Construction of Two Infinite Classes of Strongly Regular Graphs Using Magic Squares

MIRKO LEPOVIC
Dedicated to French mathematician Philippe de La Hire

Abstract

We say that a regular graph G of order n and degree $r \geq 1$ (which is not the complete graph) is strongly regular if there exist non-negative integers τ and θ such that $\left|S_{\boldsymbol{i}} \cap S_{\boldsymbol{j}}\right|=\tau$ for any two adjacent vertices i and \boldsymbol{j} and $\left|S_{\boldsymbol{i}} \cap S_{\boldsymbol{j}}\right|=\theta$ for any two distinct nonadjacent vertices i and j, where S_{k} denotes the neighborhood of the vertex k. Using a method for constructing the magic and semi-magic squares of order $2 k+1$, we have created two infinite classes of strongly regular graphs (i) strongly regular graph of order $n=(2 k+1)^{2}$ and degree $r=8 k$ with τ $=2 k+5$ and $\theta=12$ and (ii) strongly regular graph of order $n=(2 k+1)^{2}$ and degree $r=6 k$ with $\tau=2 k+1$ and $\theta=6$ for $k \geq 2$.

I. Introduction

Let G be a simple graph of order n with vertex set $V(G)=\{1,2, \ldots, n\}$. The spectrum of G consists of the eigenvalues $\lambda_{1} \geq \lambda_{2} \geq \cdots \geq \lambda_{\mathrm{n}}$ of its (0,1) adjacency matrix A and is denoted by $\sigma(\mathrm{G})$. We say that a regular graph G of order n and degree $\mathrm{r} \geq 1$ (which is
not the complete graph K_{n}) is strongly regular if there exist non-negative integers τ and θ such that $\left|S_{i} \cap S_{j}\right|=\tau$ for any two adjacent vertices iv and j, and $\left|S_{i} \cap S_{j}\right|=\theta$ for any two distinct non-adjacent vertices iv and j, where $S_{k} \subseteq V(G)$ denotes the neighborhood of the vertex k . We know that a regular connected graph G is strongly regular if and only if it has exactly three distinct eigenvalues [2]. Let $\lambda_{1}=r, \lambda_{2}$ and λ_{3} denote the distinct eigenvalues of a connected strongly regular graph G. Let $m_{1}=1, m_{2}$ and m_{3} denote the multiplicity of r, λ_{2} and λ_{3}. Further, let $r=(n-1)-\bar{r}, \lambda_{2}=-\lambda_{3}-1$ and
$\lambda_{3}=-\lambda_{2}-1$ denote the distinct eigenvalues of the strongly regular graph $\overline{\mathrm{G}}$, where $\overline{\mathrm{G}}$ denotes the complement of G . Then ${ }^{-} \tau=\mathrm{n}-2 \mathrm{r}-2+\theta$ and $\theta=\mathrm{n}-2 \mathrm{r}+\tau$, where $\tau=\tau$ (G)
and $\theta=\theta(\mathrm{G})$.
Remark 1. If G is a disconnected strongly regular graph of degree r then $\mathrm{G}=\mathrm{mK}_{\mathrm{r}+1}$, where mH denotes the m -fold union of the graph H .

Remark 2. We also know that a strongly regular graph $\mathrm{G}=\overline{\mathrm{mK}_{r+1}}$ if and only if $\theta=\mathrm{r}$. Since $\lambda_{2} \lambda_{3}=-(\mathrm{r}-\theta)$ it follows that $\mathrm{G}=\overline{\mathrm{mK}} \mathrm{K}_{\mathrm{r}+1}$ if and only if $\lambda_{2}=0$.

Remark 3. (i) A strongly regular graph G of order $n=4 k+1$ and degree $r=2 k$ with $\tau=\mathrm{k}-1$ and $\theta=\mathrm{k}$ is called a conference graph; (ii) a strongly regular graph is a conference graph if and only if $m_{2}=m_{3}$ and (iii) if $m_{2}=m_{3}$ then G is an integral ${ }^{1}$ graph.

Kemark 4. The line graph of the complete bipartite graph $\mathrm{K}_{\mathrm{n}, \mathrm{n}}$ is called a lattice graph and is denoted ${ }^{2}$ by $L(n)$. It is a strongly regular graph of order n^{2} and degree $2(n-1)$ with $\tau=\mathrm{n}-2$ and $\theta=2$.

Let $\mathrm{X}=\mathrm{X}\left\{\mathrm{x}_{\mathrm{ij}}\right]$ be a square matrix of order n with all distinct X_{ij} which belong to the set $\left\{1,2, \ldots, n^{2}\right\}$. Let $\mathrm{G}[\mathrm{X}]$ be a graph obtained from the matrix $\mathrm{X}\left[\mathrm{x}_{\mathrm{ij}}\right]$ in the following way: (i) the vertex set of the graph $\mathrm{G}[\mathrm{X}]$ is $\mathrm{V}(\mathrm{G}[\mathrm{X}])=\left\{\mathrm{x}_{\mathrm{ij}} \mathrm{i}, \mathrm{j}=1,2, \ldots, \mathrm{n}\right\}$ and (ii) The neighborhood of the vertex $x_{i j}$ is $S_{x_{i j}}=S_{x_{i,-j}} \cup S_{x_{-i, j}}$ where

$$
\begin{align*}
& S_{x_{i,-}-\mathrm{i}}=\left\{\mathrm{x}_{\mathrm{il}}, \mathrm{x}_{\mathrm{i} 2}, \ldots, \mathrm{x}_{\mathrm{i}, \mathrm{j}-1}, \mathrm{x}_{\mathrm{i}, \mathrm{j}+1}, \ldots, \mathrm{x}_{\mathrm{in}}\right\}, \tag{1}
\end{align*}
$$

for ${ }^{3}$ any $i, j=1,2, \ldots, n$. Since $\left|S_{x_{i j}}\right|=\left|S_{x_{i, j}, j}\right|+\left|S_{x_{-i j}}\right|=(n-1)+(n-1)$ we note that $\mathrm{G}[\mathrm{X}]$ is a regular graph of order n^{2} and degree $\mathrm{r}=2(\mathrm{n}-1)$. Let x_{st} be adjacent to x_{ij}. Then x_{st} belongs to the i -th row or to the j -th column. Without loss of generality we may assume that $x_{s t}$ belongs to the i-th row. In this case we have $s=i$ and $t=j$. So we obtain

$$
\left|S_{x_{i j}} \cap S_{x_{\mathrm{it}}}\right|=\left|S_{x_{i,-}, j} \cap S_{x_{x_{i},-}}\right|+\left|S_{x_{i,-}, j} \cap S_{x_{-i}, t}\right|+\left|S_{x_{-i}, j} \cap S_{x_{i},-\mathrm{t}}\right|+\left|S_{x_{-i}, j} \cap S_{x_{-i}, t}\right|
$$

We note $\left|S_{x_{i,-}, j} \cap S_{x_{-i, t}, t}\right|=0$ because $x_{i t} 6 \in S_{x_{i t}}$ and $\left|S_{x_{-i, j}} \cap S_{x_{i,-}, t}\right|=0$ because $x_{i j} 6 \in$ $S_{x_{i j}}$. Next, we have $\left|S_{x_{-i}, j} \cap S_{x_{-i}, t}\right|=0$ because $t=j$. In the view of this we get $\mid S_{x_{i j}} \cap$ $\mathrm{S}_{\mathrm{x} \text { it }} \mid=$
$\left|\mathrm{S}_{\mathrm{x}_{\mathrm{i},-\mathrm{j}}} \cap \mathrm{S}_{\mathrm{x}_{\mathrm{i},-\mathrm{t}}}\right|$. Since $\mathrm{x}_{\mathrm{ij}} 6 \in \mathrm{~S}_{\mathrm{x}_{\mathrm{ij}}}$ and $\mathrm{x}_{\mathrm{it}} 6 \in \mathrm{~S}_{\mathrm{x}_{\mathrm{it}}}$ we find that $\left|\mathrm{S}_{\mathrm{x}_{\mathrm{ij}}} \cap \mathrm{S}_{\mathrm{x}_{\mathrm{it}}}\right|=\mathrm{n}-2$ for any two adjacent vertices x_{ij} and x_{st}.

Further, let us assume that x_{ij} and x_{st} are two distinct non-adjacent vertices of the graph $\mathrm{G}[\mathrm{X}]$. In this case $\mathrm{x}_{\text {st }}$ neither belongs to the i -th row of the matrix X nor belongs to the j-th column of the matrix X, which provides that $s=i$ and $t=j$. So we obtain

$$
\left|S_{x_{i j}} \cap S_{x_{s t}}\right|=\left|S_{x_{i},-j} \cap S_{x_{s,-}}\right|+\left|S_{x_{i},-j} \cap S_{x_{-s, t}}\right|+\left|S_{x_{-i}, j} \cap S_{x_{s,-t}}\right|+\left|S_{x_{-i}, j} \cap S_{x_{-s, t}}\right|
$$

We note $\left|S_{x_{i,-j}} \cap S_{x_{s,-\mathrm{t}}}\right|=0$ because $s=i$ and $\left|S_{x_{-i}, j} \cap S_{x_{-s, t}}\right|=0$ because $t=j$. Since $x_{i t} \in S_{x_{i,-}, j}$ and $x_{i t} \in S_{x_{-s, t}}$ we find that $\left|S_{x_{i},-j} \cap S_{x_{-s, t}}\right|=1$. Since $x_{s j} \in S_{x_{-i, j}}$ and
$x_{s j} \in S_{x_{s,-}}$ we find that $\left|S_{x_{-i, j}} \cap S_{x_{s,-}}\right|=1$. Finally, we arrive at

$$
\left|S_{x_{i j}} \cap S_{x_{s t}}\right|=\left|S_{x_{i},-j} \cap S_{x_{-s, t}}\right|+\left|S_{x_{-i}, j} \cap S_{x_{s,-t}}\right|=1+1
$$

which provides ${ }^{4}$ that $G[X]$ is a strongly regular graph of order n^{2} and degree $r=2(n-1)$ with $\tau=\mathrm{n}-2$ and $\theta=2$. Therefore, according to Remark 4 it follows that $\mathrm{G}[\mathrm{X}]=\mathrm{L}(\mathrm{n})$ for $\mathrm{n} \geq 2$.

II. Magic squares of order $2 k+1$

Let $M_{n}=M_{n}\left[m_{i j}\right]$ be a square matrix of order n with all distinct $m_{i j}$ which belong to the set $\left\{1,2, \ldots, n^{2}\right\}$. The matrix M_{n} is called the magic square of order n if the sum of all elements in any row and column and both diagonals is the same. The matrix M_{n} is called the semi-magic square of order n if the sum of all elements in any row and column is the same. We shall now demonstrate how to construct a magic square of order 5 created by "the method of cyclic permutations" established by French mathematician Philippe de La Hire, as follows. Let $(\pi(1), \pi(2), \pi(3), \pi(4), \pi(5))=(2,5,4,1,3)$ be a fixed permutation of the numbers $1,2,3,4,5$ and let $(\pi(0), \pi(5), \pi(10), \pi(15), \pi(20))=(20,0,10,5,15)$ be a fixed permutation of the numbers $0,5,10,15,20$. Using the method of cyclic permutations we obtain the following two matrices

2	5	4	1	3
4	1	3	2	5
3	2	5	4	1
5	4	1	3	2
1	3	2	5	4

20	0	10	5	15
5	15	20	0	10
0	10	5	15	20
15	20	0	10	5
10	5	15	20	0

$K[5][5]$ and $L[5][5]$

Then the matrix $\mathrm{M}_{5}\left[\mathrm{~m}_{\mathrm{ij}}\right]=\mathrm{K}_{5}\left[\mathrm{k}_{\mathrm{ij}}\right]+\mathrm{L}_{5}\left\lceil_{\mathrm{ij}}\right]$ is a magic square of order 5 , where $\mathrm{K}_{5}\left[\mathrm{k}_{\mathrm{ij}}\right]=\mathrm{K}[5][5]$ and $\mathrm{L}_{5}\left[{ }^{\mathrm{ij}}\right]=\mathrm{L}[5][5]$.

We now proceed to obtain a new method for creating the semi-magic squares of order $2 k+1$ for $k \geq 2$, which is based on "the method of cyclic permutations", as follows.

First, let us assume that ($\pi(1), \pi(2), \ldots, \pi(2 \mathrm{k}+1)$) is a fixed permutation of the numbers $1,2, \ldots, 2 k+1$. Let

$\pi(1)$	$\pi(2)$	\ldots	$\pi(k)$	$\pi(k+1)$	$\pi(k+2)$	\cdots	$\pi(2 k)$	$\pi(2 k+1)$
$\pi(k+1)$	$\pi(k+2)$	\ldots	$\pi(2 k)$	$\pi(2 k+1)$	$\pi(1)$	\ldots	$\pi(k-1)$	$\pi(k)$
$\pi(2 k+1)$	$\pi(1)$	\ldots	$\pi(k-1)$	$\pi(k)$	$\pi(k+1)$	\cdots	$\pi(2 k-1)$	$\pi(2 k)$
$\pi(k)$	$\pi(k+1)$	\ldots	$\pi(2 k-1)$	$\pi(2 k)$	$\pi(2 k+1)$	\ldots	$\pi(k-2)$	$\pi(k-1)$
$\pi(2 k)$	$\pi(2 k+1)$	\ldots	$\pi(k-2)$	$\pi(k-1)$	$\pi(k)$	\ldots	$\pi(2 k-2)$	$\pi(2 k-1)$
$\pi(k-1)$	$\pi(k)$	\ldots	$\pi(2 k-2)$	$\pi(2 k-1)$	$\pi(2 k)$	\cdots	$\pi(k-3)$	$\pi(k-2)$
$:$	$:$	$:$	$:$	$:$	$:$	$:$	$:$	$:$
$\pi(3)$	$\pi(4)$	\ldots	$\pi(k+2)$	$\pi(k+3)$	$\pi(k+4)$	\cdots	$\pi(1)$	$\pi(2)$
$\pi(k+3)$	$\pi(k+4)$	\cdots	$\pi(1)$	$\pi(2)$	$\pi(3)$	\cdots	$\pi(k+1)$	$\pi(k+2)$
$\pi(2)$	$\pi(3)$	\ldots	$\pi(k+1)$	$\pi(k+2)$	$\pi(k+3)$	\cdots	$\pi(2 k+1)$	$\pi(1)$
$\pi(k+2)$	$\pi(k+3)$	\ldots	$\pi(2 k+1)$	$\pi(1)$	$\pi(2)$	\cdots	$\pi(k)$	$\pi(k+1)$

$$
\mathrm{K}[2 \mathrm{k}+1][2 \mathrm{k}+1]
$$

Second, let us assume that $(\pi(0), \pi(2 k+1), \ldots, \pi(2 k(2 k+1)))$ is a fixed permutation of the numbers $0,2 \mathrm{k}+1, \ldots, 2 \mathrm{k}(2 \mathrm{k}+1)$. Let $\overline{\mathrm{k}}=2 \mathrm{k}+1$ and let

