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Abstract 
The Adomian decomposition method (ADM) is one of the powerful methods used to solve nonlinear differential 

equations which includes application to MHD boundary layer flow over a flat plate. In this study, we have 

shown the ability of the method to solve the governing equations of the MHD boundary layer flow problem. The 

effects of physical parameters such as magnetic field and Prandtl number embedded in the flow are presented 

and discussed. The results obtained are compared with existing work. 
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Nomenclature 

𝑃𝑟- Prandtl number 

𝑁𝑢- Nusselt number 

𝑆𝑘- Skin friction (heat transfer coefficient) 

𝑀- Magnetic parameter/ Hartmann number 

𝑓 ′- Dimensionless velocity of the fluid 

∪∞−Free stream velocity 

(𝑢,𝑣)- Dimensional velocity component of the fluid 

𝑇- Dimensional temperature 

𝑇∞ - Temperature of the fluid far away from the plate  

𝑇𝑤− Temperature of the fluid near the plate or wall temperature  

𝐵0 – Applied Magnetic field 

𝛼 – Permeability parameter (thermal diffusivity) 

𝑝 −Pressure 

Greek Alphabets 

𝜂 – dimensionless similarity variable 

𝜆 – pressure gradient parameter 

𝜑 − stream function 

𝜇 – Kinematic Viscosity 

𝜎- Stefan Boltzman constant (electrical conductivity)  

𝜌- Density of the fluid  

𝜃 – Dimensionless temperature 

 

I. Introduction 
Problems involving nonlinear partial differential equations can be found in a wide variety of scientific 

applications such as mathematics, physics, biology, chemistry and engineering problems. More so, many 

important mathematical models can be expressed in terms of nonlinear partial differential equations which are 

very difficult to solveAli and Al-saif, [1]; Nhawuet al, [12]. The governing equations of the MHD boundary 

layer flow is one of such models. 

 Over the years, numerical methods have been used to solve such nonlinear equations. The numerical 

methods when applied on these kind of equations which are usually very large and difficult to compute causes a 

loss of accuracy due to the round-off error. Hence, the Adomian decomposition method (ADM) which requires 

less computation was introduced Ali and Al-saif, [1]. The ADM was developed in the 1980s by George 

Adomian. This method involves separating the equation under investigation into linear and nonlinear parts. The 
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highest order derivative operator contained in the linear part of the equation is inverted and the inverse operator 

is then applied to the equation. Any given conditions are taken into consideration. The nonlinear part is 

decomposed into a series of Adomian polynomials. A solution in the form of a series whose terms are 

determined by a recursive relationship using these Adomian polynomials are generated Shukur, [16]; Agom and 

Badmus, [2];Oke, [14];Alhaddad, [3]. 

The ADM has so many advantages. It solves nonlinear problems directly and with less complications 

without linearizing, perturbing or making any assumptions that may alter the physical properties/behavior of the 

model. It requires less computational work and at the same time maintain high accuracy of the numerical 

solution. It has wide applicability to several types of problems and scientific fields and also develops a reliable 

analytic solution Jaradat, [8]; Holmquist, [7]. 

Recently, so many researches have used different methods to study MHD boundary layer flow 

problems. Jhankal, [9] studied MHD boundary layer flow with low pressure gradient over a flat plate utilizing 

HPM. Desale and Pradham, [6] obtained a numerical solution of MHD boundary layer flow of an 

incompressible, viscuous fluid over a nonlinear stretching sheet using the implicit finite difference keller box 

method. Majety and Gangadhar, [11] analyzed MHD boundary layer flow past a wedge through porous medium 

with the influence of thermal radiation, heat source, viscuous dissipation and chemical reaction using legendary 

nactsheim-swigert shooting technique and Runge-kutta sixth order iteration scheme. Chuadhary and Kumar, [5] 

studied an unsteady MHD boundary layer flow towards a shrinking surface in the presence of a uniform 

transverse magnetic field using perturbation method. Rajput et al., [14] transformed the problem of a steady 

laminar MHD boundary layer flow over a continuously moving flat plate using similarity variable. The 

derivation of the governing equation was done using one parameter group of transformation. Reddy et al, [15] 

numerically studied a steady two dimensional laminar MHD boundary layer flow of a power-law fluid passing 

