists \pi((t+j-1)(2k+1))(2k+1)), & \text{if } i = 2t+1 \land t+j-1 > 2k \\ \exists \pi((t+j-1)(2k+1))(2k+1)), & \text{if } i = 2t+1 \land t+j-1 > 2k \\ \exists \pi((t+j-1)(2k+1))(2k+1)), & \text{if } i = 2t+1 \land t+j-1 > 2k \\ \exists \pi((t+j-1)(2k+1))(2k+1)), & \text{if } i = 2t+1 \land t+j-1 > 2k \\ \exists \pi((t+j-1)(2k+1))(2k+1)), & \text{if } i = 2t+1 \land t+j-1 > 2k \\ \exists \pi((t+j-1)(2k+1))(2k+1)), & \text{if } i = 2t+1 \land t+j-1 > 2k \\ \exists \pi((t+j-1)(2k+1))(2k+1)), & \text{if } i = 2t+1 \land t+j-1 > 2k \\ \exists \pi((t+j-1)(2k+1))(2k+1)), & \text{if } i = 2t+1 \land t+j-1 > 2k \\ \exists \pi((t+j-1)(2k+1))(2k+1)), & \text{if } i = 2t+1 \land t+j-1 > 2k \\ \exists \pi((t+j-1)(2k+1))(2k+1)), & \text{if } i = 2t+1 \land t+j-1 > 2k \\ \exists \pi((t+j-1)(2k+1))(2k+1)), & \text{if } i = 2t+1 \land t+j-1 > 2k \\ \exists \pi((t+j-1)(2k+1))(2k+1)), & \text{if } i = 2t+1 \land t+j-1 > 2k \\ \exists \pi((t+j-1)(2k+1))(2k+1)), & \text{if } i = 2t+1 \land t+j-1 > 2k \\ \exists \pi((t+j-1)(2k+1))(2k+1)), & \text{if } i = 2t+1 \land t+j-1 > 2k \\ \exists \pi((t+j-1)(2k+1))(2k+1)), & \text{if } i = 2t+1 \land t+j-1 > 2k \\ \exists \pi((t+j-1)(2k+1))(2k+1)), & \text{if } i = 2t+1 \land t+j-1 > 2k \\ \exists \pi((t+j-1)(2k+1))(2k+1)), & \text{if } i = 2t+1 \land t+j-1 > 2k \\ \exists \pi((t+j-1)(2k+1))(2k+1)), & \text{if } i = 2t+1 \land t+j-1 > 2k \\ \exists \pi((t+j-1)(2k+1))(2k+1)), & \text{if } i = 2t+1 \land t+j-1 > 2k \\ \exists \pi((t+j-1)(2k+1))(2k+1)), & \text{if } i = 2t+1 \land t+j-1 > 2k \\ \exists \pi((t+j-1)(2k+1))(2k+1)), & \text{if } i = 2t+1 \land t+j-1 > 2k \\ \exists \pi((t+j-1)(2k+1))(2k+1)), & \text{if } i = 2t+1 \land t+j-1 > 2k \\ \exists \pi((t+j-1)(2k+1))(2k+1)), & \text{if } i = 2t+1 \land t+j-1 > 2k \\ \exists \pi((t+j-1)(2k+1))(2k+1)), & \text{if } i = 2t+1 \land t+j-1 > 2k \\ \exists \pi((t+j-1)(2k+1))(2k+1)), & \text{if } i = 2t+1 \land t+j-1 > 2k \\ \exists \pi((t+j-1)(2k+1))(2k+1)), & \text{if } i = 2t+1 \land t+j-1 > 2k \\ \exists \pi((t+j-1)(2k+1))(2k+1)), & \text{if } i = 2t+1 \land t+j-1 > 2k \\ \exists \pi($$

for t = 1, 2, ..., k and j = 1, 2, ..., 2k + 1. Since $m_{ij} = k_{ij} + \hat{m}_{ij} = \pi(p) + \pi(q(2k + 1))$ and since the numbers $\pi(p) \in \{1, 2, ..., 2k + 1\}$ and $\pi(q(2k + 1)) \in \{0, 2k + 1, ..., 2k(2k + 1)\}$, it follows that k_{ij} and \hat{m}_{ij} are uniquely determined. In other words, if $m_{ij} = k_{ij} + \hat{m}_{ij}$, $m_{st} = k_{st} + \hat{m}_{st}$ and $m_{ij} = m_{st}$ then $k_{ij} = k_{st}$ and $\hat{m}_{ij} = \hat{m}_{st}$. We now proceed to show that m_{ij} are mutually different for i, j = 1, 2, ..., 2k + 1. On the contrary, assume that $m_{ij} = m_{\mu\nu}$ for some $(i, j) = (\mu, \nu)$. Then $m_{ij} = \pi(p_0) + \pi(q_0(2k + 1)) = m_{\mu\nu}$ for some

 $\pi(p_0) \in \{1, 2, \ldots, 2k + 1\}$ and $\pi(q_0(2k + 1)) \in \{0, 2k + 1, \ldots, 2k(2k + 1)\}$, which provides

that $k_{ij} = k_{\mu\nu}$ and $i_{ij} = i_{\mu\nu}$. Without loss of generality we may assume that $i = \mu$. Since $\pi(q_0(2k + 1))$ is presented in the j-th column of the matrix L_{2k+1} only one time, we find that $j = \nu$. Since⁹ the i-th row and the μ -th row of the matrix K_{2k+1} is

a cyclic permutation of its first row and since the i-th row and the μ -th row of the matrix L_{2k+1} is a cyclic permutation of its first row, we can easily see that any m_{is} in the i-th row is also presented in the μ -th row. Indeed, we have

$$m_{i,j+1} = \pi(p_0 + 1) + \pi((q_0 + 1)(2k + 1)) = m_{\mu,\nu + 1}$$
 ,

(i) understanding that $\pi(p_0 + 1) = \pi(1)$ if $p_0 + 1 = 2k + 2$ and $\pi((q_0 + 1)(2k + 1)) = \pi(0)$ if $q_0 + 1 = 2k + 1$ and (ii) understanding that $m_{i,j+1} = m_{i1}$ if j + 1 = 2k + 2 and $m_{\mu,\nu+1} = m_{\mu 1}$ if $\nu + 1 = 2k + 2$. In the view of this, we can assume that j = 1. Since $j = \nu$ we have

that $v \in \{2, 3, ..., 2k + 1\}$. Finally, in order to prove that M_{2k+1} is a semi-magic square

we shall consider the following four cases:

Case 1. (i = 2t and μ = 2s). Consider the case when k + 1 - s + v \leq 2k + 1 and $k + s + v - 1 \le 2k$. Using (3) and (4) we obtain that $\pi(k + 2 - t) = \pi(k + 1 - s + 1)$ v) and $\pi((k+t)(2k+1)) = \pi((k+s+v-1)(2k+1))$, which provides that (i) k+2-t = k+1-s+v and (ii) k + t = k + s + v - 1. Using (i) and (ii) we obtain v = 1, a contradiction because v > 1. Consider the case when $k + 1 - s + v \le 2k + 1$ and $k + 1 - s + v \le 2k + 1$ s + v - 1 > 2k. Using (3) and (4) we obtain that $\pi(k + 2 - t) = \pi(k + 1 - s + v)$ and $\pi((k + t)(2k + 1)) = \pi((k + s + v - 1 - (2k + 1))(2k + 1))$, which provides that (iii) k + 2 - t = k + 1 - s + v and (iv) k + t = k + s + v - 1 - (2k + 1). Using (iii) and (iv) we obtain 2v = 2k + 3, a contradiction because 2 - 2k + 3. Consider the case when k + 1 - s + v > 2k + 1 and $k + s + v - 1 \le 2k$. Using (3) and (4) we obtain that $\pi(k+2-t) = \pi(k+1-s+\nu-(2k+1))$ and $\pi((k+t)(2k+1)) = \pi((k+s+\nu-1)(2k+1))$ 1)), which provides that (v) k + 2 - t = k + 1 - s + v - (2k+1) and (vi) k+t = k + s + v - s + v - (2k+1)1. Using (v) and (vi) we obtain 2v = 2k + 3, a contradiction because 2 - 2k + 3. Consider the case when k + 1 - s + v > 2k + 1 and k + s + v - 1 > 2k. Using (3) and (4) we obtain that $\pi(k+2-t) = \pi(k+1-s+\nu-(2k+1))$ and $\pi((k+t)(2k+1)) = \pi((k+1))$ (+ s + v - 1 - (2k + 1))(2k + 1)), which provides that (vii) k + 2 - t = k + 1 - s + v - 1(2k + 1) and (viii) k + t = k + s + v - 1 - (2k + 1). Using (vii) and (viii) we obtain v = 2k + 2, a contradiction because $v \in \{2, 3, \dots, 2k + 1\}$.