$\pi(0)$	$\pi(\bar{E})$	\ldots	$\pi((k-1) k)$	$\pi(k \sqrt{k})$	$\pi((k+1) k)$...	$\pi((2 k-1) k)$	$\pi(2 \mathrm{k} \overline{\mathrm{k}})$
$\pi((k+1) k)$	$\pi((k+2) k)$...	$\pi(2 k \sqrt{k})$	$\pi(0)$	$\pi(\bar{E})$	\ldots	$\pi((k-1) k)$	$\pi(k E)$
$\pi(E)$	$\pi(2 \mathrm{E})$...	$\pi(k \sqrt{*})$	$\pi((k+1) k)$	$\pi((k+2) k)$...	$\pi(2 k \sqrt{k})$	$\pi(0)$
$\pi((k+2) k)$	$\pi((k+3) k)$...	$\pi(0)$	$\pi(\mathrm{E})$	$\pi(2 \mathrm{E})$...	$\pi(\mathrm{k}$ E)	$\pi((k+1) k)$
$\pi(2 \mathrm{E})$	$\pi(3 \mathrm{E})$...	$\pi((k+1) k)$	$\pi((k+2) \mathrm{k})$	$\pi((k+3) k)$...	$\pi(0)$	$\pi(E)$
$\pi((k+3) k)$	$\pi((k+4) \mathrm{k})$...	$\pi(\mathrm{E})$	$\pi(2 \mathrm{E})$	$\pi(3 \mathrm{E})$	\ldots	$\pi((k+1) k)$	$\pi((k+2) k)$
:	:	:	:	:	:	:	:	:
$\pi((2 k-1) k)$	$\pi(2 \mathrm{k} \mathrm{E})$	\ldots	$\pi((k-3) k)$	$\pi((k-2) \mathrm{E})$	$\pi((k-1) k)$...	$\pi((2 k-3) k)$	$\pi((2 \mathrm{k}-2) \mathrm{k})$
$\pi((k-1) k)$	$\pi(k E)$...	$\pi((2 k-2) k)$	$\pi((2 k-1) \mathrm{k})$	$\pi(2 \mathrm{k} \overline{\mathrm{E}})$	\ldots	$\pi((k-3) \mathrm{k})$	$\pi((k-2) k)$
$\pi(2 \mathrm{k} \sqrt{\mathrm{k}})$	$\pi(0)$	\ldots	$\pi((k-2) k)$	$\pi((k-1) \mathrm{E})$	$\pi(k, k)$	\ldots	$\pi((2 k-2) \mathrm{k})$	$\pi((2 k-1) \mathrm{k})$
$\pi(\mathrm{k} \mathrm{E})$	$\pi((k+1) k)$...	$\pi((2 k-1) k)$	$\pi(2 \mathrm{k} \sqrt{\mathrm{k}})$	$\pi(0)$	\ldots	$\pi((k-2) \mathrm{k})$	$\pi((k-1) k)$

$$
\mathrm{L}[2 \mathrm{k}+1][2 \mathrm{k}+1]
$$

understanding that $0=0 \cdot(2 \mathrm{k}+1)$ and $2 \mathrm{k}+1=1 \cdot(2 \mathrm{k}+1)$. Then we can see that the matrix $\mathrm{M}_{2 \mathrm{k}+1}\left[\mathrm{~m}_{\mathrm{ij}}\right]=\mathrm{K}_{2 \mathrm{k}+1}\left[\mathrm{k}_{\mathrm{ij}}\right]+\mathrm{L}_{2 \mathrm{k}+1}\left[{ }_{\mathrm{ij}}\right]$ is a semi-magic square of order $2 \mathrm{k}+1$, where $\mathrm{K}_{2 \mathrm{k}+1}\left[\mathrm{k}_{\mathrm{ij}}\right]=\mathrm{K}[2 \mathrm{k}+1][2 \mathrm{k}+1]$ and $\left.\mathrm{L}_{2 \mathrm{k}+1} \Gamma_{\mathrm{ij}}\right]=\mathrm{L}[2 \mathrm{k}+1][2 \mathrm{k}+1]$. Indeed, since
$\left(\mathrm{k}_{11}, \mathrm{k}_{12}, \ldots, \mathrm{k}_{1,2 \mathrm{k}+1}\right)=(\pi(1), \pi(2), \ldots, \pi(2 \mathrm{k}+1))$ and since the i -th row of the matrix $\mathrm{K}_{2 \mathrm{k}+1}$ is a cyclic permutation of its first row, we get

$$
{ }_{j=1}^{2 k+1} k_{i j}={ }_{j=1}^{2 k+1} k_{1 j}={ }_{j=1}^{2 k+1} \pi(j)={ }_{j=1}^{2 k+1} j=(k+1)(2 k+1)
$$

for $\mathrm{i}=1,2, \ldots, 2 \mathrm{k}+1$. According to $\mathrm{K}[2 \mathrm{k}+1][2 \mathrm{k}+1]$, we have that

$$
\mathrm{k}_{\mathrm{il}}=\begin{array}{rll}
\pi(\mathrm{k}+2-\mathrm{t}), & \text { if } & \mathrm{i}=2 \mathrm{t} \\
\pi(2 \mathrm{k}+2-\mathrm{t}), & \text { if } & \mathrm{i}=2 \mathrm{t}+1
\end{array}
$$

for $\mathrm{t}=1,2, \ldots, \mathrm{k}$. Since $\mathrm{k}+2-\mathrm{t} \leq \mathrm{k}+1<\mathrm{k}+2 \leq 2 \mathrm{k}+2-\mathrm{t}$ it follows that
$\pi(k+2-t)=\pi(2 k+2-t)$ for $t=1,2, \ldots, k$. So we find that $\left(k_{11}, k_{21}, \ldots, k_{2 k+1,1}\right)^{s}$ is a permutation $\left(\pi_{\mathrm{c}}(1), \pi_{\mathrm{c}}(2), \ldots, \pi_{\mathrm{c}}(2 \mathrm{k}+1)\right.$) of the numbers $1,2, \ldots, 2 \mathrm{k}+1$. Next, the j -th column of the matrix $\mathrm{K}[2 \mathrm{k}+1][2 \mathrm{k}+1]$ is a cyclic permutation of its first column. In the view of this, we get
for $\mathbf{j}=1,2, \ldots, 2 \mathrm{k}+1$. We note (i) since the i -th row of the matrix $\mathrm{K}_{2 \mathrm{k}+1}$ is a cyclic permutation of its first row then ${ }^{5}$ any fixed number $p \in\{1,2, \ldots, 2 k+1\}$ is presented in the i -th row of the matrix $\mathrm{K}_{2 \mathrm{k}+1}$ only one time and (ii) since the j -th column of the matrix $\mathrm{K}_{2 \mathrm{k}+1}$ is a cyclic permutation of its first column then ${ }^{6}$ any fixed number $\mathrm{p} \in\{1,2, \ldots, 2 \mathrm{k}+1\}$ is presented in the j -th column of the matrix $\mathrm{K}_{2 \mathrm{k}+1}$ only one time.

Further, since $\left(11,{ }_{12}, \ldots,{ }_{1,2 k+1}\right)=(\pi(0), \pi(2 k+1), \ldots, \pi(2 k(2 k+1)))$ and since the i-th row of the matrix $\mathrm{L}_{2 k+1}$ is a cyclic permutation of its first row, we get
for $\mathrm{i}=1,2, \ldots, 2 \mathrm{k}+1$. According to $\mathrm{L}[2 \mathrm{k}+1][2 \mathrm{k}+1]$, we have that

$$
\mathrm{i}_{\mathrm{i} 1}=\begin{aligned}
C^{\pi(\mathrm{k}+\mathrm{t})(2 k+1)),} & \text { if } \quad \\
\pi(\mathrm{t}(2 \mathrm{k}+1)), & \text { if } \quad \mathrm{i}=2 \mathrm{t}+1
\end{aligned}
$$

for $\mathrm{t}=1,2, \ldots, \mathrm{k}$. Next, since $\mathrm{t} \leq \mathrm{k}<\mathrm{k}+1 \leq \mathrm{k}+\mathrm{t}$ it follows that $\pi(\mathrm{t}(2 \mathrm{k}+1))=$ $\pi((k+t)(2 k+1))$ for $t=1,2, \ldots, k$. So we find that $\left(11,{ }^{\prime} 21, \ldots,{ }_{2 k} k+1,1\right)^{>}$is a permutation $\left(\pi_{\mathrm{c}}(0), \pi_{\mathrm{c}}(2 \mathrm{k}+1), \ldots, \pi_{\mathrm{c}}(2 \mathrm{k}(2 \mathrm{k}+1))\right)$ of the numbers $0,2 \mathrm{k}+1, \ldots, 2 \mathrm{k}(2 \mathrm{k}+1)$. Since the
j -th column of the matrix $\mathrm{L}[2 \mathrm{k}+1][2 \mathrm{k}+1]$ is a cyclic permutation of its first column, we obtain

$$
\sum_{i=1}^{2 k+1} \overbrace{i j}=\sum_{i=1}^{2 k+1} i_{i 1}^{2 k+1} \pi_{c}((i-1)(2 k+1))=(2 k+1) \sum_{i=1}^{2 k+1}(i-1)=k(2 k+1)^{2}
$$

for $j=1,2, \ldots, 2 k+1$. We note (i) since the i-th row of the matrix $L_{2 k+1}$ is a cyclic permutation of its first row then ${ }^{7}$ any fixed number $q \in\{0,2 \mathrm{k}+1, \ldots, 2 \mathrm{k}(2 \mathrm{k}+1)\}$ is presented in the i -th row of the matrix $\mathrm{L}_{2 \mathrm{k}+1}$ only one time and (ii) since the j -th column of the matrix $L_{2 k+1}$ is a cyclic permutation of its first column then ${ }^{8}$ any fixed number $\mathrm{q} \in\{0,2 \mathrm{k}+1, \ldots, 2 \mathrm{k}(2 \mathrm{k}+1)\}$ is presented in the j -th column of the matrix $\mathrm{L}_{2 \mathrm{k}+1}$ only one time. Since $m_{i j}=k_{i j}+{ }_{i j}$ we get

$$
{ }_{i=1}^{2 k+1} m_{i \mathrm{i}}={ }_{j=1}^{2 k+1} m_{\mathrm{ii}}=(k+1)(2 k+1)+k(2 k+1)^{2}=(2 k+1) \frac{\cdots \cdots \cdots}{2}
$$

for $\mathrm{i}, \mathrm{j}=1,2, \ldots, 2 \mathrm{k}+1$. It remains to show that $\mathrm{m}_{\mathrm{ij}} \in\left\{1,2, \ldots,(2 \mathrm{k}+1)^{2}\right\}$ and that m_{ij} are mutually different for $\mathrm{i}, \mathrm{j}=1,2, \ldots, 2 \mathrm{k}+1$. Indeed, since $\mathrm{k}_{\mathrm{ij}} \in\{1,2, \ldots, 2 \mathrm{k}+1\}$ and $`_{\mathrm{ij}} \in\{0,2 \mathrm{k}+1, \ldots, 2 \mathrm{k}(2 \mathrm{k}+1)\}$ we have $\mathrm{m}_{\mathrm{ij}} \in\left\{1,2, \ldots,(2 \mathrm{k}+1)^{2}\right\}$ for $\mathrm{i}, \mathrm{j}=1,2, \ldots, 2 \mathrm{k}+1$. Next, according to $K[2 k+1][2 k+1]$ we have that
(3) $\mathrm{k}_{\mathrm{ij}}=$

$$
\begin{aligned}
& \pi(\mathrm{k}+1-\mathrm{t}+\mathrm{j}) \text {, if } \mathrm{i}=2 \mathrm{t} \wedge \mathrm{k}+1-\mathrm{t}+\mathrm{j} \leq 2 \mathrm{k}+1 \\
& \pi(k+1-t+j-(2 k+1)), \quad \text { if } \quad i=2 t \wedge k+1-t+j>2 k+1 \\
& \begin{array}{ll}
\quad \pi(2 k+1-t+j), & \text { if } i=2 t+1 \wedge 2 k+1-t+j \leq 2 k+1 \\
U_{\pi(2 k+1}-\mathrm{t}+\mathrm{j}-(2 \mathrm{k}+1), & \text { if } \mathrm{i}=2 \mathrm{t}+1 \wedge 2 \mathrm{k}+1-\mathrm{t}+\mathrm{j}>2 \mathrm{k}+1
\end{array}
\end{aligned}
$$

for $\mathrm{t}=1,2, \ldots, \mathrm{k}$ and $\mathbf{j}=1,2, \ldots, 2 \mathrm{k}+1$. Next, according to $\mathrm{L}[2 \mathrm{k}+1][2 \mathrm{k}+1]$ we have that

$$
冫_{\mathrm{ij}}=\begin{array}{rll}
\pi((\mathrm{k}+\mathrm{t}+\mathrm{j}-1)(2 \mathrm{k}+1)), & \text { if } \mathrm{i}=2 \mathrm{t} \wedge \mathrm{k}+\mathrm{t}+\mathrm{j}-1 \leq 2 \mathrm{k} \tag{4}\\
\pi((\mathrm{k}+\mathrm{t}+\mathrm{j}-1-(2 \mathrm{k}+1))(2 \mathrm{k}+1)), & \text { if } \mathrm{i}=2 \mathrm{t} \wedge \mathrm{k}+\mathrm{t}+\mathrm{j}-1>2 \mathrm{k} \\
\mathrm{Q} & \pi((\mathrm{t}+\mathrm{j}-1)(2 \mathrm{k}+1)), & \text { if } \\
\mathrm{Q}=2 \mathrm{t}+1 \wedge \mathrm{t}+\mathrm{j}-1 \leq
\end{array}
$$

for $t=1,2, \ldots, k$ and $j=1,2, \ldots, 2 k+1$. Since $m_{i j}=k_{i j}{ }^{\text {ri }}{ }^{-}{ }_{\mathrm{ij}}=\pi(p)+\pi(q(2 k+1))$ and since the numbers $\pi(\mathrm{p}) \in\{1,2, \ldots, 2 \mathrm{k}+1\}$ and $\pi(\mathrm{q}(2 \mathrm{k}+1)) \in\{0,2 \mathrm{k}+1, \ldots, 2 \mathrm{k}(2 \mathrm{k}+1)\}$, it follows that $k_{i j}$ and ${ }_{\mathrm{ij}}$ are uniquely determined. In other words, if $\mathrm{m}_{\mathrm{ij}}=\mathrm{k}_{\mathrm{ij}}+{ }_{\mathrm{ij}}$, $m_{s t}=k_{s t}+{ }_{s t}$ and $m_{i j}=m_{s t}$ then $k_{i j}=k_{s t}$ and ${ }_{\mathrm{ij}}={ }_{\text {st }}$. We now proceed to show that m_{ij} are mutually different for $\mathrm{i}, \mathrm{j}=1,2, \ldots, 2 \mathrm{k}+1$. On the contrary, assume that $\mathrm{m}_{\mathrm{ij}}=\mathrm{m}_{\mu v}$ for some $(\mathrm{i}, \mathrm{j})=(\mu, v)$. Then $\mathrm{m}_{\mathrm{ij}}=\pi\left(\mathrm{p}_{0}\right)+\pi\left(\mathrm{q}_{0}(2 \mathrm{k}+1)\right)=\mathrm{m}_{\mu v}$ for some
$\pi\left(\mathrm{p}_{0}\right) \in\{1,2, \ldots, 2 \mathrm{k}+1\}$ and $\pi\left(\mathrm{q}_{0}(2 \mathrm{k}+1)\right) \in\{0,2 \mathrm{k}+1, \ldots, 2 \mathrm{k}(2 \mathrm{k}+1)\}$, which provides
that $\mathrm{k}_{\mathrm{ij}}=\mathrm{k}_{\mu \nu}$ and ${ }^{\mathrm{ijj}}{ }^{=}{ }_{\mu \nu}$. Without loss of generality we may assume that $\mathrm{i}=$ μ. Since $\pi\left(q_{0}(2 k+1)\right)$ is presented in the j-th column of the matrix $L_{2 k+1}$ only one time, we find that $\mathbf{j}=v$. Since ${ }^{9}$ the i-th row and the μ-th row of the matrix $K_{2 k+1}$ is
a cyclic permutation of its first row and since the i-th row and the μ-th row of the matrix $L_{2 k+1}$ is a cyclic permutation of its first row, we can easily see that any $m_{i s}$ in the i-th row is also presented in the μ-th row. Indeed, we have

$$
\mathrm{m}_{\mathrm{i}, \mathrm{j}+1}=\pi\left(\mathrm{p}_{0}+1\right)+\pi\left(\left(\mathrm{q}_{0}+1\right)(2 \mathrm{k}+1)\right)=\mathrm{m}_{\mu, v+1}
$$