through a moving flat plate under the influence of transverse magnetic field using implicit finite difference 

scheme. Quasi-linearization technique was used to linearize the ODE solution and the systems of algebraic 

equations were solved using Guass-seidal iterative method. Kumar, [10] investigated the effect of linear thermal 

stratification in a steady MHD boundary layer convective flow over a stretching sheet in the presence of mass 

transfer and magnetic field using Runge-kutta forth order method along with shooting technique. Bhattacharyya 

and Layek [4] analyzed the diffusion of chemically reactive solute distribution in MHD boundary layer flow of 

an electrically conducting incompressible fluid over a porous flat plate using Runge-kutta method and shooting 

technique. 

From literature, we observe that HPM have been applied on MHD boundary layer flow with low 

pressure gradient over a flat plate. In this present study, ADM will be used to obtain approximate series solution 

to MHD boundary layer flow over a flat plate. 

 

II. General Description of the Adomian Decomposition Method (ADM) 
In this chapter, we will give a standard description of the ADM. Consider the general equation 

𝐿𝑢 + 𝑁𝑢 + 𝑅𝑢 = 𝑔,(1) 

where 𝑢 − is the unknown function, 

𝐿 − is the linear differential operator of higher order which is easily invertible, 

𝑁 −is the nonlinear operator, 

𝑅 − is the remaining linear part and 

𝑔 − is the given function. 

By defining the inverse operator of 𝐿 as 𝐿−1, we have 

𝑢 = 𝐿−1𝑔 − 𝐿−1𝑁𝑢 − 𝐿−1𝑅𝑢.                                                                                       (2) 

By ADM 𝑢 can be expressed by an infinite series of the form 

𝑢 =  𝑢𝑛
∞
𝑛=0 ,(3) 

By ADM also, the nonlinear term can be decomposed by an infinite series of polynomials given by 

𝑁 𝑢 =  𝐴𝑛
∞
𝑛=0 ,(4) 

where𝐴𝑛 ′𝑠 are the Adomian polynomials defined as 𝐴𝑛 = 𝐴𝑛(𝑢0,𝑢1,𝑢2,… . . ,𝑢𝑛). 

Substituting equations (3) and (4) into equation (2) and using the fact that 𝑅 is a linear operator, we obtain 

 𝑢𝑛
∞
𝑛=0 = 𝐿−1𝑔 − 𝐿−1  𝑅(𝑢𝑛)

∞
𝑛=0  − 𝐿−1  𝐴𝑛(𝑢0,𝑢1,𝑢2,… . . ,𝑢𝑛)

∞
𝑛=0  ,                  (5) 

Hence 

𝑢0 = 𝐿−1𝑔, 

𝑢𝑛+1 = −𝐿−1(𝑅(𝑢𝑛)) − 𝐿−1(𝐴𝑛(𝑢0,𝑢1,𝑢2…,𝑢𝑛)),(6) 

Or equivalently 

𝑢0 = 𝐿−1𝑔, 
𝑢1 = −𝐿−1(𝑅(𝑢0)) − 𝐿−1(𝐴0(𝑢0)), 

𝑢2 = −𝐿−1(𝑅(𝑢1)) − 𝐿−1(𝐴1(𝑢0,𝑢1)),(7) 

…. 
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To compute𝐴𝑛 , take 𝑁 𝑢 = 𝑓(𝑢)  to be a nonlinear function in  𝑢. Then, the infinite series generated by 

applying the Taylor’s series expansion of 𝑓 about the initial function 𝑢0 is given by  

𝑓 𝑢 = 𝑓(𝑢0) + 𝑓 ′(𝑢0) 𝑢 − 𝑢0 +
1

2!
𝑓 ′′(𝑢0) 𝑢 − 𝑢0 

2 +
1

3!
𝑓 ′′′(𝑢0) 𝑢 − 𝑢0 

3+…..   (8) 

where 

𝑢 = 𝑢0 + 𝑢1 + 𝑢2 + 𝑢3 + ⋯, 
and,  

𝑓 𝑢 =  𝑓(𝑢0) + 𝑓 ′(𝑢0) 𝑢1 + 𝑢2 + 𝑢3 + ⋯ +
1

2!
𝑓 ′′(𝑢0) 𝑢1 + 𝑢2 + 𝑢3 + ⋯ 2 +

1

3!
𝑓 ′′′(𝑢0) 𝑢1 + 𝑢2 + 𝑢3 +

…3+…,   (9)                                                                                                                                      