Case 2. (i = 2t and μ = 2s + 1). Consider the case when $2k + 1 - s + \nu \le 2k + 1$ and $s + \nu - 1 \le 2k$. Using (3) and (4) we obtain that $\pi(k + 2 - t) = \pi(2k + 1 - s + \nu)$ and

 $\pi((k+t)(2k+1)) = \pi((s+v-1)(2k+1))$, which provides that (i) k+2-t = 2k+1-s+vand (ii) k+t = s+v-1. Using (i) and (ii) we obtain v = 1, a contradiction because v > v 1.

Consider the case when $2k+1-s+v \le 2k+1$ and s+v-1 > 2k. Using (3) and (4) we obtain

that $\pi(k+2-t) = \pi(2k+1-s+\nu)$ and $\pi((k+t)(2k+1)) = \pi((s+\nu-1-(2k+1))(2k+1))$, which provides that (iii) $k + 2 - t = 2k + 1 - s + \nu$ and (iv) $k + t = s + \nu - 1 - (2k + 1)$.

Using (iii) and (iv) we obtain 2v = 2k + 3, a contradiction because 2 - 2k + 3. Consider the case when 2k + 1 - s + v > 2k + 1 and $s + v - 1 \le 2k$. Using (3) and (4) we obtain that $\pi(k+2-t) = \pi(2k+1-s+v-(2k+1))$ and $\pi((k+t)(2k+1)) = \pi((s+v-1)(2k+1))$, which provides that (v) k + 2 - t = 2k + 1 - s + v - (2k + 1) and (vi) k + t = s + v - 1. Using (v)

and (vi) we obtain 2v = 2k + 3, a contradiction because 2 - 2k + 3. Consider the case when

2k + 1 - s + v > 2k + 1 and s + v - 1 > 2k. Using (3) and (4) we obtain that $\pi(k + 2 - t) = \pi(2k + 1 - s + v - (2k + 1))$ and $\pi((k + t)(2k + 1)) = \pi((s + v - 1 - (2k + 1))(2k + 1))$, which provides that (vii) k + 2 - t = 2k + 1 - s + v - (2k + 1) and (viii) k + t = s + v - 1 - (2k + 1). Using (vii) and (viii) we obtain v = 2k + 2, a contradiction because $v \in \{2, 3, ..., 2k + 1\}$.

Case 3. (i = 2t + 1 and μ = 2s). Consider the case when k + 1 - s + v ≤ 2k + 1 and k + s + v - 1 ≤ 2k. Using (3) and (4) we obtain that $\pi(2k + 2 - t) = \pi(k + 1 - s + v)$) and $\pi(t(2k + 1)) = \pi((k + s + v - 1)(2k + 1))$, which provides that (i) 2k + 2 - t = k + 1- s + v and (ii) t = k + s + v - 1. Using (i) and (ii) we obtain v = 1, a contradiction because v > 1. Consider the case when k + 1 - s + v ≤ 2k + 1 and k + s + v - 1 > 2k. Using (3) and (4) we obtain that $\pi(2k + 2 - t) = \pi(k + 1 - s + v)$ and $\pi(t(2k + 1)) = \pi((k + s + v - 1 - (2k + 1)))(2k + s + v - 1 - (2k + 1))(2k + s + v - 1 - (2k + 1))(2k + s + v - 1 - (2k + 1))(2k + s + v - 1 - (2k + 1))(2k + s + v - 1 - (2k + 1))(2k + s + v - 1))(2k + s + v - 1) = \pi(k + 1 - s + v)$

1)), which provides that (iii) 2k + 2 - t = k + 1 - s + v and (iv) t = k + s + v - 1 - (2k + 1).

Using (iii) and (iv) we obtain 2v = 2k + 3, a contradiction because 2 - 2k + 3. Consider the case when k + 1 - s + v > 2k + 1 and $k + s + v - 1 \le 2k$. Using (3) and (4) we obtain that $\pi(2k+2-t) = \pi(k+1-s+v-(2k+1))$ and $\pi(t(2k+1)) = \pi((k+s+v-1)(2k+1))$, which provides that (v) 2k + 2 - t = k + 1 - s + v - (2k + 1) and (vi) t = k + s + v - 1.

Using (v) and (vi) we obtain 2v = 2k + 3, a contradiction because 2 - 2k + 3. Consider the case when k + 1 - s + v > 2k + 1 and k + s + v - 1 > 2k. Using (3) and (4) we obtain that $\pi(2k+2-t) = \pi(k+1-s+v-(2k+1))$ and $\pi(t(2k+1)) = \pi((k+s+v-1-(2k+1))(2k+1))$, which provides that (vii) 2k+2-t = k+1-s+v-(2k+1) and (viii) t = k+s+v-1-(2k+1). Using (vii) and (viii) we obtain v = 2k + 2, a contradiction because $v \in \{2, 3, ..., 2k+1\}$. Case 4. (i = 2t + 1 and μ = 2s + 1). Consider the case when $2k + 1 - s + \nu \le 2k + 1$ and $s + \nu - 1 \le 2k$. Using (3) and (4) we obtain that $\pi(2k + 2 - t) = \pi(2k + 1 - s + \nu)$ and $\pi(t(2k+1)) = \pi((s+\nu-1)(2k+1))$, which provides that (i) $2k+2-t = 2k+1-s+\nu$ and (ii) $t = s + \nu - 1$. Using (i) and (ii) we obtain $\nu = 1$, a contradiction because $\nu > 1$. Consider the case when $2k + 1 - s + \nu \le 2k + 1$ and $s + \nu - 1 > 2k$. Using (3) and (4) we obtain

that $\pi(2k+2-t) = \pi(2k+1-s+v)$ and $\pi(t(2k+1)) = \pi((s+v-1-(2k+1))(2k+1))$, which provides that (iii) 2k+2-t = 2k+1-s+v and (iv) t = s+v-1-(2k+1). Using (iii) and (iv) we obtain 2v = 2k+3, a contradiction because 2 - 2k + 3. Consider the case when 2k+1-s+v > 2k+1 and $s+v-1 \le 2k$. Using (3) and (4) we obtain that $\pi(2k+2-t) = \pi(2k+1-s+v-(2k+1))$ and $\pi(t(2k+1)) = \pi((s+v-1)(2k+1))$, which provides that (v) 2k+2-t = 2k+1-s+v-(2k+1) and (vi) t = s+v-1. Using

(v) and (vi) we obtain 2v = 2k + 3, a contradiction because 2 - 2k + 3. Consider the case when 2k + 1 - s + v > 2k + 1 and s + v - 1 > 2k. Using (3) and (4) we obtain that $\pi(2k+2-t) = \pi(2k+1-s+v-(2k+1))$ and $\pi(t(2k+1)) = \pi((s+v-1-(2k+1))(2k+1))$, which provides that (vii) 2k+2-t = 2k + 1 - s + v - (2k+1) and (viii) t = s+v - 1 - (2k+1). Using (vii) and (viii) we obtain v = 2k + 2, a contradiction because $v \in \{2, 3, ..., 2k+1\}$.