(i) understanding that $\pi\left(\mathrm{p}_{0}+1\right)=\pi(1)$ if $\mathrm{p}_{0}+1=2 \mathrm{k}+2$ and $\pi\left(\left(\mathrm{q}_{0}+1\right)(2 \mathrm{k}+1)\right)=\pi(0)$ if $\mathrm{q}_{0}+1=2 \mathrm{k}+1$ and (ii) understanding that $\mathrm{m}_{\mathrm{i}, \mathrm{j}+1}=\mathrm{m}_{\mathrm{i} 1}$ if $\mathbf{j}+1=2 \mathrm{k}+2$ and $\mathrm{m}_{\mu, v+1}=$ $\mathrm{m}_{\mu 1}$ if $v+1=2 \mathrm{k}+2$. In the view of this, we can assume that $\mathbf{j}=1$. Since $\mathbf{j}=v$ we have
that $v \in\{2,3, \ldots, 2 k+1\}$. Finally, in order to prove that $\mathrm{M}_{2 \mathrm{k}+1}$ is a semi-magic square
we shall consider the following four cases:
Case 1. ($\mathrm{i}=2 \mathrm{t}$ and $\mu=2 \mathrm{~s}$). Consider the case when $\mathrm{k}+1-\mathrm{s}+\mathrm{v} \leq 2 \mathrm{k}+1$ and $\mathrm{k}+\mathrm{s}+\mathrm{v}-1 \leq 2 \mathrm{k}$. Using (3) and (4) we obtain that $\pi(\mathrm{k}+2-\mathrm{t})=\pi(\mathrm{k}+1-\mathrm{s}+$ v) and $\pi((\mathrm{k}+\mathrm{t})(2 \mathrm{k}+1))=\pi((\mathrm{k}+\mathrm{s}+\mathrm{v}-1)(2 \mathrm{k}+1))$, which provides that (i) $\mathrm{k}+2-\mathrm{t}=\mathrm{k}$ $+1-\mathrm{s}+\mathrm{v}$ and (ii) $\mathrm{k}+\mathrm{t}=\mathrm{k}+\mathrm{s}+\mathrm{v}-1$. Using (i) and (ii) we obtain $\mathrm{v}=1$, a contradiction because $v>1$. Consider the case when $k+1-\mathrm{s}+\mathrm{v} \leq 2 \mathrm{k}+1$ and $\mathrm{k}+$ $\mathrm{s}+\mathrm{v}-1>2 \mathrm{k}$. Using (3) and (4) we obtain that $\pi(\mathrm{k}+2-\mathrm{t})=\pi(\mathrm{k}+1-\mathrm{s}+\mathrm{v})$ and $\pi((\mathrm{k}+\mathrm{t})(2 \mathrm{k}+1))=\pi((\mathrm{k}+\mathrm{s}+\mathrm{v}-1-(2 \mathrm{k}+1))(2 \mathrm{k}+1))$, which provides that (iii) $\mathrm{k}+2-\mathrm{t}=\mathrm{k}+1-\mathrm{s}+\mathrm{v}$ and (iv) $\mathrm{k}+\mathrm{t}=\mathrm{k}+\mathrm{s}+\mathrm{v}-1-(2 \mathrm{k}+1)$. Using (iii) and (iv) we obtain $2 v=2 \mathrm{k}+3$, a contradiction because $2-2 \mathrm{k}+3$. Consider the case when $\mathrm{k}+1-\mathrm{s}+\mathrm{v}>2 \mathrm{k}+1$ and $\mathrm{k}+\mathrm{s}+\mathrm{v}-1 \leq 2 \mathrm{k}$. Using (3) and (4) we obtain that $\pi(\mathrm{k}+2-\mathrm{t})=\pi(\mathrm{k}+1-\mathrm{s}+\mathrm{v}-(2 \mathrm{k}+1))$ and $\pi((\mathrm{k}+\mathrm{t})(2 \mathrm{k}+1))=\pi((\mathrm{k}+\mathrm{s}+\mathrm{v}-1)(2 \mathrm{k}+$ 1)), which provides that (v) $k+2-t=k+1-s+v-(2 k+1)$ and (vi) $k+t=k+s+v-$ 1. Using (v) and (vi) we obtain $2 v=2 \mathrm{k}+3$, a contradiction because $2-2 \mathrm{k}+3$. Consider the case when $\mathrm{k}+1-\mathrm{s}+\mathrm{v}>2 \mathrm{k}+1$ and $\mathrm{k}+\mathrm{s}+\mathrm{v}-1>2 \mathrm{k}$. Using (3) and (4) we obtain that $\pi(\mathrm{k}+2-\mathrm{t})=\pi(\mathrm{k}+1-\mathrm{s}+\mathrm{v}-(2 \mathrm{k}+1))$ and $\pi((\mathrm{k}+\mathrm{t})(2 \mathrm{k}+1))=\pi((\mathrm{k}$ $+\mathrm{s}+\mathrm{v}-1-(2 \mathrm{k}+1))(2 \mathrm{k}+1)$), which provides that (vii) $\mathrm{k}+2-\mathrm{t}=\mathrm{k}+1-\mathrm{s}+\mathrm{v}-$ ($2 \mathrm{k}+1$) and (viii) $\mathrm{k}+\mathrm{t}=\mathrm{k}+\mathrm{s}+\mathrm{v}-1-(2 \mathrm{k}+1$). Using (vii) and (viii) we obtain v $=2 \mathrm{k}+2$, a contradiction because $v \in\{2,3, \ldots, 2 \mathrm{k}+1\}$.

Case 2. ($\mathrm{i}=2 \mathrm{t}$ and $\mu=2 \mathrm{~s}+1$). Consider the case when $2 \mathrm{k}+1-\mathrm{s}+\mathrm{v} \leq 2 \mathrm{k}+1$ and
$\mathrm{s}+\mathrm{v}-1 \leq 2 \mathrm{k}$. Using (3) and (4) we obtain that $\pi(\mathrm{k}+2-\mathrm{t})=\pi(2 \mathrm{k}+1-\mathrm{s}+\mathrm{v})$ -and
$\pi((\mathrm{k}+\mathrm{t})(2 \mathrm{k}+1))=\pi((\mathrm{s}+\mathrm{v}-1)(2 \mathrm{k}+1))$, which provides that (i) $\mathrm{k}+2-\mathrm{t}=2 \mathrm{k}+1-\mathrm{s}+v$ and (ii) $\mathrm{k}+\mathrm{t}=\mathrm{s}+v-1$. Using (i) and (ii) we obtain $v=1$, a contradiction because $v>$
1.

Consider the case when $2 \mathrm{k}+1-\mathrm{s}+\mathrm{v} \leq 2 \mathrm{k}+1$ and $\mathrm{s}+\mathrm{v}-1>2 \mathrm{k}$. Using (3) and (4) we obtain
that $\pi(\mathrm{k}+2-\mathrm{t})=\pi(2 \mathrm{k}+1-\mathrm{s}+\mathrm{v})$ and $\pi((\mathrm{k}+\mathrm{t})(2 \mathrm{k}+1))=\pi((\mathrm{s}+\mathrm{v}-1-(2 \mathrm{k}+1))(2 \mathrm{k}+1))$, which provides that (iii) $\mathrm{k}+2-\mathrm{t}=2 \mathrm{k}+1-\mathrm{s}+\mathrm{v}$ and (iv) $\mathrm{k}+\mathrm{t}=\mathrm{s}+\mathrm{v}-1-(2 \mathrm{k}+$ 1).

Using (iii) and (iv) we obtain $2 v=2 \mathrm{k}+3$, a contradiction because $2-2 \mathrm{k}+3$. Consider the case when $2 \mathrm{k}+1-\mathrm{s}+\mathrm{v}>2 \mathrm{k}+1$ and $\mathrm{s}+\mathrm{v}-1 \leq 2 \mathrm{k}$. Using (3) and (4) we obtain that $\pi(\mathrm{k}+2-\mathrm{t})=\pi(2 \mathrm{k}+1-\mathrm{s}+\mathrm{v}-(2 \mathrm{k}+1))$ and $\pi((\mathrm{k}+\mathrm{t})(2 \mathrm{k}+1))=\pi((\mathrm{s}+v-1)(2 \mathrm{k}$ $+1)$), which provides that (v) $\mathrm{k}+2-\mathrm{t}=2 \mathrm{k}+1-\mathrm{s}+\mathrm{v}-(2 \mathrm{k}+1)$ and (vi) $\mathrm{k}+\mathrm{t}=\mathrm{s}+\mathrm{v}$ -1 . Using (v)
and (vi) we obtain $2 v=2 \mathrm{k}+3$, a contradiction because $2-2 \mathrm{k}+3$. Consider the case when
$2 \mathrm{k}+1-\mathrm{s}+\mathrm{v}>2 \mathrm{k}+1$ and $\mathrm{s}+\mathrm{v}-1>2 \mathrm{k}$. Using (3) and (4) we obtain that $\pi(\mathrm{k}+2-\mathrm{t})$ $=\pi(2 \mathrm{k}+1-\mathrm{s}+\mathrm{v}-(2 \mathrm{k}+1))$ and $\pi((\mathrm{k}+\mathrm{t})(2 \mathrm{k}+1))=\pi((\mathrm{s}+\mathrm{v}-1-(2 \mathrm{k}+1))(2 \mathrm{k}+1))$, which provides that (vii) $\mathrm{k}+2-\mathrm{t}=2 \mathrm{k}+1-\mathrm{s}+\mathrm{v}-(2 \mathrm{k}+1)$ and (viii) $\mathrm{k}+\mathrm{t}=\mathrm{s}+\mathrm{v}-1-$ $(2 \mathrm{k}+1)$. Using (vii) and (viii) we obtain $v=2 \mathrm{k}+2$, a contradiction because $v \in\{2,3, \ldots$, $2 \mathrm{k}+1\}$.

Case 3. $(\mathrm{i}=2 \mathrm{t}+1$ and $\mu=2 \mathrm{~s}$). Consider the case when $\mathrm{k}+1-\mathrm{s}+\mathrm{v} \leq 2 \mathrm{k}+1$ and $\mathrm{k}+\mathrm{s}+\mathrm{v}-1 \leq 2 \mathrm{k}$. Using (3) and (4) we obtain that $\pi(2 \mathrm{k}+2-\mathrm{t})=\pi(\mathrm{k}+1-\mathrm{s}+\mathrm{v}$) and $\pi(\mathrm{t}(2 \mathrm{k}+1))=\pi((\mathrm{k}+\mathrm{s}+\mathrm{v}-1)(2 \mathrm{k}+1))$, which provides that (i) $2 \mathrm{k}+2-\mathrm{t}=\mathrm{k}+1$ $-\mathrm{s}+\mathrm{v}$ and (ii) $\mathrm{t}=\mathrm{k}+\mathrm{s}+\mathrm{v}-1$. Using (i) and (ii) we obtain $v=1$, a contradiction because $v>1$. Consider the case when $\mathrm{k}+1-\mathrm{s}+\mathrm{v} \leq 2 \mathrm{k}+1$ and $\mathrm{k}+\mathrm{s}+\mathrm{v}-1>2 \mathrm{k}$. Using (3) and (4) we obtain that $\pi(2 \mathrm{k}+2-\mathrm{t})=\pi(\mathrm{k}+1-\mathrm{s}+v)$ and $\pi(\mathrm{t}(2 \mathrm{k}+1))=\pi((\mathrm{k}$ $+\mathrm{s}+\mathrm{v}-1-(2 \mathrm{k}+1))(2 \mathrm{k}+$
1)), which provides that (iii) $2 \mathrm{k}+2-\mathrm{t}=\mathrm{k}+1-\mathrm{s}+\mathrm{v}$ and (iv) $\mathrm{t}=\mathrm{k}+\mathrm{s}+\mathrm{v}-1-(2 \mathrm{k}+$ 1).

Using (iii) and (iv) we obtain $2 v=2 \mathrm{k}+3$, a contradiction because $2-2 \mathrm{k}+3$. Consider the case when $\mathrm{k}+1-\mathrm{s}+\mathrm{v}>2 \mathrm{k}+1$ and $\mathrm{k}+\mathrm{s}+\mathrm{v}-1 \leq 2 \mathrm{k}$. Using (3) and (4) we obtain that $\pi(2 \mathrm{k}+2-\mathrm{t})=\pi(\mathrm{k}+1-\mathrm{s}+\mathrm{v}-(2 \mathrm{k}+1))$ and $\pi(\mathrm{t}(2 \mathrm{k}+1))=\pi((\mathrm{k}+\mathrm{s}+\mathrm{v}-$ 1) $(2 \mathrm{k}+1)$), which provides that (v) $2 \mathrm{k}+2-\mathrm{t}=\mathrm{k}+1-\mathrm{s}+\mathrm{v}-(2 \mathrm{k}+1$) and (vi) $\mathrm{t}=\mathrm{k}$ $+s+v-1$.
Using (v) and (vi) we obtain $2 v=2 \mathrm{k}+3$, a contradiction because $2-2 \mathrm{k}+3$. Consider the case when $\mathrm{k}+1-\mathrm{s}+v>2 \mathrm{k}+1$ and $\mathrm{k}+\mathrm{s}+\mathrm{v}-1>2 \mathrm{k}$. Using (3) and (4) we obtain that $\pi(2 \mathrm{k}+2-\mathrm{t})=\pi(\mathrm{k}+1-\mathrm{s}+v-(2 \mathrm{k}+1))$ and $\pi(\mathrm{t}(2 \mathrm{k}+1))=\pi((\mathrm{k}+\mathrm{s}+v-1-$ $(2 \mathrm{k}+1))(2 \mathrm{k}+1)$), which provides that (vii) $2 \mathrm{k}+2-\mathrm{t}=\mathrm{k}+1-\mathrm{s}+\mathrm{v}-(2 \mathrm{k}+1)$ and (viii) $\mathrm{t}=$ $\mathrm{k}+\mathrm{s}+\mathrm{v}-1-(2 \mathrm{k}+1)$. Using (vii) and (viii) we obtain $v=2 \mathrm{k}+2$, a contradiction because $v \in\{2,3, \ldots, 2 k+1\}$.