By expanding all terms of equation (9), we get 

𝑓 𝑢 =

𝑓(𝑢0) + 𝑓 ′(𝑢0) 𝑢1 + 𝑓 ′(𝑢0) 𝑢2 + 𝑓 ′(𝑢0) 𝑢3 + ⋯+
1

2!
𝑓 ′′(𝑢0) 𝑢1 

2 +
2

2!
𝑓 ′′(𝑢0) +

1

2!
𝑓 ′′(𝑢0) 𝑢1𝑢2 +

1

2!
𝑓 ′′(𝑢0) 𝑢1𝑢3 + ⋯+

1

3!
𝑓 ′′′(𝑢0) 𝑢1 

3 +
3

3!
𝑓 ′′′(𝑢0)𝑢1

2𝑢2 +
1

3!
𝑓 ′′′(𝑢0)𝑢1

2𝑢3+…,   (10) 

To obtain the Adomian polynomials, we first reorder and rearrange the terms. The order of each of the terms in 

(9) depends on both the subscripts and the exponents of the 𝑢𝑛 ′𝑠. For instance,  

The order of 𝑢𝑚
𝑛   is 𝑚𝑛. That is, 𝑢1

2 is of order 1 × 2 = 2. 
The order of 𝑢𝑚𝑢𝑛  𝑖𝑠 𝑚 + 𝑛.   That is, 𝑢1𝑢2 is of order 2.  

The order of 𝑢𝑛
𝑚𝑢𝑙

𝑘  is 𝑚𝑛 + 𝑘𝑙. That is, 𝑢2
3𝑢1

3 is of order  2 × 3 +  1 × 3 = 9 and so on. 

In general, 𝐴𝑛  consists of all terms of order 𝑛. Therefore, the first three terms of Adomian polynomials are listed 

as: 

𝐴0 = 𝑓 𝑢0 , 
𝐴1 = 𝑓 ′(𝑢0) 𝑢1  , 

𝐴2 = 𝑓 ′(𝑢0) 𝑢2 +
1

2!
𝑓 ′′(𝑢0) 𝑢1 

2, 

𝐴3 = 𝑓 ′(𝑢0) 𝑢3 +
2

2!
𝑓 ′′(𝑢0) 𝑢1𝑢2 +

1

3!
𝑓 ′′′(𝑢0) 𝑢1 

3 ……..                             (11) 

Hence, the general formula for the Adomian polynomials is given as 

𝐴𝑛 =
1

𝑛 !

𝑑𝑛

𝑑𝜆𝑛
 𝑁  𝜆𝑖𝑛

𝑖=0 𝑢𝑖  𝜆=0,  𝑛 = 0, 1, 2, 3…(12) 

To find the 𝐴𝑛 ′𝑠 by Adomian general formula, these polynomials will be computed as follows: 

𝐴0 =
1

0!

𝑑0

𝑑𝜆0
 𝑁   𝜆𝑖

0

𝑖=0

𝑢𝑖  

𝜆=0

= 𝑁 𝑢0 , 

𝐴1 =
1

1!

𝑑

𝑑𝜆
 𝑁   𝜆𝑖

1

𝑖=0

𝑢𝑖  

𝜆=0

=
𝑑

𝑑𝜆
𝑁 𝑢0 + 𝜆𝑢1 = 𝑢1𝑁

′(𝑢0) 

𝐴2 =
1

2!

𝑑2

𝑑𝜆2
 𝑁   𝜆𝑖

2

𝑖=0

𝑢𝑖  

𝜆=0

=
1

2!

𝑑2

𝑑𝜆2
𝑁 𝑢0 + 𝜆𝑢1 + 𝜆2𝑢2 = 𝑢2𝑁

′(𝑢0) +
1

2!
𝑁 ′′(𝑢0) 𝑢1 

2 

𝐴3 =
1

3!

𝑑3

𝑑𝜆3
 𝑁  𝜆𝑖3

𝑖=0 𝑢𝑖  𝜆=0 =
1

3!