Theorem 1. Let $M_{2k+1}[m_{ij}] = K_{2k+1}[k_{ij}] + L_{2k+1}[i_j]$ where $K_{2k+1}[k_{ij}] = K[2k+1][2k+1]$ and $L_{2k+1}[i_j] = L[2k+1][2k+1]$. Then $M_{2k+1}[m_{ij}]$ is a semi-magic square of order 2k+1for $k \ge 2$.

 $\begin{array}{l} \text{Theorem 2. Let } M_{2k+1}\left[m_{ij}\right] = K_{2k+1}\left[k_{ij}\right] + L_{2k+1}\left[\hat{}_{ij}\right] \text{ where } K_{2k+1}\left[k_{ij}\right] = K\left[2k+1\right]\left[2k+1\right] \text{ and } \\ L_{2k+1}\left[\hat{}_{ij}\right] = L\left[2k+1\right]\left[2k+1\right]. \text{ Then}^{10} \quad M_{2k+1}\left[m_{ij}\right] \text{ is a magic square of order } 2k+1 \text{ if } 3 \cdot 2k+1. \end{array}$

Proof. In order to prove that M_{2k+1} is a magic square it is sufficient to show that the all elements in both diagonals of the matrix K_{2k+1} and the matrix L_{2k+1} are mutually different. First, according to K[2k+1][2k+1] we have that

$$k_{ii} = \frac{\pi(k + t + 1) \quad \text{if} \quad i = 2t}{\pi(t + 1), \quad \text{if} \quad i = 2t + 1}$$

for t = 1, 2, ..., k. Since t + 1 < k + t + 1 it follows that k_{ii} are mutually different for i = 1, 2, ..., 2k + 1. Next, according to K[2k + 1][2k + 1] we have that

$$\mathbf{k}_{i,2k+2-i} = \begin{bmatrix} \pi(\mathbf{k}+2-3\mathbf{t}), & \text{if } i = 2\mathbf{t} \land \mathbf{k}+2-3\mathbf{t} \ge 0\\ \exists \pi(\mathbf{k}+2-3\mathbf{t}+2\mathbf{k}+1), & \text{if } i = 2\mathbf{t} \land \mathbf{k}+2-3\mathbf{t} < 0\\ \vdots\\ \pi(2\mathbf{k}+1-3\mathbf{t}), & \text{if } i = 2\mathbf{t}+1 \land 2\mathbf{k}+1-3\mathbf{t} \ge \\ \pi(2(2\mathbf{k}+1)-3\mathbf{t}), & \text{if } i = 2\mathbf{t}+1 \land 2\mathbf{k}+1-3\mathbf{t} < \end{bmatrix}$$

for t = 1, 2, ..., k. Since 3 - 2k + 1 and k + 2 = 3(k + 1) - (2k + 1) it follows that k + 2 - 3t = 0 and 2k + 1 - 3t = 0. Let $2k + 1 \equiv \epsilon \mod 3$ where $\epsilon \in \{-1, 1\}$. Then we

```
have (i) k+2-3t \equiv -\epsilon \mod 3 and (ii) k+2-3t+2k+1 \equiv 0 \mod 3, which
```

that $k_{2t,2k+2-2t}$ are mutually different for t = 1, 2, ..., k. Since (iii) $2k+1-3t \equiv \epsilon \mod 3$

and (iv) $2(2k + 1) - 3t \equiv -\varepsilon \mod 3$, we find that $k_{2t+1,2k+2-(2t+1)}$ are mutually different

for t = 1, 2, ..., k. Of course, since $3 \cdot 2k + 1$ we have $k_{1,2k+1} = \pi(2k+1) = k_{2t+1,2k+2-(2t+1)}$ for t = 1, 2, ..., k. On the contrary, assume that $k_{i,2k+2-i} = k_{j,2k+2-j}$ for some i = j. Then according to (i), (ii), (iii) and (iv) it must be $\pi(k + 2 - 3t) = \pi(2(2k + 1) - 3s)$, which provides that k+2-3t = 2(2k+1) - 3s for some t = 1, 2, ..., k and s = 1, 2, ..., k. Then $k+2-3t \le k-1 < k+1 < 2(2k+1) - 3s$, a contradiction.

Next, we shall now demonstrate that the all elements in both diagonals of the matrix L[2k + 1][2k + 1] are mutually different. Indeed, according to L[2k + 1][2k + 1] we have that

$$\mathbf{\hat{u}}_{ii} = \begin{bmatrix} \Box & \pi((k-1+3t)(2k+1)), & \text{if } i = 2t \land k - 1 + 3t \le 2k + \\ \Box & \pi((k-1+3t-(2k+1))(2k+1)), & \text{if } 1 \\ \Box & \pi(3t(2k+1)), & \text{if } i = 2t + 1 \land 3t \le 2k + 1 \\ \Box & \pi(3t-(2k+1))(2k+1)), & \text{if } i = 2t + 1 \land 3t > 2k + 1 \end{bmatrix}$$

for t = 1, 2, ..., k. Since $3 \cdot 2k + 1$ and k - 1 = 3k - (2k + 1) it follows that k - 1 + 3t = 2k + 1 and 3t = 2k + 1. Let $2k + 1 \equiv \epsilon \mod 3$ where $\epsilon \in \{-1, 1\}$. Then we have (i) $k - 1 + 3t \equiv -\epsilon \mod 3$ and (ii) $k - 1 + 3t - (2k + 1) \equiv \epsilon \mod 3$, which provides

that $2_{t,2t}$ are mutually different for t = 1, 2, ..., k. Since (iii) $3t \equiv 0 \mod 3$ and (iv) $3t - (2k+1) \equiv -\varepsilon \mod 3$, we find that $2_{t+1,2t+1}$ are mutually different for t = 1, 2, ..., k. Of course, since $3 \cdot 2k + 1$ we have $1_{11} = \pi(0) = 2_{t+1,2t+1}$ for t = 1, 2, ..., k. On the contrary, assume that $i_{ii} = j_{jj}$ for some i = j. Then according to (i), (ii), (iii) and (iv) it must be $\pi((k - 1 + 3t)(2k + 1)) = \pi((3s - (2k + 1))(2k + 1))$, which provides that k - 1 + 3t = 3s - (2k + 1) for some t = 1, 2, ..., k and s = 1, 2, ..., k. Then $k - 1 + 3t \ge k + 2 > k > 3s - (2k + 1)$, a contradiction. Next, according to L[2k + 1][2k + 1]we have that

$$_{i,2k+2-i} = \frac{\pi((k-t)(2k+1))}{\pi((2k-t)(2k+1))}, \text{ if } i = 2t$$

for $t=1,2,\ldots,k.$ Since k-t<2k-t it follows that $`_{ii}$ are mutually different for $i=1,\,2,\,\ldots,2k+1.$

Corollary 1. Let $M_n[m_{ij}] = K_n[k_{ij}] + L_n[_{ij}]$ for $n \in 2N + 1$, where $K_n[k_{ij}] = K[n][n]$ and $L_n[_{ij}] = L[n][n]$. Then

for $k \in N$.

Remark 5. In case that k = 2 the applied method of cyclic permutations for creating the magic squares is reduced to the method of cyclic permutations for creating the magic squares of order 5 established by French mathematician Philippe de La Hire.