Case 4. $(\mathrm{i}=2 \mathrm{t}+1$ and $\mu=2 \mathrm{~s}+1$). Consider the case when $2 \mathrm{k}+1-\mathrm{s}+\mathrm{v} \leq 2 \mathrm{k}+1$ and $\mathrm{s}+\mathrm{v}-1 \leq 2 \mathrm{k}$. Using (3) and (4) we obtain that $\pi(2 \mathrm{k}+2-\mathrm{t})=\pi(2 \mathrm{k}+1-\mathrm{s}+\mathrm{v})$ and $\pi(\mathrm{t}(2 \mathrm{k}+1))=\pi((\mathrm{s}+v-1)(2 \mathrm{k}+1))$, which provides that (i) $2 \mathrm{k}+2-\mathrm{t}=2 \mathrm{k}+1-\mathrm{s}+\mathrm{v}$ and (ii) $t=s+v-1$. Using (i) and (ii) we obtain $v=1$, a contradiction because $v>1$. Consider the case when $2 \mathrm{k}+1-\mathrm{s}+\mathrm{v} \leq 2 \mathrm{k}+1$ and $\mathrm{s}+\mathrm{v}-1>2 \mathrm{k}$. Using (3) and (4) we obtain
that $\pi(2 \mathrm{k}+2-\mathrm{t})=\pi(2 \mathrm{k}+1-\mathrm{s}+\mathrm{v})$ and $\pi(\mathrm{t}(2 \mathrm{k}+1))=\pi((\mathrm{s}+\mathrm{v}-1-(2 \mathrm{k}+1))(2 \mathrm{k}+1))$,
which provides that (iii) $2 \mathrm{k}+2-\mathrm{t}=2 \mathrm{k}+1-\mathrm{s}+\mathrm{v}$ and (iv) $\mathrm{t}=\mathrm{s}+\mathrm{v}-1-(2 \mathrm{k}+1)$.
Using (iii) and (iv) we obtain $2 v=2 \mathrm{k}+3$, a contradiction because $2-2 \mathrm{k}+3$. Consider the case when $2 \mathrm{k}+1-\mathrm{s}+\mathrm{v}>2 \mathrm{k}+1$ and $\mathrm{s}+\mathrm{v}-1 \leq 2 \mathrm{k}$. Using (3) and (4) we obtain that $\pi(2 \mathrm{k}$ $+2-\mathrm{t})=\pi(2 \mathrm{k}+1-\mathrm{s}+\mathrm{v}-(2 \mathrm{k}+1))$ and $\pi(\mathrm{t}(2 \mathrm{k}+1))=\pi((\mathrm{s}+\mathrm{v}-1)(2 \mathrm{k}+1))$, which provides that (v) $2 \mathrm{k}+2-\mathrm{t}=2 \mathrm{k}+1-\mathrm{s}+\mathrm{v}-(2 \mathrm{k}+1)$ and (vi) $\mathrm{t}=\mathrm{s}+\mathrm{v}-1$. Using
(v) and (vi) we obtain $2 \mathrm{v}=2 \mathrm{k}+3$, a contradiction because $2-2 \mathrm{k}+3$. Consider the case when $2 \mathrm{k}+1$ $-\mathrm{s}+\mathrm{v}>2 \mathrm{k}+1$ and $\mathrm{s}+\mathrm{v}-1>2 \mathrm{k}$. Using (3) and (4) we obtain that $\pi(2 \mathrm{k}+2-\mathrm{t})=\pi(2 \mathrm{k}+1-$ $\mathrm{s}+\mathrm{v}-(2 \mathrm{k}+1))$ and $\pi(\mathrm{t}(2 \mathrm{k}+1))=\pi((\mathrm{s}+v-1-(2 \mathrm{k}+1))(2 \mathrm{k}+1))$, which provides that (vii) $2 \mathrm{k}+2-\mathrm{t}=2 \mathrm{k}$ $+1-\mathrm{s}+\mathrm{v}-(2 \mathrm{k}+1)$ and (viii) $\mathrm{t}=\mathrm{s}+\mathrm{v}-1-(2 \mathrm{k}+1)$. Using (vii) and (viii) we obtain $v=2 \mathrm{k}+2$, a contradiction because $v \in\{2,3, \ldots, 2 \mathrm{k}+1\}$.

Theorem 1. Let $\mathrm{M}_{2 \mathrm{k}+1}\left[\mathrm{~m}_{\mathbf{i j}}\right]=\mathrm{K}_{2 \mathrm{k}+1}\left[\mathrm{k}_{\mathbf{i j}}\right]+\mathrm{L}_{2 \mathrm{k}+1}\left[{ }^{〔} \mathbf{i j}\right]$ where $\mathrm{K}_{2 \mathrm{k}+1}\left[\mathrm{k}_{\mathbf{i j}}\right]=\mathrm{K}[2 \mathrm{k}+1][2 \mathrm{k}+1]$ and $\mathrm{L}_{2 \mathrm{k}+1}[\mathrm{ij}]=\mathrm{L}[2 \mathrm{k}+1][2 \mathrm{k}+1]$. Then $\mathrm{M}_{2 \mathrm{k}+1}\left[\mathrm{~m}_{\mathbf{i j}}\right]$ is a semi-magic square of order $2 \mathrm{k}+1$ for $\mathrm{k} \geq 2$.

Theorem 2. Let $\mathrm{M}_{2 \mathrm{k}+1}\left[\mathrm{~m}_{\mathbf{i j}}\right]=\mathrm{K}_{2 \mathrm{k}+1}\left[\mathrm{k}_{\mathbf{i j}}\right]+\mathrm{L}_{2 \mathrm{k}+1}[\mathrm{ij}]$ where $\mathrm{K}_{2 \mathrm{k}+1}\left[\mathrm{k}_{\mathbf{i j}}\right]=\mathrm{K}[2 \mathrm{k}+1][2 \mathrm{k}+1]$ and $\mathrm{L}_{2 \mathrm{k}+1}[\mathfrak{i j}]=\mathrm{L}[2 \mathrm{k}+1][2 \mathrm{k}+1]$. Then ${ }^{10} \mathrm{M}_{2 \mathrm{k}+1}\left[\mathrm{~m}_{\mathbf{i j}}\right]$ is a magic square of order $2 \mathrm{k}+1$ if $3-2 \mathrm{k}+1$.

Proof. In order to prove that $\mathrm{M}_{2 \mathrm{k}+1}$ is a magic square it is sufficient to show that the all elements in both diagonals of the matrix $\mathrm{K}_{2 \mathrm{k}+1}$ and the matrix $\mathrm{L}_{2 \mathrm{k}+1}$ are mutually different. First, according to $\mathrm{K}[2 \mathrm{k}+1][2 \mathrm{k}+1]$ we have that

$$
k_{\mathrm{ii}}=\begin{aligned}
\pi(k+t+1) & \text { if } \quad i=2 t \\
\pi(t+1), & \text { if } \quad i=2 t+1
\end{aligned}
$$

for $\mathrm{t}=1,2, \ldots, \mathrm{k}$. Since $\mathrm{t}+1<\mathrm{k}+\mathrm{t}+1$ it follows that k_{ii} are mutually different for $\mathrm{i}=1,2, \ldots, 2 \mathrm{k}+1$. Next, according to $\mathrm{K}[2 \mathrm{k}+1][2 \mathrm{k}+1]$ we have that

$$
\mathrm{k}_{\mathrm{i}, 2 \mathrm{k}+2-\mathrm{i}}=\begin{array}{ll}
\pi(\mathrm{k}+2-3 \mathrm{t}), & \text { if } \quad \mathrm{i}=2 \mathrm{t} \wedge \mathrm{k}+2-3 \mathrm{t} \geq 0 \\
\square \pi(\mathrm{k}+2-3 \mathrm{t}+2 \mathrm{k}+1), & \text { if } \mathrm{i}=2 \mathrm{t} \wedge \mathrm{k}+2-3 \mathrm{t}<0 \\
\square & \pi(2 \mathrm{k}+1-3 \mathrm{t}), \\
\text { 日 } & \text { if } \quad \mathrm{i}=2 \mathrm{t}+1 \wedge 2 \mathrm{k}+1-3 \mathrm{t} \geq \\
\square(2(2 \mathrm{k}+1)-3 \mathrm{t}), & \text { if } \quad \mathrm{i}=2 \mathrm{t}+1 \wedge 2 \mathrm{k}+1-3 \mathrm{t}<
\end{array}
$$

for $t=1,2, \ldots, k$. Since $3-2 k+1$ and $k+2=3(k+1)-(2 k+1)$ it follows that $\mathrm{k}+2-3 \mathrm{t}=0$ and $2 \mathrm{k}+1-3 \mathrm{t}=0$. Let $2 \mathrm{k}+1 \equiv \varepsilon \bmod 3$ where $\varepsilon \in\{-1,1\}$. Then we
have (i) $k+2-3 t \equiv-\varepsilon \bmod 3$ and (ii) $k+2-3 t+2 k+1 \equiv 0 \bmod 3$, which
that $\mathrm{k}_{2 \mathrm{t}, 2 \mathrm{k}+2-2 \mathrm{t}}$ are mutually different for $\mathrm{t}=1,2, \ldots, \mathrm{k}$. Since (iii) $2 \mathrm{k}+1-3 \mathrm{t} \equiv \varepsilon \bmod$ 3
and (iv) $2(2 \mathrm{k}+1)-3 \mathrm{t} \equiv-\varepsilon \bmod 3$, we find that $\mathrm{k}_{2 \mathrm{t}+1,2 \mathrm{k}+2-(2 \mathrm{t}+1)}$ are mutually different
for $\mathrm{t}=1,2, \ldots, \mathrm{k}$. Of course, since $3-2 \mathrm{k}+1$ we have $\mathrm{k}_{1,2 \mathrm{k}+1}=\pi(2 \mathrm{k}+1)=\mathrm{k}_{2 \mathrm{t}+1,2 \mathrm{k}+2-(2 \mathrm{t}+1)}$ for $t=1,2, \ldots, k$. On the contrary, assume that $k_{i, 2 k+2-i}=k_{j, 2 k+2-j}$ for some $i=j$. Then according to (i), (ii), (iii) and (iv) it must be $\pi(\mathrm{k}+2-3 \mathrm{t})=\pi(2(2 \mathrm{k}+1)-3 \mathrm{~s})$, which provides that $k+2-3 t=2(2 k+1)-3 s$ for some $t=1,2, \ldots, k$ and $s=1,2, \ldots, k$. Then $\mathrm{k}+2-3 \mathrm{t} \leq \mathrm{k}-1<\mathrm{k}+1<2(2 \mathrm{k}+1)-3 \mathrm{~s}$, a contradiction.

Next, we shall now demonstrate that the all elements in both diagonals of the matrix $L[2 k+1][2 k+1]$ are mutually different. Indeed, according to $L[2 k+1][2 k+1]$ we have that
for $\mathrm{t}=1,2, \ldots, \mathrm{k}$. Since $3-2 \mathrm{k}+1$ and $\mathrm{k}-1=3 \mathrm{k}-(2 \mathrm{k}+1)$ it follows that $\mathrm{k}-1+3 \mathrm{t}=$ $2 \mathrm{k}+1$ and $3 \mathrm{t}=2 \mathrm{k}+1$. Let $2 \mathrm{k}+1 \equiv \varepsilon \bmod 3$ where $\varepsilon \in\{-1,1\}$. Then we have (i) $\mathrm{k}-1+3 \mathrm{t} \equiv-\varepsilon \bmod 3$ and (ii) $\mathrm{k}-1+3 \mathrm{t}-(2 \mathrm{k}+1) \equiv \varepsilon \bmod 3$, which provides
that ${ }^{2} 2,2 \mathrm{t}$ are mutually different for $\mathrm{t}=1,2, \ldots, \mathrm{k}$. Since (iii) $3 \mathrm{t} \equiv 0 \bmod 3$ and (iv) $3 t-(2 k+1) \equiv-\varepsilon \bmod 3$, we find that ${ } 2 t+1,2 t+1$ are mutually different for $t=1,2, \ldots, k$. Of course, since $3-2 k+1$ we have ${ }_{11}=\pi(0)={ }^{`} 2 t+1,2 t+1$ for $t=1,2, \ldots, k$. On the contrary, assume that ${ }_{\mathrm{ii}}={ }_{\mathrm{jj}}$ for some $\mathrm{i}=\mathrm{j}$. Then according to (i), (ii), (iii) and (iv) it must be $\pi((\mathrm{k}-1+3 \mathrm{t})(2 \mathrm{k}+1))=\pi((3 \mathrm{~s}-(2 \mathrm{k}+1))(2 \mathrm{k}+1))$, which provides that $k-1+3 t=3 s-(2 k+1)$ for some $t=1,2, \ldots, k$ and $s=1,2, \ldots, k$. Then $\mathrm{k}-1+3 \mathrm{t} \geq \mathrm{k}+2>\mathrm{k}>3 \mathrm{~s}-(2 \mathrm{k}+1)$, a contradiction. Next, according to $\mathrm{L}[2 \mathrm{k}+1][2 \mathrm{k}+1]$ we have that

$$
`_{\mathrm{i}, 2 \mathrm{k}+2-\mathrm{i}}=\begin{aligned}
\pi((\mathrm{k}-\mathrm{t})(2 \mathrm{k}+1)) & \text { if } \quad \mathrm{i}=2 \mathrm{t} \\
\pi((2 \mathrm{k}-\mathrm{t})(2 \mathrm{k}+1)), & \text { if } \quad \mathrm{i}=2 \mathrm{t}+1
\end{aligned}
$$

for $\mathrm{t}=1,2, \ldots, \mathrm{k}$. Since $\mathrm{k}-\mathrm{t}<2 \mathrm{k}-\mathrm{t}$ it follows that `${ }_{\mathrm{ii}}$ are mutually different for $\mathrm{i}=1,2, \ldots, 2 \mathrm{k}+1$.

Corollary 1. Let $\mathrm{M}_{\mathrm{n}}\left[\mathrm{m}_{\mathrm{ij}}\right]=\mathrm{K}_{\mathrm{n}}\left[\mathrm{k}_{\mathrm{ij}}\right]+\mathrm{L}_{\mathrm{n}}\left[{ }_{\mathrm{ij}}\right]$ for $\mathrm{n} \in 2 \mathrm{~N}+1$, where $\mathrm{K}_{\mathrm{n}}\left[\mathrm{k}_{\mathrm{ij}}\right]=\mathrm{K}[\mathrm{n}][\mathrm{n}]$ and $L_{n}\left[{ }_{i j}\right]=L[n][n]$. Then

$$
\mathrm{M}_{\mathrm{n}}\left[\mathrm{~m}_{\mathrm{ij}}\right]=\begin{array}{lll}
& \begin{array}{l}
\text { the magic square, } \\
\text { the magic square, }
\end{array} & \text { if } n=6 k-1 \\
\mathrm{E}_{\text {the }} \text { semi }- \text { magic square, } & \text { if } n=6 k+3
\end{array}
$$

for $k \in N$.