𝑑3

𝑑𝜆3 𝑁 𝑢0 + 𝜆𝑢1 + 𝜆2𝑢2 + 𝜆3𝑢3 = 𝑢3𝑁
′(𝑢0) +

2

2!
𝑢1𝑢2𝑁

′′(𝑢0) +
1

3!
𝑁 ′′′(𝑢0) 𝑢1 

3(13) 

 

III. APPLICATION 
Consider a steady MHD boundary layer flow problem of Jhankal, [9]. The continuity, Momentum and energy 

equations of this flow are as follows: 
𝜕𝑢

𝜕𝑥
+
𝜕𝑢

𝜕𝑦
= 0 

𝑢
𝜕𝑢

𝜕𝑥
+ 𝑣

𝜕𝑢

𝜕𝑦
= −

1

𝜌

𝑑𝑝

𝑑𝑥
+ 𝜇

𝜕2𝑢

𝜕𝑦2
−
𝜎𝐵0

2𝑢

𝜌
,  

𝑢
𝜕𝑇

𝜕𝑥
+ 𝑣

𝜕𝑇

𝜕𝑦
= 𝛼

𝜕2𝑇

𝜕2𝑦
,                                                                      (14) 

Along with boundary conditions 

𝑣 𝑥, 0 = 𝑢 𝑥, 0 = 0;            𝑇 𝑥, 𝑜 = 𝑇𝑤atη = 0, 
𝑢 𝑥,∞ → 𝑢∞;      𝑇 𝑥,∞ → 𝑇∞asη → ∞.                                          (15) 

The stream function 𝜑 satisfies the equation of continuity such that 

𝑢 =
𝜕𝜑

𝜕𝑦
;              𝑣 = −

𝜕𝜑

𝜕𝑥
 ,                                                                                      

with𝜑 =  𝜇𝑥 ∪∞  𝑓 𝜂 , η = y 
∪∞

𝜇𝑥
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𝜃 𝜂 =
𝑇 − 𝑇∞
𝑇𝑤−𝑇∞

;𝑇 = 𝜃 𝜂  𝑇𝑤−𝑇∞ + 𝑇∞ 

On transforming the governing equations in terms of  𝑓 𝑎𝑛𝑑 𝜃 we have: 

𝑓‴ = −
𝑓𝑓″

2
+ 𝑀2𝑓 ′.                                                                                                (16) 

𝜃″ = −
𝑃𝑟𝑓 𝜃 ′

2
(17) 

Along with the boundary conditions  

𝜃 0 = 1;            𝜃 ∞ = 0; 𝜃 ′ 0 = 𝐵, 
𝑓 0 = 0;             𝑓 ′ 0 = 0 ;   𝑓 ′′ 0 = 𝐴;  𝑓 ′ ∞ = 1.                                        (18) 

where  𝐴 𝑎𝑛𝑑 𝐵  𝑎𝑟𝑒 𝑎𝑠𝑠𝑢𝑚𝑒𝑑 𝑣𝑎𝑙𝑢𝑒𝑠.   
 

IV. Method Of Solution 
By Adomian decomposition method, 

𝐿𝑓
−1𝑓 = 𝑀2𝐿𝑓

−1𝑓 ′ −
1

2
𝐿𝑓
−1  𝑓𝑓 ′′,                                                                            (19) 

where 

𝐿𝑓
−1 =  𝑑𝜂𝑑𝜂𝑑𝜂      ∶ 𝐿𝜃

−1 =  𝑑𝜂𝑑𝜂,

𝜂𝜂

00

𝜂𝜂𝜂

000

 

hence,  

𝑓 = 𝑓 0 + 𝜂𝑓 ′ 0 +
𝜂2

2
𝑓 ′′ 0 + 𝑀2𝐿𝑓

−1𝑓 ′ −
1

2
𝐿𝑓
−1𝑓𝑓 ′′.                                       (20) 

Also, 

𝐿𝜃
−1𝜃 = −

𝑃𝑟

2
𝐿𝜃
−1  𝑓𝜃 ′,(21) 

hence, 

𝜃 = 𝜃 0 + 𝜂𝜃 ′ 0 −
𝑃𝑟

2
𝐿𝜃
−1 𝑓𝜃 ′.(22) 

𝑓 𝑎𝑛𝑑 𝜃 can be decomposed into 

𝑓 𝜂 =  𝑓𝑛
∞
𝑛=0                             ;𝜃 𝜂 =  𝜃𝑛

∞
𝑛=0  .                                            (23) 