III. Two infinite classes of strongly regular graphs

Let $M_{2k+1}[m_{ij}] = K_{2k+1}[k_{ij}] + L_{2k+1}[_{ij}]$ be a semi-magic square of order 2k + 1 for $k \ge 2$. Let $G[M_{2k+1}]$ be a graph obtained from the matrix $M_{2k+1}[m_{ij}]$ in the following way: (i) the vertex set of the graph $G[M_{2k+1}]$ is $V(G[M_{2k+1}]) = \{m_{ij} \ i, j = 1, 2, ..., 2k + 1\}$ and (ii) the neighborhood of the vertex $m_{ij} = k_{ij} + \hat{}_{ij}$ is $S_{m_{ij}} = S_{m_{i}, -_{i}} \cup S_{m-_{i},j} \cup K_{ij} \cup L_{ij}$ where

(5) $K_{ij} = \{m_{st} | k_{st} = k_{ij} \text{ and } (s, t) = (i, j)\},\$

(6)
$$L_{ij} = \{m_{st} \mid \hat{s}_{st} = \hat{i}_{ij} \text{ and } (s, t) = (i, j)\},\$$

for s, t = 1, 2, ..., 2k + 1. We note that $K_{ij} \cap L_{ij} = \emptyset$ for i, j = 1, 2, ..., 2k + 1. Indeed, on the contrary, assume that $m_{st} \in K_{ij} \cap L_{ij}$. Then $m_{st} = k_{st} + \hat{s}_{t} = k_{ij} + \hat{j}_{ij} = m_{ij}$, a contradiction. Namely, it is easy to see that $S_{m_{i,-j}}, S_{m_{-i,j}}, K_{ij}$, L_{ij} are mutually disjoint. For the sake of an example, let us show that $S_{m_{i,-j}} \cap K_{ij} = \emptyset$. On the contrary, assume that $m_{st} \in S_{m_{i,-j}} \cap K_{ij}$. Using (1) it follows that s = i and t = j. Since $m_{it} \in K_{ij}$ and

 $k_{it} = k_{ij}$ we find that k_{ij} is presented in the i-th row of the matrix $K_{2k+1}[k_{ij}]$ two times, a contradiction. Since $k_{ij} \in K_{2k+1} = K_{2k+1}[k_{ij}]$ is presented in the i-th row and the j-th column only one time and m_{ij} $6 \in K_{ij}$, we obtain $|K_{ij}| = (2k + 1) - 1$. Similarly, since

 $\tilde{b}_{ij} \in L_{2k+1} = L_{2k+1}[\tilde{b}_{ij}]$ is presented in the i-th row and the j-th column only one time and $m_{ij} \in L_{ij}$, we obtain $|L_{ij}| = (2k + 1) - 1$. Therefore, we have

which provides that $G[M_{2k+1}]$ is a regular graph of order $n = (2k+1)^2$ and degree r = 8k.

Theorem 3. Let $M_{2k+1}[m_{ij}] = K_{2k+1}[k_{ij}] + L_{2k+1}[_{ij}]$ be a semi-magic square of order 2k + 1 for $k \ge 2$. Then $G[M_{2k+1}]$ is a strongly regular graph of order $n = (2k + 1)^2$ and degree r = 8k with $\tau = 2k + 5$ and $\theta = 12$.

Proof. First, assume that m_{ij} and $m_{\mu\nu}$ are two distinct non-adjacent vertices of the graph $G[M_{2k+1}]$. In this case we have $\mu = i$ and $\nu = j$. On the contrary, assume that $\mu = i$ or $\nu = j$. Without loss of generality we can assume that $\mu = i$ and $\nu = j$. Then $m_{i\nu} \in S_{m_i,-j}$, which means that $m_{i\nu}$ and m_{ij} are adjacent, a contradiction. Since $m_{\mu\nu} = k_{\mu\nu} + \hat{}_{\mu\nu}$ it is easy to see $k_{\mu\nu} = k_{ij}$ and $\hat{}_{\mu\nu} = \hat{}_{ij}$. Indeed, if we assume $k_{\mu\nu} = k_{ij}$ then $m_{\mu\nu} \in K_{ij}$, which means that $m_{\mu\nu}$ and m_{ij} are adjacent, a contradiction. We shall

now (1⁰) prove that $|S_{m_{ij}} \cap S_{m_{\mu,\neg_{\nu}}}| = 3$. Since k_{ij} is presented in the μ -th row of the matrix K_{2k+1} it follows that there exist $s = \nu$ so that $k_{\mu s} = k_{ij}$, which provides that $m_{\mu s} \in S_{m_{\mu,\neg_{\nu}}}$ and $m_{\mu s} \in K_{ij} \subseteq S_{m_{ij}}$. Similarly, since `ij is presented in the μ -th row of the matrix L_{2k+1} it follows that there exist $t = \nu$ so that ` $_{\mu t} = `_{ij}$, which provides that $m_{\mu t} \in S_{m_{\mu,\neg_{\nu}}}$ and $m_{\mu t} \in L_{ij} \subseteq S_{m_{ij}}$. Since $S_{m_{\mu,\neg_{\nu}}} \cap S_{m_{i,\neg_{j}}} = \emptyset$ and since $S_{m_{\mu,\neg_{\nu}}} \cap S_{m_{\neg_{i},j}} = \{m_{\mu j}\} \subseteq S_{m_{ij}}$, we

 $\begin{array}{c|c} \text{obtain}^{11} \text{ that } |S_{m_{ij}} \cap S_{m\mu,\neg\nu}| \geq 3. \text{ Next, let } m_{\mu x} \in \substack{\mu,\neg\nu} \text{ and let } m_{\mu x} \text{ } 6 \in \{m_{\mu j}, m_{\mu s}, m_{\mu t} \\ S_m & \}, \end{array}$

which provides that x $6\in \{j,s,\underline{t}\}$. It remains to demonstrate that $m_{\mu x}$ $6\in S_{m_{ij}}$. On the

contrary, assume that $m_{\mu x} = k_{\mu x} + {}^{*}_{\mu x} \in S_{m_{ij}}$. Then according to (1), (2), (5) and (6) we find that $m_{\mu x} \in K_{ij}$ or $m_{\mu x} \in L_{ij}$. Without loss of generality we may assume $m_{\mu x} \in K_{ij}$. In this case we have $k_{\mu x} = k_{ij}$. Since $k_{\mu s} = k_{ij}$ we find that k_{ij} is presented in the μ -th row of the matrix K_{2k+1} two times, a contradiction. This completes the assertion (1⁰). Using the same arguments as in the proof of (1⁰), we can (2⁰) prove that $|S_{m_{ij}} \cap S_{m-\mu,\nu}| = 3$. We shall now (3⁰) prove that $|S_{m_{ij}} \cap K_{\mu\nu}| = 3$. Since $k_{\mu\nu}$ is presented in the i-th row of the matrix K_{2k+1} it follows that there exist t = j so that $k_{it} = k_{\mu\nu}$, which provides that $m_{it} \in K_{\mu\nu}$ and $m_{it} \in S_{m_{ij}-i} \subseteq S_{m_{ij}}$. Since $k_{\mu\nu}$ is presented in the j-th column of

the matrix K_{2k+1} it follows that there exist s = i so that $k_{sj} = k_{\mu\nu}$, which provides that $m_{sj} \in K_{\mu\nu}$ and $m_{sj} \in S_{m-i,j} \subseteq S_{mij}$. We shall now demonstrate that $K_{ij} \cap K_{\mu\nu} = \emptyset$. On the contrary, assume that $m_{xy} \in K_{ij} \cap K_{\mu\nu}$. Then $k_{xy} = k_{ij}$ and $k_{xy} = k_{\mu\nu}$, which provides that $k_{\mu\nu} = k_{ij}$, a contradiction. Further, let $P_{ij} = \{p + \hat{i}_{ij} \mid p \in \{1, 2, ..., 2k + 1\}$ **r** $\{k_{ij}\}$ and let $Q_{ij} = \{k_{ij} + q \mid q \in \{0, 2k + 1, ..., 2k(2k + 1)\}$ **r** $\{\hat{i}_{ij}\}$ for i, j = 1, 2, ..., 2k + 1.