Remark 5. In case that $k=2$ the applied method of cyclic permutations for creating the magic squares is reduced to the method of cyclic permutations for creating the magic squares of order 5 established by French mathematician Philippe de La Hire.

III. Two infinite classes of strongly regular graphs

Let $\mathrm{M}_{2 \mathrm{k}+1}\left[\mathrm{~m}_{\mathrm{ij}}\right]=\mathrm{K}_{2 \mathrm{k}+1}\left[\mathrm{k}_{\mathrm{ij}}\right]+\mathrm{L}_{2 \mathrm{k}+1}\left[{ }_{\mathrm{ij}}\right]$ be a semi-magic square of order $2 \mathrm{k}+1$ for $\mathrm{k} \geq 2$. Let $G\left[M_{2 k+1}\right]$ be a graph obtained from the matrix $\mathrm{M}_{2 k+1}\left[\mathrm{~m}_{\mathrm{ij}}\right]$ in the following way: (i) the vertex set of the graph $\mathrm{G}\left[\mathrm{M}_{2 \mathrm{k}+1}\right]$ is $\mathrm{V}\left(\mathrm{G}\left[\mathrm{M}_{2 \mathrm{k}+1}\right]\right)=\left\{\mathrm{m}_{\mathrm{ij}} \mathrm{i}, \mathrm{j}=1,2, \ldots, 2 \mathrm{k}+1\right\}$ and (ii) the neighborhood of the vertex $m_{i j}=k_{i j}+{ }_{i j}$ is $S_{m_{i j}}=S_{m_{i,-}-} \cup S_{m-i j} \cup K_{i j} \cup L_{i j}$ where

$$
\begin{align*}
\mathrm{K}_{\mathrm{ij}} & =\left\{\mathrm{m}_{\mathrm{st}} \mid \mathrm{k}_{\mathrm{st}}=\mathrm{k}_{\mathrm{ij}} \text { and }(\mathrm{s}, \mathrm{t})=(\mathrm{i}, \mathrm{j})\right\}, \tag{5}\\
\mathrm{L}_{\mathrm{ij}} & =\left\{\mathrm{m}_{\mathrm{st}} \mid{ }_{\mathrm{st}}={ }_{\mathrm{ij}} \text { and }(\mathrm{s}, \mathrm{t})=(\mathrm{i}, \mathrm{j})\right\}, \tag{6}
\end{align*}
$$

for $\mathrm{s}, \mathrm{t}=1,2, \ldots, 2 \mathrm{k}+1$. We note that $\mathrm{K}_{\mathrm{ij}} \cap \mathrm{L}_{\mathrm{ij}}=\emptyset$ for $\mathrm{i}, \mathrm{j}=1,2, \ldots, 2 k+1$. Indeed, on the contrary, assume that $m_{s t} \in \mathrm{~K}_{\mathrm{ij}} \cap \mathrm{L}_{\mathrm{ij}}$. Then $\mathrm{m}_{\mathrm{st}}=\mathrm{k}_{\mathrm{st}}+{ }^{{ }_{\mathrm{st}}}=\mathrm{k}_{\mathrm{ij}}+{ }_{\mathrm{ij}}=\mathrm{m}_{\mathrm{ij}}$, a contradiction. Namely, it is easy to see that $\mathrm{S}_{\mathrm{m}_{\mathrm{i}},{ }_{-}}, \mathrm{S}_{\mathrm{m}-_{\mathrm{i}} \mathrm{j}}, \mathrm{K}_{\mathrm{ij}}, \mathrm{L}_{\mathrm{ij}}$ are mutually disjoint. For the sake of an example, let us show that $\mathrm{S}_{\mathrm{mi}_{\mathrm{i}},-\mathrm{i}} \cap \mathrm{K}_{\mathrm{ij}}=\emptyset$. On the contrary, assume that $m_{s t} \in S_{m_{i,-j}} \cap K_{i j}$. Using (1) it follows that $s=i$ and $t=j$. Since $m_{i t} \in K_{i j}$ and
$\mathrm{k}_{\mathrm{it}}=\mathrm{k}_{\mathrm{ij}}$ we find that k_{ij} is presented in the i -th row of the matrix $\mathrm{K}_{2 \mathrm{k}+1}\left[\mathrm{k}_{\mathrm{ij}}\right]$ two times, a contradiction. Since $\mathrm{k}_{\mathrm{ij}} \in \mathrm{K}_{2 \mathrm{k}+1}=\mathrm{K}_{2 \mathrm{k}+1}\left[\mathrm{k}_{\mathrm{ij}}\right]$ is presented in the i -th row and the j -th column only one time and $\mathrm{m}_{\mathrm{ij}} 6 \in \mathrm{~K}_{\mathrm{ij}}$, we obtain $\left|\mathrm{K}_{\mathrm{ij}}\right|=(2 \mathrm{k}+1)-1$. Similarly, since
${ }_{i j} \in L_{2 k+1}=L_{2 k+1}\left[{ }_{i j}\right]$ is presented in the i-th row and the j-th column only one time and $m_{i j} 6 \in L_{i j}$, we obtain $\left|L_{i j}\right|=(2 k+1)-1$. Therefore, we have

$$
\left|\mathrm{S}_{\mathrm{m}_{\mathrm{ij}}}\right|=\left|\mathrm{S}_{\mathrm{m}_{\mathrm{i},-\mathrm{j}}}\right|+\left|\mathrm{S}_{\mathrm{m}_{-\mathrm{i}, \mathrm{j}}}\right|+\left|\mathrm{K}_{\mathrm{ij}}\right|+\left|\mathrm{L}_{\mathrm{ij}}\right|=2 \mathrm{k}+2 \mathrm{k}+2 \mathrm{k}+2 \mathrm{k},
$$

which provides that $G\left[\mathrm{M}_{2 \mathrm{k}+1}\right]$ is a regular graph of order $\mathrm{n}=(2 \mathrm{k}+1)^{2}$ and degree $\mathrm{r}=8 \mathrm{k}$.
Theorem 3. Let $\mathrm{M}_{2 \mathrm{k}+1}\left[\mathrm{~m}_{\mathrm{ij}}\right]=\mathrm{K}_{2 \mathrm{k}+1}\left[\mathrm{k}_{\mathrm{ij}}\right]+\mathrm{L}_{2 \mathrm{k}+1}[\mathrm{ij}]$ be a semi-magic square of order $2 k+1$ for $k \geq 2$. Then $G\left[M_{2 k+1}\right]$ is a strongly regular graph of order $n=(2 k+1)^{2}$ and degree $\mathrm{r}=8 \mathrm{k}$ with $\tau=2 \mathrm{k}+5$ and $\theta=12$.

Proof. First, assume that m_{ij} and $\mathrm{m}_{\mu v}$ are two distinct non-adjacent vertices of the graph $\mathrm{G}\left[\mathrm{M}_{2 \mathrm{k}+1}\right]$. In this case we have $\mu=\mathrm{i}$ and $v=\mathrm{j}$. On the contrary, assume that $\mu=\mathrm{i}$ or $v=\mathrm{j}$. Without loss of generality we can assume that $\mu=\mathrm{i}$ and $v=\mathrm{j}$. Then $m_{i v} \in \mathrm{~S}_{\mathrm{m}_{\mathrm{i},-}-\mathrm{j}}$, which means that m_{iv} and m_{ij} are adjacent, a contradiction. Since $m_{\mu v}=k_{\mu v}+{ }_{\mu \nu}$ it is easy to see $k_{\mu v}=k_{i j}$ and ${ }_{\mu \nu}={ }^{{ }^{\mathrm{ij}}}{ }$. Indeed, if we assume $k_{\mu v}=k_{i j}$ then $\mathrm{m}_{\mu v} \in \mathrm{~K}_{\mathrm{ij}}$, which means that $\mathrm{m}_{\mu v}$ and m_{ij} are adjacent, a contradiction. We shall
now $\left(1^{0}\right)$ prove that $\left|\mathrm{S}_{\mathrm{m}_{\mathrm{ij}}} \cap \mathrm{S}_{\mathrm{m}_{\mu,-\mathrm{v}}}\right|=3$. Since k_{ij} is presented in the μ-th row of the matrix $\mathrm{K}_{2 \mathrm{k}+1}$ it follows that there exist $s=v$ so that $\mathrm{k}_{\mu \mathrm{s}}=\mathrm{k}_{\mathrm{ij}}$, which provides that $\mathrm{m}_{\mu \mathrm{s}} \in \mathrm{S}_{\mathrm{m}_{\mu},-\mathrm{v}}$ and $m_{\mu s} \in \mathrm{~K}_{\mathrm{ij}} \subseteq \mathrm{S}_{\mathrm{m}_{\mathrm{ij}}}$. Similarly, since ${ }^{\mathrm{ij}}$ is presented in the μ-th row of the matrix $\mathrm{L}_{2 \mathrm{k}+1}$ it follows that there exist $t=v$ so that ${ }_{\mu \mathrm{t}}={ }^{\mathrm{ij}}$, which provides that $\mathrm{m}_{\mu \mathrm{t}} \in \mathrm{S}_{\mathrm{m}_{\mu},-V_{v}}$ and $m_{\mu t} \in L_{i j} \subseteq S_{m_{i j}}$. Since $S_{m_{\mu,-v}} \cap S_{m_{i,-j}}=\emptyset$ and since $S_{m_{\mu,-\imath}} \cap S_{m_{-i, j}}=\left\{m_{\mu j}\right\} \subseteq S_{m_{i j}}$, we
obtain 11 that $\left|S_{m_{i j}} \cap S_{m_{\mu,-v}}\right| \geq 3$. Next, let $m_{\mu x} \in \quad{ }_{\mu},-{ }_{m}$ and let $m_{\mu x} 6 \in\left\{m_{\mu j}, m_{\mu s}, m_{\mu t}\right.$ which provides that $\mathrm{x} 6 \in\{j, \mathrm{~s}, \mathrm{t}\}$. It remains to demonstrate that $\mathrm{m}_{\mu \mathrm{x}} 6 \in \mathrm{~S}_{\mathrm{m}_{\mathrm{ij}}}$. On the
contrary, assume that $m_{\mu x}=k_{\mu x}+{ }_{\mu x} \in S_{m_{i j}}$. Then according to (1), (2), (5) and (6) we find that $m_{\mu x} \in \mathrm{~K}_{\mathrm{ij}}$ or $\mathrm{m}_{\mu \mathrm{x}} \in \mathrm{L}_{\mathrm{ij}}$. Without loss of generality we may assume $\mathrm{m}_{\mu \mathrm{x}} \in \mathrm{K}_{\mathrm{ij}}$. In this case we have $k_{\mu x}=k_{i j}$. Since $k_{\mu 5}=k_{i j}$ we find that $k_{i j}$ is presented in the μ-th row of the matrix $K_{2 k+1}$ two times, a contradiction. This completes the assertion (1^{0}). Using the same arguments as in the proof of $\left(1^{0}\right)$, we can $\left(2^{0}\right)$ prove that $\left|S_{m i j} \cap S_{m-\mu, v}\right|=3$. We shall now (3^{0}) prove that $\left|\mathrm{S}_{\mathrm{m}_{\mathrm{ij}}} \cap \mathrm{K}_{\mu \mathrm{v}}\right|=3$. Since $\mathrm{k}_{\mu \mathrm{v}}$ is presented in the i -th row of the matrix $\mathrm{K}_{2 \mathrm{k}+1}$ it follows that there exist $\mathrm{t}=\mathrm{j}$ so that $\mathrm{k}_{\mathrm{it}}=\mathrm{k}_{\mathrm{uv}}$, which provides that $m_{i t} \in K_{\mu v}$ and $m_{i t} \in S_{m_{i,-},-i} \subseteq S_{m_{i j}}$. Since $k_{\mu v}$ is presented in the j-th column of
the matrix $\mathrm{K}_{2 \mathrm{k}+1}$ it follows that there exist $\mathrm{s}=\mathrm{i}$ so that $\mathrm{k}_{\mathrm{sj}}=\mathrm{k}_{\mu \mathrm{v}}$, which provides that $\mathrm{m}_{\mathrm{sj}} \in \mathrm{K}_{\mu v}$ and $\mathrm{m}_{\mathrm{sj}} \in \mathrm{S}_{\mathrm{m}_{-\mathrm{i}, \mathrm{j}}} \subseteq \mathrm{S}_{\mathrm{m}_{\mathrm{ij}}}$. We shall now demonstrate that $\mathrm{K}_{\mathrm{ij}} \cap \mathrm{K}_{\mu v}=0$. On the contrary, assume that $m_{x y} \in \mathrm{~K}_{\mathrm{ij}} \cap \mathrm{K}_{\mu v}$. Then $\mathrm{k}_{\mathrm{xy}}=\mathrm{k}_{\mathrm{ij}}$ and $\mathrm{k}_{\mathrm{xy}}=\mathrm{k}_{\mu v}$, which provides that $\mathrm{k}_{\mu v}=\mathrm{k}_{\mathrm{ij}}$, a contradiction. Further, let $\mathrm{P}_{\mathrm{ij}}=\left\{\mathrm{p}+{ }_{\mathrm{ij}} \mid \mathrm{p} \in\{1,2, \ldots, 2 \mathrm{k}+1\}\right.$ $\left.\mathbf{r}\left\{\mathrm{k}_{\mathrm{ij}}\right\}\right\}$ and let $\mathrm{Q}_{\mathrm{ij}}=\left\{\mathrm{k}_{\mathrm{ij}}+\mathrm{q} \mid \mathrm{q} \in\{0,2 \mathrm{k}+1, \ldots, 2 \mathrm{k}(2 \mathrm{k}+1)\} \mathbf{r}\left\{{ }^{`}{ }_{\mathrm{ij}}\right\}\right\}$ for $\mathrm{i}, \mathrm{j}=1,2, \ldots$., $2 \mathrm{k}+1$.