∴  𝑓0 =
𝜂2

2
𝐴;  𝜃0 = 1 + 𝜂 𝐵 , (24) 

𝑓𝑛+1 = 𝑀2𝐿𝑓
−1  𝑓𝑛

′∞
𝑛=0 −

1

2
𝐿𝑓
−1  𝐶𝑛

∞
𝑛=0 ;   𝜃𝑛+1 = −

𝑃𝑟

2
𝐿𝜃
−1  𝐷𝑛

∞
𝑛=0 ,              (25) 

Where 𝐶𝑛  𝑎𝑛𝑑  𝐷𝑛  are the Adomian polynomials and can be computed using the Adomian general formula 

𝐴𝑛 =
1

𝑛 !

𝑑𝑛

𝑑𝜆𝑛
 𝑁  𝜆𝑖𝑛

𝑖=0 𝑢𝑖  𝜆=0,  𝑛 = 0, 1, 2, 3…(26) 

On computing the first three terms of the 𝐶𝑛 ′𝑠 and𝐷𝑛 ′𝑠 by using the Adomian general formula, we obtain in 

general: 

𝐶0 = 𝑓0𝑓0
′′                  ;                                   𝐷0 = 𝑓0𝜃0

′ , 
𝐶1 = 𝑓0𝑓1

′′ + 𝑓1𝑓0
′′     ;                                  𝐷1 = 𝑓0𝜃1

′ + 𝑓1𝜃0
′ , 

𝐶2 = 𝑓0𝑓2
′′ + 𝑓1𝑓1

′′ + 𝑓2𝑓0
′′ ;                       𝐷2 = 𝑓0𝜃2

′ + 𝑓1𝜃1
′ + 𝑓2𝜃0

′ . 

Next, we substitute𝐶0,𝐶1,𝐶2,𝐷0 ,𝐷1  𝑎𝑛𝑑 𝐷2 into equation(25) to obtain 

 𝑓1 =
𝑀2𝐴

24
𝜂4 −

𝐴2

240
𝜂5, 

 𝑓2 = −
𝑀3𝐴

1440
𝜂6 −

𝑀2𝐴2

1440
𝜂7 +  

13 𝐴3

161280
+

𝑀2𝐴2

26880
 𝜂8 , 

𝑓3 = −
𝑀4𝐴2

1680
𝜂7 +  

𝑀2𝐴3

17472
+

𝑀3𝐴

161280
 𝜂8 +  

𝑀3𝐴2

96768
+

𝑀3𝐴2

1451520
+

𝑀4𝐴2

207360
 𝜂9

+  
𝑀2𝐴3

86400
+

𝑀2𝐴3

2073600
+

13 𝑀2𝐴3

2930400
+

𝑀4𝐴2

4838400
 𝜂10

−  
13 𝐴4

11404800
+

13 𝐴4

319334400
+

𝐴4

4752000
+

𝑀2𝐴3

950400
+

𝑀2𝐴3

53222400
 𝜂11 , 

𝜃1 = −
𝑃𝑟 𝐴 𝐵

48
𝜂4 , 

𝜃2 = −
𝑃𝑟 𝑀2𝐴 𝐵

1440
𝜂6 +  

𝑃𝑟2𝐴2𝐵

2016
+
𝑃𝑟2𝐴2𝐵

20160
 𝜂7, 

𝜃3 =
Pr 𝐴 𝐵𝑀3

161280
𝜂8 +  

𝑃𝑟 2𝑀2𝐴2𝐵

69120
−

𝑃𝑟 2𝑀2𝐴2𝐵

41472
+

𝑃𝑟 2𝑀2𝐴2𝐵

207360
 𝜂9 −  

13 Pr 𝐵 𝐴2

29030400
+

Pr 𝐵 𝑀2𝐴2

4838400
−

𝑃𝑟 3𝐴3𝐵

103680
+

𝑃𝑟 2𝐴3𝐵

1036800
−

𝑃𝑟2𝐴3𝐵518400𝜂10.  
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In general,we have the approximate series solution as, 