Due to the fact that k_{ij} is presented in the i-th row and the j-th column of the matrix K_{2k+1} only one time, we easily see $P_{ij} = L_{ij}$ for i, j = 1, 2, ..., 2k + 1. Due to the fact that \hat{k}_{ij} is presented in the i-th row and the j-th column of the matrix L_{2k+1} only one time, we easily see $Q_{ij} = K_{ij}$ for i, j = 1, 2, ..., 2k + 1. Let $p_0 \in \{1, 2, ..., 2k + 1\}$ $\mathbf{r}\{k_{ij}\}$ such that $p_0 = k_{\mu\nu}$ and let $q_0 \in \{0, 2k + 1, ..., 2k(2k + 1)\}$ $\mathbf{r}\{\hat{\mu}_{\mu\nu}\}$ such that $q_0 = \hat{i}_{ij}$. Then $p_0 + \hat{i}_{ij} \in L_{ij} \subseteq S_{m_{ij}}$ and $k_{\mu\nu} + q_0 \in K_{\mu\nu}$. So we obtain $p_0 + \hat{i}_{ij} = p_0 + q_0 = k_{\mu\nu} + q_0$, which provides¹² that $|L_{ij} \cap K_{\mu\nu}| \ge 1$ and $|S_{m_{ij}} \cap K_{\mu\nu}| \ge 3$. Since $p_0 \in \{1, 2, ..., 2k+1\}$ $\mathbf{r}\{k_{ij}\}$ and $q_0 \in \{0, 2k + 1, ..., 2k(2k + 1)\}$ $\mathbf{r}\{\hat{\mu}_{\mu\nu}\}$ are uniquely determined we obtain $|L_{ij} \cap K_{\mu\nu}| = 1$, which completes the assertion (3^0) . Using the same arguments as in the proof of (3^0) , we can (4^0) prove that $|S_{m_{ij}} \cap L_{\mu\nu}| = 3$. Finally, using (1^0) , (2^0) , (3^0) and (4^0) we obtain

that

$$S_{m_{ij}} \ \cap \ S_{m_{\mu\nu}} \ | = |S_{m_{ij}} \ \cap \ S_{m_{\mu, -\nu}} \ | + |S_{m_{ij}} \ \cap \ S_{m - _{\mu} \ , \nu}| + |S_{m_{ij}} \ \cap \ K_{\mu\nu} \ | + |S_{m_{ij}} \ \cap \ L_{\mu\nu}| \, ,$$

from which we obtain $|S_{m_{ij}} \cap S_{m_{\mu\nu}}| = 12$ for any two distinct non-adjacent vertices m_{ij} and $m_{\mu\nu}$. Next, let m_{ij} and $m_{\mu\nu}$ be two adjacent vertices of the graph $G[M_{2k+1}]$. We shall now consider the following two cases:

Case 1. $(m_{\mu\nu} \in S_{m_{i,-j}} \text{ or } m_{\mu\nu} \in S_{m_{-i},j})$. Without loss of generality we can assume that $m_{\mu\nu} \in S_{m_{i,-j}}$. In this case we have $\mu = i$ and $\nu = j$. We shall now (1⁰) prove that $|S_{m_{ij}} \cap S_{m_{i,-\nu}}| = 2k - 1$. Since $m_{ij} \in S_{m_{i,-j}}$ and $m_{i\nu} \in S_{m_{i,-\nu}}$ we have $|S_{m_{i,-j}} \cap S_{m_{i,-\nu}}| = (2k + 1) - 2$, which provides that $|S_{m_{ij}} \cap S_{m_{i,-\nu}}| \ge 2k - 1$. Since $m_{ij} \in S_{m_{i,-\nu}}$ and $S_{m_{i,-\nu}}| \ge 2k - 1$. Since $m_{ij} \in S_{m_{ij}}$ and

 $S_{m_{i,-_{i}}},S_{m_{-_{i},j}},K_{ij}$ and L_{ij} are mutually disjoint it follows that $S_{m_{i,-_{v}}},S_{m_{-_{i},j}},K_{ij}$ and L_{ij} are also mutually disjoint, which completes the assertion (1^{0}) . We shall now (2^{0}) prove that $|S_{m_{ij}} \cap S_{m_{-_{i},v}}| = 2$. Since $m_{iv} \ \, 6 \in \ S_{m_{-_{i},v}}$ we have that $S_{m_{i,-_{j}}} \cap S_{m_{-_{i},v}} = \emptyset$ and

 $S_{m_{-i},j} \cap S_{m_{-i},v} = \emptyset$. Since k_{ij} is presented in the v-th column of the matrix K_{2k+1} it follows that there exist $s = \mu$ so that $k_{sv} = k_{ij}$, which provides that $m_{sv} \in S_{m_{-i},v}$ and $m_{sv} \in K_{ij} \subseteq S_{m_{ij}}$. Similarly, since `ij is presented in the v-th column of the matrix L_{2k+1} it follows that there exist $t = \mu$ so that `tv = `ij, which provides that $m_{tv} \in S_{m_{-i},v}$ and $m_{tv} \in L_{ij} \subseteq S_{m_{ij}}$. This completes the assertion (2). We shall now (3) prove that $|S_{m_{ij}} \cap K_{iv}| = 2$. Since $m_{iv} \in K_{iv}$ and $S_{m_{i,-v}} \cap K_{iv} = \emptyset$ it follows that $S_{m_{i,-j}} \cap K_{iv} = \emptyset$.

Since $k_{i\nu}$ is presented in the j-th column of the matrix K_{2k+1} it follows that there exist s = i so that $k_{sj} = k_{i\nu}$, which provides that $m_{sj} \in K_{i\nu}$ and $m_{sj} \in S_{m-_i,j} \subseteq S_{mij}$. We shall now demonstrate that $K_{ij} \cap K_{i\nu} = \emptyset$. On the contrary, assume that $m_{st} \in K_{ij} \cap K_{i\nu}$. Then $k_{st} = k_{ij}$ and $k_{st} = k_{i\nu}$ which yields $k_{ij} = k_{i\nu}$, a contradiction. Next, since $K_{i\nu} = Q_{i\nu}$ and $Q_{i\nu} = \{k_{i\nu} + q \mid q \in \{0, 2k + 1, \dots, 2k(2k + 1)\} \mathbf{r} \{`_{i\nu}\}\}$ there exist $q_0 \in \{0, 2k + 1, \dots, 2k(2k + 1)\} \mathbf{r} \{`_{i\nu}\}$ such that $q_0 = `_{ij}$. In the view of this, we have $k_{i\nu} + q_0 \in K_{i\nu}$ and $k_{i\nu} + q_0 \in L_{ij} \subseteq S_m$, which completes the assertion (3⁰). We shall

now (4⁰) prove that $|S_{m_{ij}} \cap L_{iv}| = 2$. Since $m_{iv} \in L_{iv}$ and $_{i,\neg_v} \cap L_{iv} = 0$ it follows S_m

that $S_{m_{i,-i}} \cap L_{iv} = \emptyset$. Since i_{iv} is presented in the j-th column of the matrix L_{2k+1} it follows that there exist s = i so that $i_{sj} = i_{iv}$, which provides that $m_{sj} \in L_{iv}$ and $m_{sj} \in S_{m_{-i},j} \subseteq S_{m_{ij}}$. We shall now demonstrate that $L_{ij} \cap L_{iv} = \emptyset$. On the contrary, assume that $m_{st} \in L_{ij} \cap L_{iv}$. Then $i_{st} = i_{ij}$ and $i_{st} = i_{iv}$ which yields $i_{ij} = i_{iv}$, a contradiction. Next, since $L_{iv} = P_{iv}$ and $P_{iv} = \{p + i_{iv} \mid p \in \{1, 2, \dots, 2k+1\} \text{ r } \{k_{iv}\}\}$ there exist $p_0 \in \{1, 2, \dots, 2k+1\} \text{ r } \{k_{iv}\}$ such that $p_0 = k_{ij}$. In the view of this, we have $p_0 + i_{iv} \in L_{iv}$ and $p_0 + i_{iv} \in K_{ij} \subseteq S_{m_{ij}}$, which completes the assertion (4⁰). Finally, using (1⁰), (2⁰), (3⁰) and (4⁰) we obtain that

$$|S_{m_{ij}} \ \cap \ S_{m_{iv}} \ | = |S_{m_{ij}} \ \cap \ S_{m_{i,\neg_{v}}} \ | + |S_{m_{ij}} \ \cap \ S_{m_{\neg_{i},v}} | + |S_{m_{ij}} \ \cap \ K_{iv} \ | + |S_{m_{ij}} \ \cap \ L_{iv} \ |$$

from which we obtain $|S_{m_{ij}} \cap S_{m_{iv}}| = (2k - 1) + 2 + 2 + 2$ for any two adjacent vertices m_{ij} and m_{iv} .