Due to the fact that k_{ij} is presented in the i -th row and the j -th column of the matrix $\mathrm{K}_{2 \mathrm{k}+1}$ only one time, we easily see $\mathrm{P}_{\mathrm{ij}}=\mathrm{L}_{\mathrm{ij}}$ for $\mathrm{i}, \mathrm{j}=1,2, \ldots, 2 \mathrm{k}+1$. Due to the fact that ${ }_{i j}$ is presented in the i-th row and the j-th column of the matrix $L_{2 k+1}$ only one time, we easily see $\mathrm{Q}_{\mathrm{ij}}=\mathrm{K}_{\mathrm{ij}}$ for $\mathrm{i}, \mathrm{j}=1,2, \ldots, 2 \mathrm{k}+1$. Let $\mathrm{p}_{0} \in\{1,2, \ldots, 2 \mathrm{k}+1\} \mathbf{r}\left\{\mathrm{k}_{\mathrm{ij}}\right\}$ such that $\mathrm{p}_{0}=\mathrm{k}_{\mu v}$ and let $\mathrm{q}_{0} \in\{0,2 \mathrm{k}+1, \ldots, 2 \mathrm{k}(2 \mathrm{k}+1)\} \mathbf{r}\left\{{ }^{{ }_{\mu v}}\right\}$ such that $\mathrm{q}_{0}={ }^{{ }_{\mathrm{ij}}} \mathbf{}$. Then $\mathrm{p}_{0}+{ }_{\mathrm{ij}} \in \mathrm{L}_{\mathrm{ij}} \subseteq \mathrm{S}_{\mathrm{m}_{\mathrm{ij}}}$ and $\mathrm{k}_{\mu \mathrm{v}}+\mathrm{q}_{0} \in \mathrm{~K}_{\mu v}$. So we obtain $\mathrm{p}_{0}+{ }_{\mathrm{ij}}=\mathrm{p}_{0}+\mathrm{q}_{0}=\mathrm{k}_{\mu \mathrm{v}}+\mathrm{q}_{0}$, which provides ${ }^{12}$ that $\left|\mathrm{L}_{\mathrm{ij}} \cap \mathrm{K}_{\mu \mathrm{v}}\right| \geq 1$ and $\left|\mathrm{S}_{\mathrm{m}_{\mathrm{ij}}} \cap \mathrm{K}_{\mu \mathrm{v}}\right| \geq 3$. Since $\mathrm{p}_{0} \in\{1,2, \ldots, 2 \mathrm{k}+1\} \mathbf{r}\left\{\mathrm{k}_{\mathrm{ij}}\right\}$ and $\mathrm{q}_{0} \in\{0,2 \mathrm{k}+1, \ldots, 2 \mathrm{k}(2 \mathrm{k}+1)\} \mathbf{r}\left\{{ }_{\mu \nu}\right\}$ are uniquely determined we obtain $\left|\mathrm{L}_{\mathrm{ij}} \cap \mathrm{K}_{\mu \nu}\right|=1$,
 can $\left(4^{0}\right)$ prove that $\left|\mathrm{S}_{\mathrm{m}_{\mathrm{ij}}} \cap \mathrm{L}_{\mu \mathrm{v}}\right|=3$. Finally, using $\left(1^{0}\right),\left(2^{0}\right),\left(3^{0}\right)$ and $\left(4^{0}\right)$ we obtain that

$$
\left|S_{m_{i j}} \cap S_{m_{\mu v}}\right|=\left|S_{m_{i j}} \cap S_{m_{\mu,-}}\right|+\left|S_{m_{i j}} \cap S_{m_{-\mu}, v}\right|+\left|S_{m_{i j}} \cap K_{\mu v}\right|+\left|S_{m_{i j}} \cap L_{\mu v}\right|,
$$

from which we obtain $\left|\mathrm{S}_{\mathrm{m}_{\mathrm{ij}}} \cap \mathrm{S}_{\mathrm{m}_{\mu v}}\right|=12$ for any two distinct non-adjacent vertices m_{ij} and $m_{\mu v}$. Next, let $m_{i j}$ and $m_{\mu v}$ be two adjacent vertices of the graph $G\left[M_{2 k+1}\right]$. We shall now consider the following two cases:

Case 1. $\left(m_{\mu v} \in S_{m_{i-}-\mathrm{j}}\right.$ or $\left.m_{\mu v} \in S_{m_{-}, j}\right)$. Without loss of generality we can assume that $\mathrm{m}_{\mu v} \in \mathrm{~S}_{\mathrm{m}_{\mathrm{i},-\mathrm{j}}}$. In this case we have $\mu=\mathrm{i}$ and $v=\mathrm{j}$. We shall now (1^{0}) prove that $\left|S_{m_{\mathrm{ij}}} \cap \mathrm{S}_{\mathrm{m}_{\mathrm{i},-\mathrm{v}}}\right|=2 \mathrm{k}-1$. Since $\mathrm{m}_{\mathrm{ij}} 6 \in \mathrm{~S}_{\mathrm{m}_{\mathrm{i},-\mathrm{i}}}$ and $\mathrm{m}_{\mathrm{iv}} 6 \in \mathrm{~S}_{\mathrm{m}_{\mathrm{i},-\mathrm{v}}}$ we have $\mid \mathrm{S}_{\mathrm{m}_{\mathrm{i},-},{ }_{\mathrm{i}}} \cap \mathrm{S}_{\mathrm{m}_{\mathrm{i},-\mathrm{v}}}$ $\mid=(2 k+1)-2$, which provides that $\left|S_{m_{i j}} \cap S_{m_{i},-v}\right| \geq 2 k-1$. Since $m_{i j} 6 \in$ $\mathrm{S}_{\mathrm{mij}}$ and
$\mathrm{S}_{\mathrm{mi}_{\mathrm{i},-\mathrm{i}}}, \mathrm{S}_{\mathrm{m}-\mathrm{i}, \mathrm{j}}, \mathrm{K}_{\mathrm{ij}}$ and L_{ij} are mutually disjoint it follows that $\mathrm{S}_{\mathrm{m}_{\mathrm{i},-\mathrm{v}}}, \mathrm{S}_{\mathrm{m}-\mathrm{i}, \mathrm{j}}, \mathrm{K}_{\mathrm{ij}}$ and L_{ij} are also mutually disjoint, which completes the assertion (1^{0}). We shall now (2^{0}) prove that $\left|S_{m_{i j}} \cap S_{m_{-i}, v}\right|=2$. Since $m_{i v} 6 \in S_{m_{-i}, v}$ we have that $S_{m_{i,-j}} \cap S_{m_{-i}, v}=\theta$ and
$\mathrm{S}_{\mathrm{m}-\mathrm{i}, \mathrm{j}} \cap \mathrm{S}_{\mathrm{m}_{-\mathrm{i}, \mathrm{v}}}=0$. Since k_{ij} is presented in the v-th column of the matrix $\mathrm{K}_{2 \mathrm{k}+1}$ it follows that there exist $s=\mu$ so that $k_{s v}=k_{i j}$, which provides that $m_{s v} \in S_{m_{-i}, v}$ and $\mathrm{m}_{\mathrm{sv}} \in \mathrm{K}_{\mathrm{ij}} \subseteq \mathrm{S}_{\mathrm{m}_{\mathrm{ij}}}$. Similarly, since ${ }_{\mathrm{ij}}$ is presented in the v-th column of the matrix $\mathrm{L}_{2 \mathrm{k}+1}$ it follows that there exist $\mathrm{t}=\mu$ so that ${ }_{\mathrm{tv}}={ }^{\mathrm{i}}{ }_{\mathrm{ij}}$, which provides that $\mathrm{m}_{\mathrm{tv}} \in \mathrm{S}_{\mathrm{m}_{-\mathrm{i}, v}}$ and $\mathrm{m}_{\mathrm{tv}} \in \mathrm{L}_{\mathrm{ij}} \subseteq \mathrm{S}_{\mathrm{m}_{\mathrm{ij}}}$. This completes the assertion (2). We shall now (3) prove that $\left|S_{m_{i j}} \cap K_{i v}\right|=2$. Since $m_{i v} 6 \in K_{i v}$ and $S_{m_{i,-}} \cap K_{i v}=\varnothing$ it follows that $S_{m_{i,-j}} \cap K_{i v}=$ 0.

Since k_{iv} is presented in the j -th column of the matrix $\mathrm{K}_{2 \mathrm{k}+1}$ it follows that there exist $\mathrm{s}=\mathrm{i}$ so that $\mathrm{k}_{\mathrm{sj}}=\mathrm{k}_{\mathrm{iv}}$, which provides that $\mathrm{m}_{\mathrm{sj}} \in \mathrm{K}_{\mathrm{iv}}$ and $\mathrm{m}_{\mathrm{sj}} \in \mathrm{S}_{\mathrm{m}_{\mathrm{i} j} \mathrm{j}} \subseteq \mathrm{S}_{\mathrm{m}_{\mathrm{ij}}}$. We shall now demonstrate that $\mathrm{K}_{\mathrm{ij}} \cap \mathrm{K}_{\mathrm{iv}}=\emptyset$. On the contrary, assume that m_{st} $\in \mathrm{K}_{\mathrm{ij}} \cap \mathrm{K}_{\mathrm{iv}}$. Then $\mathrm{k}_{\mathrm{st}}=\mathrm{k}_{\mathrm{ij}}$ and $\mathrm{k}_{\mathrm{st}}=\mathrm{k}_{\mathrm{iv}}$ which yields $\mathrm{k}_{\mathrm{ij}}=\mathrm{k}_{\mathrm{iv}}$, a contradiction. Next, since $\mathrm{K}_{\mathrm{iv}}=\mathrm{Q}_{\mathrm{iv}}$ and $\mathrm{Q}_{\mathrm{iv}}=\left\{\mathrm{k}_{\mathrm{iv}}+\mathrm{q} \mid \mathrm{q} \in\{0,2 \mathrm{k}+1, \ldots, 2 \mathrm{k}(2 \mathrm{k}+1)\} \mathbf{r}\left\{{ }^{\circ}{ }_{\mathrm{iv}}\right\}\right\}$ there exist $\mathrm{q}_{0} \in\{0,2 \mathrm{k}+1, \ldots, 2 \mathrm{k}(2 \mathrm{k}+1)\} \mathbf{r}\left\{{ }^{`}{ }_{\mathrm{iv}}\right\}$ such that $\mathrm{q}_{0}={ }_{\mathrm{ij}}$. In the view of this, we have $\mathrm{k}_{\mathrm{iv}}+\mathrm{q}_{0} \in \mathrm{~K}_{\mathrm{iv}}$ and $\mathrm{k}_{\mathrm{iv}}+\mathrm{q}_{0} \in \mathrm{~L}_{\mathrm{ij}} \subseteq \mathrm{S}_{\mathrm{ij}}$, which completes the assertion $\left(3^{0}\right)$. We shall now (4^{0}) prove that $\left|S_{m_{i j}} \cap L_{i v}\right|=2$. Since $m_{i v} 6 \in L_{i v}$ and ${ }_{i,-\mathrm{v}} \cap L_{i v}=\varnothing$ it follows S_{m}
that $S_{m_{i,-}} \cap L_{i v}=\varnothing$. Since ${ }_{\text {iv }}$ is presented in the j-th column of the matrix $L_{2 k+1}$ it follows that there exist $\mathrm{s}=\mathrm{i}$ so that ${ }_{\mathrm{sj}}={ }_{\mathrm{iv}}$, which provides that $\mathrm{m}_{\mathrm{sj}} \in \mathrm{L}_{\mathrm{iv}}$ and $\mathrm{m}_{\mathrm{sj}} \in \mathrm{S}_{\mathrm{m}_{-\mathrm{i}} \mathrm{j}} \subseteq \mathrm{S}_{\mathrm{m}_{\mathrm{ij}}}$. We shall now demonstrate that $\mathrm{L}_{\mathrm{ij}} \cap \mathrm{L}_{\mathrm{iv}}=0$. On the contrary,
 contradiction. Next, since $L_{i v}=P_{i v}$ and $P_{i v}=\left\{p+{ }_{i v} \mid p \in\{1,2, \ldots, 2 k+1\} \mathbf{r}\left\{k_{i v}\right\}\right\}$ there exist $p_{0} \in\{1,2, \ldots, 2 k+1\} \mathbf{r}\left\{\mathrm{k}_{\mathrm{iv}}\right\}$ such that $\mathrm{p}_{0}=\mathrm{k}_{\mathrm{ij}}$. In the view of this, we have $\mathrm{p}_{0}+{ }_{\mathrm{iv}} \in \mathrm{L}_{\mathrm{iv}}$ and $\mathrm{p}_{0}+{ }_{\mathrm{iv}} \in \mathrm{K}_{\mathrm{ij}} \subseteq \mathrm{S}_{\mathrm{m}_{\mathrm{i}}}$, which completes the assertion (4^{0}). Finally, using $\left(1^{0}\right),\left(2^{0}\right),\left(3^{0}\right)$ and $\left(4^{0}\right)$ we obtain that

$$
\left|S_{m_{i j}} \cap S_{m_{i v}}\right|=\left|S_{m_{i j}} \cap S_{m_{i,-}, ~}\right|+\left|S_{m_{i j}} \cap S_{m_{-i}, v}\right|+\left|S_{m_{i j}} \cap K_{i v}\right|+\left|S_{m_{i j}} \cap L_{i v}\right|
$$

from which we obtain $\left|\mathrm{S}_{\mathrm{m}_{\mathrm{ij}}} \cap \mathrm{S}_{\mathrm{m}_{\mathrm{i}}}\right|=(2 \mathrm{k}-1)+2+2+2$ for any two adjacent vertices m_{ij} and m_{iv}.