𝑓 =
𝐴

2
𝜂2 +

𝑀2𝐴

24
𝜂4 −

𝐴2

240
𝜂5 +

𝑀2𝐴

720
𝜂6 −  

𝑀2𝐴2

1680
+

𝑀2𝐴2

10080
+

𝑀2𝐴2

10080
 𝜂7 +  

𝐴3

16128
+

𝐴3

161280
 𝜂8 +

𝑀4𝐴

40320
𝜂8 −

 
𝑀2𝐴2

48384
+

𝑀4𝐴2

48384
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70240+𝐴431933440+𝐴4319334400𝜂11.                                                                           (27) 

 

𝜃 = 1 + 𝜂𝐵 −
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𝐴329030400+𝑃𝑟3𝐴3𝐵103680+𝑃𝑟2𝐴3𝐵1036800+𝑃𝑟2𝐴3𝐵518400𝜂10                                                                                                                
(28) 
 

V. Results And Discussion 
Numerical results obtained from the variation of the magnetic field parameter (𝑀) and the Prandtl number (𝑃𝑟) 

at different values of the pressure gradient (𝝀) are presented graphically to illustrate their effects on the velocity 

and temperature of the flow respectively. Results for Nusselt number(𝑁𝑢)and skin friction coefficient (𝑆𝑘)are 

also shown. 

 

 
Figure 1: Effect of 𝑴 on Velocity at 𝝀 = 𝟎,𝑷𝒓 = 𝟎.𝟕𝟏 

 

 
Figure 2: Effect of𝑴 on velocity at 𝝀 = 𝟎.𝟎𝟓,𝑷𝒓 = 𝟎.𝟕𝟏 
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Figure 3: Effect of 𝑴 on Velocity at 𝝀 = 𝟎.𝟏,𝑷𝒓 = 𝟎.𝟕𝟏 

 

 
Figure 6: Effect of 𝑷𝒓 on Temperature at 𝝀 = 𝟎.𝟏,𝑴 = 𝟎.𝟖 

 

 
Figure 4: Effect of 𝑷𝒓 on Temperature at 𝝀 = 𝟎,𝑴 = 𝟎.𝟖 

 

 
Figure 𝟓: Effect of𝑴 on velocity at 𝝀 = 𝟎.𝟎𝟓,𝑴 = 𝟎.𝟖 
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Table 1: The effect of Magnetic field parameter (𝑴) variation on Skin Friction(𝑺𝒌) coefficient 
M 𝝀 𝑷𝒓 𝑺𝒌 

0.4 0.05 0.71 0.24553 

0.6 0.05 0.71 0.165303 

0.8 0.05 0.71 0.13041 

1.0 0.05 0.71 0.110792 

 

Table 2: The effect of Magnetic field parameter (𝑴) variation on Nusselt number (𝑵𝒖) 
M 𝝀 𝑷𝒓 𝑵𝒖 

0.4 0.05 0.71 -0.321858 

0.6 0.05 0.71 -0.251597 

0.8 0.05 0.71 -0.22978 

1.0 0.05 0.71 -0.219099 

 

Figures 1, 2 and 3represent the effects of the magnetic field parameter on the velocity profiles. We 

notice that at increasing values of  the magnetic field parameter,that is,  𝑀 = 0.4, 0.6, 0.8, 1.0 at𝑃𝑟 =
0.71 𝑎𝑛𝑑 𝜆 = 0.0 𝑎𝑛𝑑  0.05, the velocity of the flow decreased. But at 𝜆 ≥ 0.05, from figure 4, the flow 

velocity increased. From figures 4, 5 and 6, wealso observed that as the Prandtl number increases, that is, 

 𝑃𝑟 = 0.25, 0.5, 0.75, 1.0  and   𝑃𝑟 = 0.4, 0.6, 0.8, 1.0 at 𝑀 = 0.8 𝑎𝑛𝑑 𝜆 = 0.0,
0.05 𝑎𝑛𝑑 0.1 respectively,the flow temperature decreased.  

From tables 1 and 2, it is seen that for increasing value of the magnetic field at 𝑃𝑟 = 0.71 and pressure 

gradient𝜆 = 0.05,the skin friction increases while the Nusselt number decreases. 

 

VI. Conclusion 
The Adomian decomposition method have successfully been applied on the nonlinear governing equations of 

MHDboundary layer flow over a flat plate. The results obtained showed excellent agreementwith that of Jhankal 

[9].  
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