Case 2. $(m_{\mu\nu} \in K_{ij} \text{ or } m_{\mu\nu} \in L_{i,j})$. Without loss of generality we can assume that $m_{\mu\nu} \in \, K_{ij}$. Since $S_{m_{i,-_{i}}}$, $S_{m_{-_{i}},j}$ and K_{ij} are mutually disjoint it follows that $\mu=i$ and $\nu = j$. Since $m_{\mu\nu} = k_{\mu\nu} + \dot{}_{\mu\nu}$ and $m_{\mu\nu} \in K_{ij}$ we obtain $m_{\mu\nu} = k_{ij} + \dot{}_{\mu\nu}$, from which we obtain $\mathbf{k}_{\mu\nu} = \mathbf{k}_{ij}$ and $\mathbf{k}_{\mu\nu} = \mathbf{k}_{ij}$. We shall now (1⁰) prove that $|\mathbf{S}_{m_{ij}} \cap \mathbf{S}_{m_{ij},-\nu}| = 2$. Since $\mu=i \text{ and } \nu=j \text{ we have } S_{m_{i,-i}} \cap S_{m_{\mu,-\nu}}=\emptyset \text{ and } S_{m_{-i,j}} \cap S_{m_{\mu,-\nu}}=\{m_{\mu j} \} \subseteq S_{m_{ij}} \text{ . We shall } \{m_{\mu,-\nu} \in \{m_{\mu,-\nu} \in$ now demonstrate that $K_{ij} \cap S_{m_{\mu},-\nu} = \emptyset$. On the contrary, assume that $m_{\mu t} \in K_{ij} \cap S_{m_{\mu},-\nu}$. Then $m_{\mu t} = k_{\mu t} + \check{}_{\mu t} \in S_{m_{\mu},-\check{}_{\nu}}$ and $m_{\mu t} = k_{ij} + \check{}_{\mu t} \in K_{ij}$ which yields $k_{\mu t} = k_{ij}$. Since $k_{\mu\nu} = k_{ij}$ and $k_{\mu t} = k_{ij}$ we have $k_{\mu\nu} = k_{\mu t}$. Finally, since $k_{\mu\nu}$ is presented in the μ -th row of the matrix K_{2k+1} only one time we obtain t = v. In the view of this, we find that $m_{\mu\nu} \in S_{m_{\mu},-\nu}$, a contradiction. Next, since i_{ij} is presented in the μ -th row of the matrix L_{2k+1} it follows that there exist t = v so that $\mu_t = \mu_{ij}$, which provides that $m_{\mu t} \in S_{m_{\mu}, -v}$ and $m_{\mu t} \in L_{ij} \subseteq S_{m_{ij}}$. This completes the assertion (1). We shall now (2) prove that $|S_{m_{ij}} \cap S_{m_{-\mu,\nu}}| = 2. \text{ Since } \mu = i \text{ and } \nu = j \text{ we have } S_{m_{i,-i}} \cap S_{m_{-\mu,\nu}} = \{m_{i\nu}\} \subseteq S_{m_{ij}} \text{ and } \mu \in \mathbb{R}$ $S_{m-i,i} \cap S_{m-i,v} = \emptyset$. We shall now demonstrate that $K_{ij} \cap S_{m-i,v} = \emptyset$. On the contrary, assume that $m_{sv} \in K_{ij} \cap S_{m-u,v}$. Then $m_{sv} = k_{sv} + \hat{s}_{sv} \in S_{m-u,v}$ and $m_{sv} = k_{ij} + \hat{s}_{sv} \in K_{ij}$ which yields $k_{sv} = k_{ij}$. Since $k_{\mu\nu} = k_{ij}$ and $k_{s\nu} = k_{ij}$ we have $k_{\mu\nu} = k_{s\nu}$. Finally, since $k_{\mu\nu}$ is presented in the v-th column of the matrix K_{2k+1} only one time we obtain $s = \mu$. In the view of this, we find that $m_{\mu\nu} \in S_{m-\mu,\nu}$, a contradiction. Next, since i_{ij} is presented in the v-th column of the matrix L_{2k+1} it follows that there exist $t = \mu$ so that $t_v = t_{ii}$. which provides that $m_{tv} \in S_{m-u,v}$ and $m_{tv} \in L_{ij} \subseteq S_{m_{ij}}$. This completes the assertion

(2⁰). We shall now (3⁰) prove that $|S_{m_{ij}} \cap K_{\mu\nu}| = 2k - 1$. Since $k_{\mu\nu} = k_{ij}$ we have that $K_{ij} = \{m_{st} | k_{st} = k_{ij} \text{ and } (s, t) = (i, j)\} \subseteq S_{m_{ij}}$ and $K_{\mu\nu} = \{m_{st} | k_{st} = k_{ij} \text{ and } (s, t) = (\mu, \nu)\}$. Since $m_{ij} \in K_{ij}$ and $m_{\mu\nu} \in K_{\mu\nu}$ we find that $|K_{ij} \cap K_{\mu\nu}| = (2k + 1) - 2$.

Since $m_{ij} \in S_{m_{ij}}$ and $S_{m_{i,-j}}, S_{m_{-i,j}}, K_{ij}, L_{ij} \subseteq S_{m_{ij}}$ are mutually disjoint it follows that

 $S_{m_{i,-i}}, S_{m_{-i},j}, L_{ij}$ and $K_{\mu\nu}$ are also mutually disjoint, which completes the assertion (3). We shall now (4⁰) prove that $|S_{m_{ij}} \cap L_{\mu\nu}| = 2$. Since $\mu\nu$ is presented in the i-th row of the matrix L_{2k+1} it follows that there exist t = j so that $i_{it} = \mu\nu$, which provides that $m_{it} = k_{it} + \mu\nu$ $\in L_{\mu\nu}$ and $m_{it} = k_{it} + i_{it} \in S_{m_{i,-j}} \subseteq S_{m_{ij}}$. Since $\mu\nu$ is presented in the the

j-th column of the matrix L_{2k+1} it follows that there exist s = i so that $\sum_{si} = \sum_{\mu\nu}$, which provides that $m_{sj} = k_{sj} + \sum_{\mu\nu} \in L_{\mu\nu}$ and $m_{sj} = k_{sj} + \sum_{sj} \in S_{m-i,j} \subseteq S_{mij}$. We shall now demonstrate that $K_{ij} \cap L_{\mu\nu} = \emptyset$. On the contrary, assume that $m_{st} = k_{st} + \sum_{st} \in K_{ij} \cap L_{\mu\nu}$.

Then $\mathbf{k}_{st} = \mathbf{k}_{ij}$ and $\mathbf{k}_{st} = \mathbf{k}_{\mu\nu}$. Since $\mathbf{k}_{\mu\nu} = \mathbf{k}_{ij}$ we obtain $\mathbf{k}_{st} = \mathbf{k}_{\mu\nu}$, which provides that $\mathbf{m}_{\mu\nu} = \mathbf{k}_{\mu\nu} + \mathbf{k}_{\mu\nu} \in \mathbf{L}_{\mu\nu}$, a contradiction. We shall now demonstrate that $\mathbf{L}_{ij} \cap \mathbf{L}_{\mu\nu} = \emptyset$. On the contrary, assume that $\mathbf{m}_{st} = \mathbf{k}_{st} + \mathbf{k}_{st} \in \mathbf{L}_{ij} \cap \mathbf{L}_{\mu\nu}$. Then $\mathbf{k}_{st} = \mathbf{k}_{ij}$ and $\mathbf{k}_{st} = \mathbf{k}_{\mu\nu}$, which provides that $\mathbf{k}_{st} = \mathbf{k}_{st} + \mathbf{k}_{st} \in \mathbf{L}_{ij} \cap \mathbf{L}_{\mu\nu}$. Then $\mathbf{k}_{st} = \mathbf{k}_{ij}$, a contradiction. This completes the assertion (4⁰). Finally,

using (1^0) , (2^0) , (3^0) and (4^0) we obtain that

$$|S_{m_{ij}} \cap S_{m_{\mu\nu}}| = |S_{m_{ij}} \cap S_{m_{\mu, \neg\nu}}| + |S_{m_{ij}} \cap S_{m_{\neg\mu}, \nu}| + |S_{m_{ij}} \cap K_{\mu\nu}| + |S_{m_{ij}} \cap L_{\mu\nu}|$$

from which we obtain $|S_{m_{ij}} \cap S_{m_{\mu\nu}}| = 2 + 2 + (2k - 1) + 2$ for any two adjacent vertices m_{ij} and $m_{\mu\nu}$, which¹³ completes the¹⁴ proof.