Case 2. $\left(m_{\mu v} \in K_{i j}\right.$ or $\left.m_{\mu v} \in L_{i, j}\right)$. Without loss of generality we can assume that $\mathrm{m}_{\mu v} \in \mathrm{~K}_{\mathrm{ij}}$. Since $\mathrm{S}_{\mathrm{m}_{\mathrm{i},-\mathrm{j}}}, \mathrm{S}_{\mathrm{m}_{-\mathrm{i}, \mathrm{j}}}$ and K_{ij} are mutually disjoint it follows that $\mu=\mathrm{i}$ and $v=j$. Since $m_{\mu v}=k_{\mu v}+{ }_{\mu v}$ and $m_{\mu v} \in K_{i j}$ we obtain $m_{\mu v}=k_{i j}+{ }_{\mu v}$, from which we obtain $\mathrm{k}_{\mu \mathrm{v}}=\mathrm{k}_{\mathrm{ij}}$ and ${ }_{\mu \nu}={ }^{`}{ }_{\mathrm{ij}}$. We shall now (1^{0}) prove that $\left|\mathrm{S}_{\mathrm{m}}^{\mathrm{ij}}{ }^{\circ} \cap \mathrm{S}_{\mathrm{m}_{\mu,-}}\right|=2$. Since $\mu=\mathrm{i}$ and $v=\mathrm{j}$ we have $\mathrm{S}_{\mathrm{m}_{\mathrm{i},-\mathrm{i}}} \cap \mathrm{S}_{\mathrm{m}_{\mu,-v}}=\emptyset$ and $\mathrm{S}_{\mathrm{m}_{-\mathrm{i}}, \mathrm{j}} \cap \mathrm{S}_{\mathrm{m}_{\mu,-v}}=\left\{\mathrm{m}_{\mu \mathrm{j}}\right\} \subseteq \mathrm{S}_{\mathrm{m}_{\mathrm{ij}}}$. We shall now demonstrate that $\mathrm{K}_{\mathrm{ij}} \cap \mathrm{S}_{\mathrm{m}_{\mu,-}}=\varnothing$. On the contrary, assume that $\mathrm{m}_{\mu \mathrm{t}} \in \mathrm{K}_{\mathrm{ij}} \cap \mathrm{S}_{\mathrm{m}_{\mu}-\mathrm{v}_{\mathrm{v}}}$. Then $m_{\mu t}=k_{\mu t}+{ }_{\mu t} \in S_{m_{\mu,-}-{ }_{v}}$ and $m_{\mu t}=k_{i j}+{ }^{{ }_{\mu t}} \in K_{i j}$ which yields $k_{\mu t}=k_{i j}$. Since $k_{\mu v}=k_{i j}$ and $k_{\mu t}=k_{i j}$ we have $k_{\mu v}=k_{\mu t}$. Finally, since $k_{\mu v}$ is presented in the μ-th row of the matrix $\mathrm{K}_{2 \mathrm{k}+1}$ only one time we obtain $\mathrm{t}=v$. In the view of this, we find that $\mathrm{m}_{\mu v} \in \mathrm{~S}_{\mathrm{m}_{\mu,-}, \mathrm{v}}$, a contradiction. Next, since ${ }^{\mathrm{ij}}{ }_{\mathrm{ij}}$ is presented in the μ-th row of the matrix $L_{2 k+1}$ it follows that there exist $t=v$ so that ${ }^{{ }_{\mu \mu t}}={ }_{i j}$, which provides that $m_{\mu t} \in S_{m_{\mu},-{ }_{v}}$ and $\mathrm{m}_{\mu \mathrm{t}} \in \mathrm{L}_{\mathrm{ij}} \subseteq \mathrm{S}_{\mathrm{m}_{\mathrm{ij}}}$. This completes the assertion (1). We shall now (2ं) prove that $\left|\mathrm{S}_{\mathrm{m}_{\mathrm{ij}}} \cap \mathrm{S}_{\mathrm{m}_{-\mu}, v}\right|=2$. Since $\mu=\mathrm{i}$ and $v=\mathrm{j}$ we have $\mathrm{S}_{\mathrm{m}_{\mathrm{i},-\mathrm{j}}} \cap \mathrm{S}_{\mathrm{m}_{-\mu, v}}=\left\{\mathrm{m}_{\mathrm{iv}}\right\} \subseteq \mathrm{S}_{\mathrm{m}_{\mathrm{ij}}}$ and $\mathrm{S}_{\mathrm{m}-\mathrm{i}, \mathrm{j}} \cap \mathrm{S}_{\mathrm{m}-\mu, \mathrm{v}}=\varnothing$. We shall now demonstrate that $\mathrm{K}_{\mathrm{ij}} \cap \mathrm{S}_{\mathrm{m}-\mu, \mathrm{v}}=0$. On the contrary, assume that $m_{s v} \in K_{i j} \cap S_{m-u, v}$. Then $m_{s v}=k_{s v}+{ }_{s v} \in S_{m-u}, v$ and $m_{s v}=k_{i j}+{ }_{s v} \in K_{i j}$ which yields $k_{s v}=k_{i j}$. Since $k_{\mu v}=k_{i j}$ and $k_{s v}=k_{i j}$ we have $k_{\mu v}=k_{s v}$. Finally, since $k_{\mu v}$ is presented in the v-th column of the matrix $\mathrm{K}_{2 k+1}$ only one time we obtain $s=\mu$. In the view of this, we find that $\mathrm{m}_{\mu v} \in \mathrm{~S}_{\mathrm{m}-\mu, v}$, a contradiction. Next, since ${ }_{\mathrm{ij}}$ is presented in the v-th column of the matrix $L_{2 k+1}$ it follows that there exist $t=\mu$ so that ${ }^{\mathrm{t} v}{ }={ }^{\mathrm{ij}}{ }_{\mathrm{ij}}$, which provides that $\mathrm{m}_{\mathrm{tv}} \in \mathrm{S}_{\mathrm{m}_{-\mu, v}}$ and $\mathrm{m}_{\mathrm{tv}} \in \mathrm{L}_{\mathrm{ij}} \subseteq \mathrm{S}_{\mathrm{m}_{\mathrm{ij}}}$. This completes the assertion
$\left(2^{0}\right)$. We shall now (3^{0}) prove that $\left|S_{\mathrm{m}_{\mathrm{ij}}} \cap \mathrm{K}_{\mu \mathrm{v}}\right|=2 \mathrm{k}-1$. Since $\mathrm{k}_{\mu \mathrm{v}}=\mathrm{k}_{\mathrm{ij}}$ we have that $\mathrm{K}_{\mathrm{ij}}=\left\{\mathrm{m}_{\mathrm{st}} \mid \mathrm{k}_{\mathrm{st}}=\mathrm{k}_{\mathrm{ij}}\right.$ and $\left.(\mathrm{s}, \mathrm{t})=(\mathrm{i}, \mathrm{j})\right\} \subseteq \mathrm{S}_{\mathrm{m}_{\mathrm{ij}}}$ and $\mathrm{K}_{\mu v}=\left\{\mathrm{m}_{\mathrm{st}} \mid \mathrm{k}_{\mathrm{st}}=\mathrm{k}_{\mathrm{ij}}\right.$ and $(\mathrm{s}, \mathrm{t})=$ $(\mu, v)\}$. Since $m_{i j} 6 \in \mathrm{~K}_{\mathrm{ij}}$ and $\mathrm{m}_{\mu v} 6 \in \mathrm{~K}_{\mu v}$ we find that $\left|\mathrm{K}_{\mathrm{ij}} \cap \mathrm{K}_{\mu v}\right|=(2 \mathrm{k}+1)-$ 2.

Since $m_{i j} 6 \in \mathrm{~S}_{\mathrm{m}_{\mathrm{ij}}}$ and $\mathrm{S}_{\mathrm{m}_{\mathrm{i}-\mathrm{j}}}, \mathrm{S}_{\mathrm{m}_{-\mathrm{i}} \mathrm{j}}, \mathrm{K}_{\mathrm{ij}}, \mathrm{L}_{\mathrm{ij}} \subseteq \mathrm{S}_{\mathrm{m}_{\mathrm{ij}}}$ are mutually disjoint it follows that
$\mathrm{S}_{\mathrm{m}_{\mathrm{i}},-\mathrm{i}} ; \mathrm{S}_{\mathrm{m}-\mathrm{i}, \mathrm{j}}, \mathrm{L}_{\mathrm{ij}}$ and $\mathrm{K}_{\mu v}$ are also mutually disjoint, which completes the assertion (3). We shall now (4^{0}) prove that $\left|\mathrm{S}_{\mathrm{m}_{\mathrm{ij}}} \cap \mathrm{L}_{\mu \mathrm{v}}\right|=2$. Since ${ }_{\mu \nu}$ is presented in the i-th row of the matrix $\mathrm{L}_{2 \mathrm{k}+1}$ it follows that there exist $\mathrm{t}=\mathrm{j}$ so that ${ }_{\mathrm{it}}={ }_{\mu v}$, which provides that $m_{i t}=k_{i t}+{ }_{\mu v} \in L_{\mu v}$ and $m_{i t}=k_{i t}+{ }_{i t} \in \mathrm{~S}_{\mathrm{m}_{\mathrm{i},-\mathrm{j}}} \subseteq \mathrm{S}_{\mathrm{m}_{\mathrm{ij}}}$. Since ${ }_{\mu v}$ is presented in the
j-th column of the matrix $L_{2 k+1}$ it follows that there exist $s=i$ so that ${ }_{s i}={ }_{\mu v}$, which provides that $\mathrm{m}_{\mathrm{sj}}=\mathrm{k}_{\mathrm{sj}}+{ }_{\mu v} \in \mathrm{~L}_{\mu v}$ and $\mathrm{m}_{\mathrm{sj}}=\mathrm{k}_{\mathrm{sj}}+{ }_{\mathrm{sj}} \in \mathrm{S}_{\mathrm{m}-\mathrm{i}, \mathrm{j}} \subseteq \mathrm{S}_{\mathrm{m}_{\mathrm{ij}}}$. We shall now demonstrate that $\mathrm{K}_{\mathrm{ij}} \cap \mathrm{L}_{\mu \mathrm{v}}=\emptyset$. On the contrary, assume that $\mathrm{m}_{\mathrm{st}}=\mathrm{k}_{\mathrm{st}}+{ }_{\mathrm{st}} \in \mathrm{K}_{\mathrm{ij}}$ $\cap \mathrm{L}_{\mu \mathrm{v}}$.
Ihen $\mathrm{k}_{\mathrm{st}}=\mathrm{k}_{\mathrm{ij}}$ and ${ }_{\mathrm{st}}={ }_{\mu v}$. Since $\mathrm{k}_{\mu v}=\mathrm{k}_{\mathrm{ij}}$ we obtain $\mathrm{k}_{\mathrm{st}}=\mathrm{k}_{\mu v}$, which provides that $\mathrm{m}_{\mu v}=\mathrm{k}_{\mu v}+{ }_{\mu \nu} \in \mathrm{L}_{\mu v}$, a contradiction. We shall now demonstrate that $\mathrm{L}_{\mathrm{ij}} \cap \mathrm{L}_{\mu v}=0$. On the contrary, assume that $m_{s t}=k_{s t}+{ }_{s t} \in L_{i j} \cap L_{\mu v}$. Then ${ }^{s t}={ }_{i j}$ and ${ }_{s t}={ }_{\mu v}$, which provides that ${ }_{\mu \nu}={ }^{\mathrm{ij}}$, a contradiction. This completes the assertion $\left(4^{0}\right)$. Finally,
using $\left(1^{0}\right),\left(2^{0}\right),\left(3^{0}\right)$ and $\left(4^{0}\right)$ we obtain that

$$
\left|S_{m_{i j}} \cap S_{m_{\mu v}}\right|=\left|S_{m_{i j}} \cap S_{m_{\mu,-v}}\right|+\left|S_{m_{i j}} \cap S_{m-\mu, v}\right|+\left|S_{m_{i j}} \cap K_{\mu v}\right|+\left|S_{m_{i j}} \cap L_{\mu v}\right|
$$

from which we obtain $\left|\mathrm{S}_{\mathrm{m}_{\mathrm{ij}}} \cap \mathrm{S}_{\mathrm{m}_{\mu \nu}}\right|=2+2+(2 \mathrm{k}-1)+2$ for any two adjacent vertices m_{ij} and $\mathrm{m}_{\mu v}$, which ${ }^{13}$ completes the ${ }^{14}$ proof.

Let $\mathrm{G}^{-}\left[\mathrm{M}_{2 \mathrm{k}+1}\right]$ be a graph obtained from the matrix $\mathrm{M}_{2 \mathrm{k}+1}\left[\mathrm{~m}_{\mathrm{ij}}\right]$ in the following way: (i) the vertex set of the graph $\mathrm{G}^{-}\left[\mathrm{M}_{2 \mathrm{k}+1}\right]$ is $\mathrm{V}\left(\mathrm{G}^{-}\left[\mathrm{M}_{2 \mathrm{k}+1}\right]\right)=\left\{\mathrm{m}_{\mathrm{ij}} \mathrm{i}, \mathrm{j}=1,2, \ldots, 2 \mathrm{k}+1\right\}$ and (ii) the neighborhood ${ }^{15}$ of the vertex $m_{i j}=k_{i j}+{ }_{i j}$ is $S_{m_{i j}}=S_{m_{i,-j}} \cup S_{m_{-i, j}} \cup K_{i j}$. Using the same ${ }^{16}$ arguments as in the proof of Theorem 3, we can prove the following result.

Theorem 4. Let $\mathrm{M}_{2 \mathrm{k}+1}\left[\mathrm{~m}_{\mathrm{ij}}\right]=\mathrm{K}_{2 \mathrm{k}+1}\left[\mathrm{k}_{\mathrm{ij}}\right]+\mathrm{L}_{2 \mathrm{k}+1}\left[{ }_{\mathrm{ij}}\right]$ be a semi-magic square of order $2 \mathrm{k}+1$ for $\mathrm{k} \geq 2$. Then $\mathrm{G}^{-}\left[\mathrm{M}_{2 \mathrm{k}+1}\right]$ is a strongly regular graph of order $\mathrm{n}=(2 \mathrm{k}+1)^{2}$ and degree $\mathrm{r}=6 \mathrm{k}$ with $\tau=2 \mathrm{k}+1$ and $\theta=6$.

Acknowledgments. The author is very grateful to Marko Lepovic for his valuable comments and suggestions.

References

[1] Filippe de La Hire (18 March 1640-21 April 1718). He was a French mathematician, astronomer, architect and painter. Acording to Bemard le Bovier de Fontenelle he was an "academy unto himself".
[2] D. Cvetković, M. Dob, H. Sachs, Spectra of graphs - Theory and applications, 3rd revised and enlarged edition, J.A. Barth Vela, Heidelberg - Leipzig, 1995.

4. Appendix

Using the applied method of cyclic permutations for creating the magic and semi-magic squares, in this section with a minor modification of "the first permutation" we create the magic squares of order $6 \mathrm{k}+3$ for $\mathrm{k} \geq 1$. First, let us assume that ($\pi(1), \pi(2), \ldots, \pi(6 \mathrm{k}+3)$) is a fixed permutation of the numbers $1,2, \ldots, 6 k+3$. Let

π (1)	π (2)	...	$\pi(3 k+1)$	$\pi(3 k+2)$	$\pi(3 k+3)$...	$\pi(6 k+2)$	$\pi(6 k+3)$
$\pi(3 k+2)$	$\pi(3 k+3)$...	$\pi(6 k+2)$	$\pi(6 k+3)$	π (1)	...	π (3k)	$\pi(3 k+1)$
$\pi(6 k+3)$	$\pi(1)$...	$\pi(3 \mathrm{k})$	$\pi(3 k+1)$	$\pi(3 k+2)$...	$\pi(6 k+1)$	$\pi(6 k+2)$
$\pi(3 k+1)$	$\pi(3 k+2)$...	$\pi(6 \mathrm{k}+1)$	$\pi(6 \mathrm{k}+2)$	$\pi(6 k+3)$...	$\pi(3 \mathrm{k}-1)$	π (3k)
$\pi(6 \mathrm{k}+2)$	$\pi(6 k+3)$...	$\pi(3 \mathrm{k}-1)$	π (3k)	$\pi(3 k+1)$...	$\pi(6 \mathrm{k})$	$\pi(6 k+1)$
$\pi(3 \mathrm{k})$	$\pi(3 k+1)$...	$\pi(6 \mathrm{k})$	$\pi(6 \mathrm{k}+1)$	$\pi(6 k+2)$...	$\pi(3 \mathrm{k}-2)$	$\pi(3 \mathrm{k}-1)$
:	:	:	:	:	:	:	:	:
π (3)	$\pi(4)$...	$\pi(3 k+3)$	$\pi(3 \mathrm{k}+4)$	$\pi(3 k+5)$...	π (1)	π (2)
$\pi(3 k+4)$	$\pi(3 k+5)$...	π (1)	π (2)	π (3)	...	$\pi(3 k+2)$	$\pi(3 k+3)$
$\pi(2)$	π (3)	\cdots	$\pi(3 k+2)$	$\pi(3 k+3)$	$\pi(3 k+4)$...	$\pi(6 k+3)$	$\pi(1)$
$\pi(3 k+3)$	$\pi(3 k+4)$...	$\pi(6 k+3)$	$\pi(1)$	$\pi(2)$...	$\pi(3 k+1)$	$\pi(3 k+2)$

Second, let us assume that $(\pi(0), \pi(6 \mathrm{k}+1), \ldots, \pi((6 \mathrm{k}+2)(6 \mathrm{k}+3)))$ is a fixed permutation of the numbers $0,6 k+3, \ldots,(6 k+2)(6 k+3)$. Let $\pi_{+}(p)=\pi(p(6 k+3))$ for $\mathrm{p}=0,1, \ldots, 6 \mathrm{k}+2$ and let

$\pi+(0)$	$\pi+(1)$...	$\pi+(3 \mathrm{k})$	$\pi+(3 \mathrm{k}+1)$	$\pi+(3 k+2)$...	$\pi+(6 \mathrm{k}+1)$	$\pi+(6 \mathrm{k}+2)$
$\pi+(3 k+2)$	$\pi+(3 k+3)$...	$\pi+(6 \mathrm{k}+2)$	$\pi+(0)$	$\pi+(1)$...	$\pi+(3 \mathrm{k})$	$\pi+(3 \mathrm{k}+1)$
$\pi+(1)$	$\pi+(2)$...	$\pi+(3 \mathrm{k}+1)$	$\pi+(3 k+2)$	$\pi+(3 k+3)$...	$\pi+(6 \mathrm{k}+2)$	$\pi+(0)$
$\pi+(3 k+3)$	$\pi+(3 k+4)$...	$\pi+(0)$	$\pi+(1)$	$\pi+(2)$...	$\pi+(3 k+1)$	$\pi+(3 k+2)$)
$\pi+(2)$	$\pi+$ (3)	...	$\pi+(3 k+2)$	$\pi+(3 \mathrm{k}+3)$	$\pi+(3 k+4)$...	$\pi+(0)$	$\pi+(1)$
$\pi+(3 k+4)$	$\pi+(3 \mathrm{k}+5)$...	$\pi+(1)$	$\pi+$ (2)	$\pi(3)$...	$\pi+(3 \mathrm{k}+2)$	$\pi+(3 \mathrm{k}+3)$
:	:	:	:	:	:	:	:	:
$\pi+(6 k+1)$)	$\pi+(6 \mathrm{k}+2)$...	$\pi+(3 \mathrm{k}-2)$	$\pi+(3 \mathrm{k}-1)$	$\pi+(3 \mathrm{k})$...	$\pi+(6 \mathrm{k}-1)$	$\pi+(6 \mathrm{k})$
$\pi+(3 \mathrm{k})$	$\pi+(3 k+1)$...	$\pi+(6 \mathrm{k})$	$\pi+(6 \mathrm{k}+1)$	$\pi+(6 \mathrm{k}+2)$	\ldots	$\pi+(3 k-2)$	$\pi+(3 \mathrm{k}-1)$
$\pi+(6 \mathrm{k}+2)$	$\pi+(0)$	\cdots	$\pi+(3 \mathrm{k}-1)$	$\pi+(3 \mathrm{k})$	$\pi+(3 k+1)$	\cdots	$\pi+(6 \mathrm{k})$	$\pi+(6 \mathrm{k}+1)$
$\pi+(3 k+1)$	$\pi+(3 k+2)$	\ldots	$\pi+(6 \mathrm{k}+1)$	$\pi+(6 k+2)$	$\pi+(0)$...	$\pi+(3 \mathrm{k}-1)$	$\pi+(3 \mathrm{k})$
$\mathrm{L}[6 \mathrm{k}+3][6 \mathrm{k}+3]$								

understanding that $0=0 \cdot(6 \mathrm{k}+3)$ and $6 \mathrm{k}+3=1 \cdot(6 \mathrm{k}+3)$. Let us define $\mathrm{X}=$ $\{\mathrm{k}+2, \mathrm{k}+4, \ldots, \mathrm{k}+2(2 \mathrm{k}+1)\} \subseteq\{1,2, \ldots, 6 \mathrm{k}+3\}$ and let $\mathrm{Y}=\{1,2, \ldots, 6 \mathrm{k} \pm 3\} \mathbf{r} \mathrm{X}$. Let us define $\left.\mathrm{X}_{+}=\{(\mathrm{k}+1) \mathrm{k},(\mathrm{k}+3) \mathrm{k}, \ldots,(\mathrm{k}+4 \mathrm{k}+1) \mathrm{k}\} \subseteq \overline{\{0, k}, \ldots,(6 \mathrm{k}+2) \mathrm{k}\right\}$ and let
$Y_{+}=\{0, k, \ldots,(6 k+2) k\} \mathbf{a x} x_{+}$, where $k=6 k+3$. Let $\pi(X)$ be the set of all permutations of the set X and let $\pi(\mathrm{Y})$ be the set of all permutations of the set Y . Of course, since $|\mathrm{X}|=2 \mathrm{k}+1$ and $|\mathrm{Y}|=4 \mathrm{k}+2$ we have $|\pi(\mathrm{X})|=(2 \mathrm{k}+1)!$ and $|\pi(\mathrm{Y})|=(4 \mathrm{k}+2)!$. Similarly, let $\pi\left(\mathrm{X}_{+}\right)$be the set of all permutations of the set X_{+}and let $\pi\left(\mathrm{Y}_{+}\right)$be the set of all permutations of the set Y_{+}. Of course, since $\left|X_{+}\right|=2 k+1$ and $\left|Y_{+}\right|=4 k+2$ we have $\left|\pi\left(\mathrm{X}_{+}\right)\right|=(2 \mathrm{k}+1)!$ and $\left|\pi\left(\mathrm{Y}_{+}\right)\right|=(4 \mathrm{k}+2)!$. Let $\operatorname{sum} \pi(\mathrm{x})$ be the sum of all elements in a fixed permutation $\pi(x) \in \pi(X)$. Then we have

Let sum $\pi_{+}(\mathrm{x})$ be the sum of all elements in a fixed permutation $\pi_{+}(\mathrm{x}) \in \pi\left(\mathrm{X}_{+}\right)$. Then we have

$$
\begin{equation*}
\operatorname{sum} \pi_{+}(x)=(6 k+3){ }_{t=1}^{2 k+1}(k+(2 t-1))=(2 k+1)(3 k+1)(6 k+3) . \tag{8}
\end{equation*}
$$

The first row of the matrix $\mathrm{K}_{6 \mathrm{k}+3}$ contains the numbers of a fixed permutation $\pi(\mathrm{x}) \in$ $\pi(\mathrm{X})$ and the numbers of a fixed permutation $\pi(\mathrm{y}) \in \pi(\mathrm{Y})$ obtained in the following way: (i) on the position $6 \mathrm{k}+3,6 \mathrm{k}, \ldots, 3$ set up the numbers of $\pi(\mathrm{x})$ and (ii) on the position $\mathrm{t} 6 \in\{6 \mathrm{k}+3,6 \mathrm{k}, \ldots, 3\}$ set up the numbers of $\pi(\mathrm{y})$. According to $\mathrm{K}[6 \mathrm{k}+3][6 \mathrm{k}+3]$ we
note that the numbers of the permutation $\pi(x)$ are presented 3 times in the non-main diagonal of the matrix $\mathrm{K}_{6 \mathrm{k}+3}$, understanding that $\mathrm{K}_{6 \mathrm{k}+3}=\mathrm{K}[6 \mathrm{k}+3][6 \mathrm{k}+3]$.

The first row of the matrix $L_{6 k+3}$ contains the numbers of a fixedpermutation $\pi_{+}(x) \in$ $\pi\left(\mathrm{X}_{+}\right)$and the numbers of a fixed permutation $\pi_{+}(\mathrm{y}) \in \pi\left(\mathrm{Y}_{+}\right)$obtained in the following way: (i) on the position $1,4, \ldots, 6 \mathrm{k}+1$ set up the numbers of $\pi_{+}(\mathrm{x})$ and (ii) on the position $\mathrm{t} 6 \in\{1,4, \ldots, 6 \mathrm{k}+1\}$ set up the numbers of $\pi_{+}(\mathrm{y})$. According to $\mathrm{L}[6 \mathrm{k}+3][6 \mathrm{k}+$ 3]
we note that the numbers of the permutation $\pi_{+}(x)$ are presented 3 times in the main diagonal of the matrix $\mathrm{L}_{6 \mathrm{k}+3}$, understanding that $\mathrm{L}_{6 \mathrm{k}+3}=\mathrm{L}[6 \mathrm{k}+3][6 \mathrm{k}+3]$. Using (7) and (8) we obtain ${ }^{17}$

$$
3 \operatorname{sum} \pi(x)+3 \operatorname{sum} \pi_{+}(x)=(6 k+3) \quad \frac{(6 \mathrm{k}+3)^{2}+1}{2}
$$

which provides that $\mathrm{M}_{6 \mathrm{k}+3}\left[\mathrm{~m}_{\mathrm{ij}}\right]=\mathrm{K}_{6 \mathrm{k}+3}\left[\mathrm{k}_{\mathrm{ij}}\right]+\mathrm{L}_{6 \mathrm{k}+3}\left[\mathrm{rij}_{\mathrm{ij}}\right]$ is a magic square of order $6 \mathrm{k}+3$ for $\mathrm{k} \geq 1$.

Remark 6. In this section we present a source program nagic.cpp which has been written by the author in the programming language Bor land C++ Builder 5.5 for creating the magic squares ${ }^{18}$ of order $3,5, \ldots, 999$. The algorithm described in this section is also valid for $\mathrm{k}=0$, a case that is related to the magic square of order 3 .

```
#include <stdlib.h>
#include <string.h>
#include <stdio.h>
#include <nath.h>
#include <time.h>
#define CR 13
#define LF 10
char *_String (int n, int Size);
void CreateMagicSquare (int Menu);
void CreateRandomPermutation (int *FirstRow, int Menu);
void main (void)
{
    randomize ();
    CreateMagicSquare (5):
    CreateMagicSquare (7);
    CreateMagicSquare (9);
```

```
    CreateMagicSquare (501);
    CreateMagicSquare (503);
    CreateMagicSquare (505);
}
//-
void CreateMagicSquare (int Menu)
{
    int i, j, k, m, n, One, Two, Size, _Size, _Menu, *Diagonal, *_Diagonal;
    int *x, *y, *p, *q, *_p, *_q, *Flag, *a[999];
    char *s, *t;
    FILE *FP;
    static char *MagicFile = "Magic$$$.Lap";
x = new int [Menu];
y = new int [Menu];
p = new int [Menu];
q = new int [Menu];
for (i = 0; i < Menu; i++) a[i] = new int [Menu];
for (i = 0; i < Menu; i++) {
    p[i] = i + 1;
    q[i] = i * Menu;
}
    if (Menu % 3) _Menu = 1; else _Menu = 2;
switch (_Menu) {
        case 1:
            CreateRandomPermutation (p, Menu);
            CreateRandomPermutation (q, Menu);
            break;
        case 2:
            _p = new int [Menu];
            _q = new int [Menu];
            Diagonal = new int [Menu];
            _Diagonal = new int [Menu];
            Flag = new int [Menu];
            for (i = 0; i < Menu; i++) {
            Diagonal[i] = 0;
            _Diagonal[i] = 0;
                    Flag[i] = 0;
            }
```

```
j = Menu / 3;
k = Menu / 6;
m= k + 1;
n = 2* j
for (i = n; i < Menu; i++) {
    _p[i] = p[m];
        qq[i] =q[n];
        Flag[m] = 1;
        m= m + 2;
}
n = 0;
for (i = 0; i < Menu; i++) {
    if (Flag[i]) continue;
    _p[n] = p[i];
    _q[n] = q[i];
    n++;
}
```

```
    CreateRandomPermutation (_p,n);
    CreateRandomPermutation (_q, n);
    CreateRandomPermutation (_p + n, j);
    CreateRandomPermutation (_q + n,j);
    n = Menu - 1;
    m}=0
    for (i = 0; i < j; i++) {
        Diagonal[m] = 1;
        _Diagonal[n] = 1;
        n = n - 3;
        m= m+3;
}
n=2* j;
for (i = 0; i < Menu; i++) {
        if (!_Diagonal[i]) continue;
        p[i] = _p[n];
        n++;
}
n = 0;
for (i = 0; i < Menu; i++) {
    if (_Diagonal[i]) continue;
    p[i] = _p[n];
    n++;
}
n=2*j;
for (i = 0; i < Menu; i++) {
    if (!Diagonal[i]) continue:
    q[i] = _q[n];
    n++;
        }
        n = 0;
        for (i = 0; i < Menu; i++) {
            if (Diagonal[i]) continue:
            q[i] = _q[n];
            n++;
        }
        delete [] _p;
        delete [] _q;
        delete [] Flag;
            delete [] Diagonal;
            delete [] _Diagonal;
            break;
};
One = Menu / 2;
```

```
    Two = Menu - 1;
    x[0] = 0;
    k = 1;
    while (k < Menu) {
        x[k] = One:
        k++;
        x[k] = Two:
        k++;
        One--;
        Two--
}
One = 1 + Menu / 2;
Two = 1;
y[0] = 0;
k = 1;
while (k < Menu) {
        y[k] = One:
        k++;
        y[k] = Two:
        k++;
        One++;
        Two++;
}
for (i = 0; i < Menu; i++) {
        n = x[i];
        m = y[i];
        for (j = 0; j < Menu; j++) {
            a[i][j] = p[n] + q[m];
            n++;
            m0++;
            if (n == Menu) n = 0;
            if (nn== Menu) mo= 0;
        }
}
_Menu = Menu * Menu;
t = _String (Menu,3);
s = _String (_Menu,6);
movmem(t,MagicFile +5,3);
delete [] t;
t = s;
FP = fopen (MagicFile, "wb");
```

```
    Size = 6;
    while (*s++ == '0') Size--;
    delete [] t;
    Size = Menu * (Size + 1) + 1;
    s = new char [_Size];
    for (i = 0; i < _Size; i++) s[i] = ' ';
    s[_Size - 2] = CR;
    s[_Size - 1] = LF;
    for (i = 0; i < Menu; i++) {
        for (j = 0; j < Menu; j++) {
            t = _String (a[i][j], Size);
            k = (Size + 1) * j;
            movmem( }\textrm{t},\textrm{s}+\textrm{k}\mathrm{ , Size);
            delete [] t:
        }
        fwrite (s, 1, _Size, FP);
    }
    fclose (FP);
    delete [] x:
    delete [] y
    delete [] p:
    delete [] q;
    delete [] s;
    for (i = 0; i < Menu; i++) delete [] a[i];
}
//---c-----c----c------c------------------------------
{
    int i, j, *p, *Flag;
    p = new int [Menu];
    Flag = new int [Menu]
    for (i = 0; i < Menu; i++) Flag[i] = 0;
    for (i = 0; i < Menu;) {
        j = random (Menu);
        if (Flag[j]) continue;
        p[i] = FirstRow[j];
        Flas[j] = 1;
        i++;
    }
    for (i = 0; i < Menu; i++) FirstRow[i] = p[i];
```

```
    delete [] p;
    delete [] Flag:
}
//
char *_String (int n, int Size)
{
    char *p = new char [Size + 1];
    int i, j;
    p[Size] = 0;
    j = Size - 1;
    for (i = 0; i < Size; i++) {
        p[j] = n % 10 + '0';
        n = n / 10;
        j--;
    }
    return p;
}
//
```

Tihomira Vuksanovića 32, 34000 Kragujevac, Serbia.
E-mail address: lepovic@kg.ac.rs