Let $G^{-}[M_{2k+1}]$ be a graph obtained from the matrix $M_{2k+1}[m_{ij}]$ in the following way: (i) the vertex set of the graph $G^{-}[M_{2k+1}]$ is $V(G^{-}[M_{2k+1}]) = \{m_{ij} \ i, j = 1, 2, ..., 2k + 1\}$ and (ii) the neighborhood¹⁵ of the vertex $m_{ij} = k_{ij} + \hat{}_{ij}$ is $S_{m_{ij}} = S_{m_{i,-j}} \cup S_{m-i,j} \cup K_{ij}$. Using the same¹⁶ arguments as in the proof of Theorem 3, we can prove the following result.

Theorem 4. Let $M_{2k+1}[m_{ij}] = K_{2k+1}[k_{ij}] + L_{2k+1}[i_{j}]$ be a semi-magic square of order 2k + 1 for $k \ge 2$. Then $G^{-}[M_{2k+1}]$ is a strongly regular graph of order $n = (2k + 1)^2$ and degree r = 6k with $\tau = 2k + 1$ and $\theta = 6$.

Acknowledgments. The author is very grateful to Marko Lepović for his valuable comments and suggestions.

References

- Filippe de La Hire (18 March 1640 21 April 1718). He was a French mathematician, astronomer, architect and painter. Acording to Bernard le Bovier de Fontenelle he was an "academy unto himself".
- [2] D. Cvetković, M. Dob, H. Sachs, Spectra of graphs Theory and applications, 3rd revised and enlarged edition, J.A. Barth Vela, Heidelberg - Leipzig, 1995.

Appendix

Using the applied method of cyclic permutations for creating the magic and semi-magic squares, in this section with a minor modification of "the first permutation" we create the magic squares of order 6k + 3 for $k \ge 1$. First, let us assume that $(\pi(1), \pi(2), \ldots, \pi(6k+3))$ is a fixed permutation of the numbers $1, 2, \ldots, 6k + 3$. Let

π(1)	π(2)		π(3k+1)	π(3k+2)	π(3k+3)		π(6k+2)	π(6k+3)
π(3k+2)	π(3k+3)		π(6k+2)	π(6k+3)	π(1)		π(3k)	π(3k+1)
π(6k+3)	π(1)		π(3k)	π(3k+1)	π(3k+2)		π(6k+1)	π(6k+2)
π(3k+1)	π(3k+2)		π(6k+1)	π(6k+2)	π(6k+3)		π(3k-1)	π(3k)
π(6k+2)	π(6k+3)		π(3k-1)	π(3k)	π(3k+1)		π(6k)	π(6k+1)
π(3k)	π(3k+1)		π(6k)	π(6k+1)	π(6k+2)		π(3k-2)	π(3k-1)
:	2	:	2	2	:	÷	2	:
π(3)	π(4)		π(3k+3)	π(3k+4)	π(3k+5)		π(1)	π(2)
π(3k+4)	π(3k+5)		π(1)	π(2)	π(3)		π(3k+2)	π(3k+3)
π(2)	π(3)		π(3k+2)	π(3k+3)	π(3k+4)		π(6k+3)	π(1)
π(3k+3)	π(3k+4)		π(6k+3)	π(1)	π(2)		π(3k+1)	π(3k+2)

K [6k+3][6k + 3]

Second, let us assume that $(\pi(0), \pi(6k + 1), ..., \pi((6k + 2)(6k + 3)))$ is a fixed permutation of the numbers 0, 6k + 3, ..., (6k + 2)(6k + 3). Let $\pi_+(p) = \pi(p (6k + 3))$ for p = 0, 1, ..., 6k + 2 and let

π+(0)	π+(1)		π+(3k)	π +(3k+1)	π+(3k+2)		π +(6k+1)	π+(6k+2)
π +(3k+2)	π+(3k+3)		π+(6k+2)	π+(0)	π+(1)		π+(3k)	π+(3k+1)
π+(l)	π+(2)		$\pi + (3k+1)$	π +(3k+2)	$\pi + (3k+3)$		π +(6k+2)	π+(0)
$\pi + (3k+3)$	π+(3k+4)		π+(0)	π+(1)	π+(2)		π +(3k+1)	π +(3k+2))
π+(2)	π+(3)		$\pi + (3k+2)$	$\pi + (3k+3)$	π+(3k+4)		π+(0)	π+(l)
π +(3k+4)	π +(3k+5)		π+(1)	π+(2)	π ₍ 3)		π +(3k+2)	π+(3k+3)
:	:	:	:	:	:	:	:	:
π +(6k+1))	π+(6k+2)		π+(3k-2)	π+(3k-1)	π+(3k)		π+(6k-1)	π+(6k)
π+(3k)	π+(3k+1)		π+(6k)	π+(6k+1)	π+(6k+2)		π+(3k-2)	π+(3k-1)
π +(6k+2)	π+(0)		π+(3k-1)	π+(3k)	π+(3k+1)		π+(6k)	π+(6k+1)
$\pi + (3k+1)$	π +(3k+2)		$\pi + (6k+1)$	π +(6k+2)	π+(0)		$\pi + (3k-1)$	π+(3k)

L[6k+3][6k+3]

understanding that $0 = 0 \cdot (6k + 3)$ and $6k + 3 = 1 \cdot (6k + 3)$. Let us define $X = \{k + 2, k + 4, \dots, k + 2(2k + 1)\} \subseteq \{\underline{1}, 2, \dots, 6k + 3\}$ and let $Y = \{1, 2, \dots, 6k + 3\}$ r X. Let us define $X_+ = \{(\underline{k+1})k, (k + 3)k, \dots, (k + 4k + 1)k\} \subseteq \{0, k, \dots, (6k + 2)k\}$ and let

 $Y_+ = \{0, k, \dots, (6k+2)k \} ax_+$, where k = 6k+3. Let $\pi(X)$ be the set of all permutations of the set X and let $\pi(Y)$ be the set of all permutations of the set Y. Of course, since |X| = 2k + 1 and |Y| = 4k + 2 we have $|\pi(X)| = (2k + 1)!$ and $|\pi(Y)| = (4k + 2)!$. Similarly, let $\pi(X_+)$ be the set of all permutations of the set X_+ and let $\pi(Y_+)$ be the set of all permutations of the set Y_+ . Of course, since $|X_+| = 2k + 1$ and $|Y_+| = 4k + 2$ we have $|\pi(X_+)| = (2k + 1)!$ and $|\pi(Y_+)| = (4k + 2)!$. Let sum $\pi(x)$ be the sum of all elements in a fixed permutation $\pi(x) \in \pi(X)$. Then we have

(7)
$$\operatorname{sum} \pi(\mathbf{x}) = \frac{2^{k+1}}{(k+2t)} = (2k+1)(3k+2).$$

Let sum $\pi_+(x)$ be the sum of all elements in a fixed permutation $\pi_+(x) \in \pi(X_+)$. Then we have

(8)
$$\sup \pi_+(x) = (6k+3) \sum_{k=1}^{\frac{2k+1}{2}} (k+(2t-1)) = (2k+1)(3k+1)(6k+3).$$

The first row of the matrix K_{6k+3} contains the numbers of a fixed permutation $\pi(x) \in \pi(X)$ and the numbers of a fixed permutation $\pi(y) \in \pi(Y)$ obtained in the following way: (i) on the position $6k + 3, 6k, \ldots, 3$ set up the numbers of $\pi(x)$ and (ii) on the position $t \in \{6k + 3, 6k, \ldots, 3\}$ set up the numbers of $\pi(y)$. According to K[6k + 3][6k + 3] we

note that the numbers of the permutation $\pi(x)$ are presented 3 times in the non-main diagonal of the matrix K_{6k+3} , understanding that $K_{6k+3} = K [6k+3][6k+3]$.

The first row of the matrix L_{6k+3} contains the numbers of a fixed permutation $\pi_+(x) \in \pi(X_+)$ and the numbers of a fixed permutation $\pi_+(y) \in \pi(Y_+)$ obtained in the following way: (i) on the position $1, 4, \ldots, 6k + 1$ set up the numbers of $\pi_+(x)$ and (ii) on the position $t \in \{1, 4, \ldots, 6k+1\}$ set up the numbers of $\pi_+(y)$. According to L[6k + 3][6k + 3]

we note that the numbers of the permutation $\pi_+(x)$ are presented 3 times in the main diagonal of the matrix L_{6k+3} , understanding that $L_{6k+3} = L[6k+3][6k+3]$. Using (7) and (8) we obtain¹⁷

$$3 \operatorname{sum} \pi(\mathbf{x}) + 3 \operatorname{sum} \pi_{+}(\mathbf{x}) = (6\mathbf{k} + 3) \frac{(6\mathbf{k} + 3)^{2} + 1}{2}$$

which provides that $M_{6k+3}[m_{ij}] = K_{6k+3}[k_{ij}] + L_{6k+3}[i]$ is a magic square of order 6k + 3 for $k \ge 1$.

Remark 6. In this section we present a source program magic.cpp which has been written by the author in the programming language Borland C++ Builder 5.5 for creating the magic squares¹⁸ of order 3, 5, ..., 999. The algorithm described in this section is also valid for k = 0, a case that is related to the magic square of order 3.

```
//--
#include <stdlib.h>
#include <string.h>
#include <stdio.h>
#include <math.h>
#include <time.h>
#define CR 13
#define LF 10
char *_String (int n, int Size);
void CreateMagicSquare (int Menu);
void CreateRandomPermutation (int *FirstRow, int Menu);
void main (void)
ł
    randomize ();
    CreateMagicSquare
                       (5);
    CreateMagicSquare
                       (7);
    CreateMagicSquare (9);
```

```
CreateMagicSquare (501);
    CreateMagicSquare (503);
    CreateMagicSquare (505);
}
11-
void CreateMagicSquare (int Menu)
{
    int i, j, k, m, n, One, Two, Size, _Size, _Menu, *Diagonal, *_Diagonal;
    int *x, *y, *p, *q, *_p, *_q, *Flag, *a[999];
    char *s, *t;
    FILE *FP;
    static char *MagicFile = "Magic$$$.Lap";
 x = new int [Menu];
 y = new int [Menu];
 p = new int [Menu];
 q = new int [Menu];
 for (i = 0; i < Menu; i++) a[i] = new int [Menu];
 for (i = 0; i < Menu; i++) {
    p[i] = i + 1;
    q[i] = i * Menu;
 }
 if (Menu % 3) _Menu = 1; else _Menu = 2;
 switch (_Menu) {
    case 1:
       CreateRandomPermutation
                                (p.Menu);
       CreateRandomPermutation (g.Menu);
       break;
    case 2:
      _p = new int [Menu];
      _q = new int [Menu];
       Diagonal = new int [Menu];
      _Diagonal = new int [Menu];
       Flag = new int [Menu];
       for (i = 0; i < Menu; i++) {
          Diagonal[i] = 0;
         _Diagonal[i] = 0;
          Flag[i] = 0;
       }
```

```
j = Menu / 3;
k = Menu / 6;
m = k + 1;
n = 2 * j;
for (i = n; i < Menu; i++) {
   _p[i] = p[m];
   _q[i] = q[m];
   Flag[m] = 1;
   m = m + 2;
}
n = 0;
for (i = 0; i < Menu; i++) {
   if (Flag[i]) continue;
  p[n] = p[i];
  _q[n] = q[i];
   n++;
}
```

```
CreateRandomPermutation (_p,n);
 CreateRandomPermutation (_q,n);
 CreateRandomPermutation (_p + n,j);
 CreateRandomPermutation (_q + n,j);
 n = Menu - 1;
 m = 0;
 for (i = 0; i < j; i++) {
    Diagonal[m] = 1;
   _Diagonal[n] = 1;
    n = n - 3;
    m = m + 3;
 }
 n = 2 * j;
 for (i = 0; i < Menu; i++) {
    if (!_Diagonal[i]) continue;
     p[i] = p[n];
    n++;
 }
 n = 0:
 for (i = 0; i < Menu; i++) {
    if (_Diagonal[i]) continue;
    p[i] = _p[n];
    n++;
 }
 n = 2 * j;
 for (i = 0; i < Menu; i++) {
    if (!Diagonal[i]) continue;
     q[i] = \_q[n];
    n++;
      }
      n = 0;
      for (i = 0; i < Menu; i++) {
         if (Diagonal[i]) continue;
         q[i] = \_q[n];
         n++;
      }
      delete [] _p;
      delete [] _q;
      delete [] Flag;
      delete [] Diagonal;
      delete [] _Diagonal;
      break;
};
One = Menu / 2;
```

```
Two = Menu - 1;
 x[0] = 0;
 k = 1;
 while (k < Menu) {
    x[k] = One;
     k++;
    x[k] = Two;
     k++;
     One--;
     Two--;
 }
 One = 1 + Menu / 2;
 Two = 1:
 y[0] = 0;
 k = 1;
 while (k < Menu) {
     y[k] = One;
    k++;
     y[k] = Two;
    k++;
     One++;
     Two++;
 }
 for (i = 0; i < Menu; i++) {
     n = x[i]
     m = y[i]
     for (j = 0; j < Menu; j++) {
        a[i][j] = p[n] + q[m];
        n++;
       m++;
       if (n == Menu) n = 0;
       if (m == Menu) m = 0;
    }
}
_Menu = Menu * Menu;
t = _String ( Menu,3);
 s = _String (_Menu,6);
movmem (t,MagicFile + 5,3);
 delete [] t;
 t = s;
FP = fopen (MagicFile, "wb");
```

```
Size = 6;
 while (*s++ == '0') Size--;
 delete [] t;
 _Size = Menu * (Size + 1) + 1;
 s = new char [ Size];
 for (i = 0; i < _Size; i++) s[i] = ' ';
 s[Size - 2] = CR;
 s[_Size - 1] = LF:
 for (i = 0; i < Menu; i++) {
     for (j = 0; j < Menu; j++) {
        t = _String (a[i][j], Size);
        k = (Size + 1) * j;
        movmem (t, s + k, Size);
        delete [] t;
     }
    fwrite (s, 1, _Size, FP);
 }
 fclose (FP);
 delete [] x:
 delete [] y;
 delete [] p;
 delete [] q;
 delete [] s;
    for (i = 0; i < Menu; i++) delete [] a[i];
}
//----
void CreateRandomPermutation (int *FirstRow, int Menu)
{
     int i, j, *p, *Flag;
     p = new int [Menu];
     Flag = new int [Menu];
     for (i = 0; i < Menu; i++) Flag[i] = 0;
     for (i = 0; i < Menu;) {
        j = random (Menu);
        if (Flag[j]) continue;
        p[i] = FirstRow[j];
        Flag[j] = 1;
        i++;
     }
     for (i = 0; i < Menu; i++) FirstRow[i] = p[i];</pre>
```

```
delete [] p;
   delete [] Flag;
}
//-----
char *_String (int n, int Size)
{
   char *p = new char [Size + 1];
   int i, j;
   p[Size] = 0;
   j = Size - 1;
   for (i = 0; i < Size; i++) {
     p[j] = n \% 10 + '0';
     n = n / 10;
     j--;
   }
   return p;
}
             _____
17-
```

Tihomira Vuksanovića 32, 34000 Kragujevac, Serbia. E-mail address: lepovic@kg.ac.rs