An Extension of $\mu_I g$ - Baire Spaces

G.HELEN RAJAPUSHPAM¹, P.SIVAGAMI²

¹*Research scholar, Reg.No:19212102092014,*

²Associate Professor, PG and Research Department of Mathematics, Kamaraj College, Thoothukudi-628003, Affiliated to the Manonmaniam Sundaranar University, Tirunelveli, Tamil nadu, India.

Abstract: In this article, we create a various Baire spaces such $as\mu_1g\sigma$ -Baire space, μ_1gB_{σ} -Space on GITS. Also we discuss their basic properties and study the perspectives of μ_1g - F_{σ} set and μ_1g - G_{δ} set in GITS with crystal clear examples.

Keywords: μ_1g - F_{σ} set, μ_1g - G_{δ} set, $\mu_1g\sigma$ -C-I, $\mu_1g\sigma$ -I-CS, $\mu_1g\sigma$ -II-CS, μ_1gB_{σ} -Space, $\mu_1g\sigma$ -Baire Space and μ_1gD -Baire Space

(2010)AMS classifications: 54A05, 03E72

Date of Submission: 23-01-2022

Date of Acceptance: 06-02-2022

I. Introduction:

In mathematics, (wikipedia) an F_{σ} set is a countable union of closed sets. The notation originated in French with 'F' for 'ferme' (French: closed) and ' σ ' for 'somme' (French: sum, union). The complement of F_{σ} set is called a G_{δ} set. The notation originated in German with 'G' for 'Gebiet' (German: area or neighbourhood) and ' δ ' for 'Durchschnitt' (German: intersection). G.Thangaraj.et.al introduce the concepts of σ -Baire space using F_{σ} set. The spaces are named in honor of Rene-Louis Baire who introduced the concept. The concept of σ -Baire Space was coined by Thangaraj et.al and discussed various properties with clear examples. Also they initiated D-Baire Space and they discussed some of its characterizations.

II. Primary Needs:

On the whole paper, we discussed the non-void set X and mentioned GITS (X, μ_I) as X. Let μ_I be the collection of ISs of X. Then X is said to be GITS if $\phi_{-} \in \mu_I$ and μ_I is closed under arbitrary unions. Then the elements of μ_I are called μ_I -open and their complements are named as μ_I -closed sets. $c_{\mu_I}(A) = \bigcap\{F: F \text{ is } \mu_I g - \text{closed set and } A \subseteq F\}$ and $i_{\mu_I}(A) = \bigcup\{G: G \text{ is } \mu_I g - \text{open set}, G \subseteq A\}$. If $c_{\mu_I}(A) \subseteq U$ whenever $A \subseteq U$ where U is μ_I - open set in X then $A \subseteq X$ is called $\mu_I g$ -closed set $(\mu_I g - \text{CSGITS})$. $c_{\mu_I}^*(A)$ and $i_{\mu_I}^*(A)$ are defined as follows, $c_{\mu_I}^*(A) = \bigcap\{F: F \text{ is } \mu_I g - \text{CSGITS}$ and $A \subseteq F\}$ and $i_{\mu_I}^*(A) = \bigcup\{G: G \text{ is } \mu_I g - \text{open set}, (\mu_I g - \text{OSGITS}), G \subseteq A\}$. If A is $\mu_I g$ -CSGITS (resp. $\mu_I g$ -OSGITS) then $c_{\mu_I}^*(A) = A$ (resp. $i_{\mu_I}^*(A) = A$).[2] The $\mu_I g$ -Frontier, $\mu_I g$ -Exterior and $\mu_I g$ -border is defined as follows: $Fr_{\mu_I}^*(A) = c_{\mu_I}^*(A) - i_{\mu_I}^*(A) = A_{\mu_I}^*(\overline{A}) = a_{\mu_I}^*(\overline{A}) = A - i_{\mu_I}^*(A) = f_{\mu_I}^*(\overline{A}) = X_{\sim}$ (resp. $c_{\mu_I}^*(\overline{A}) = X_{\sim}$) then A is named as $\mu_I g$ -DGITS (resp. $\mu_I g$ -CDGITS). Also a subset A of an ITS of X is said to be $\mu_I g$ -NDGITS if the $\mu_I g$ -closure of A contains no $\mu_I g$ -interior points or $i_{\mu_I}^*(c_{\mu_I}^*(A)) = \phi_{\sim}$. Every subset of a $\mu_I g$ -NDGITS is a $\mu_I g$ -NDGITS. An ISs A in X is called $\mu_I g$ -FCGITS if $A = \bigcup_{i=1}^{\infty} B_i$, where $B_i \in Nd^*(\mu_I)$. Remaining sets in X are said to be of $\mu_I g$ -SCGITS. The complement of $\mu_I g$ -FCGITS is called a $\mu_I g$ -residual set in X. The pair (X, μ_I) is said to be a $\mu_I g$ -Baire space if $i_{\mu_I}^*(\bigcup_{i=1}^{\infty} A_i) = \phi_{\sim}$, where $A_i \in Nd^*(\mu_I)$. We call $\langle X, \phi, X \rangle$ as $\mathfrak{S}, \langle X, \phi, \phi \rangle$ as O and $\langle X, X, \phi \rangle$ as \mathfrak{U} .

Proposition:2.2[4](a) $c_{\mu_I}^*(\bar{A}) = \overline{\iota_{\mu_I}^*(A)}$; (b) $\overline{c_{\mu_I}^*(A)} = i_{\mu_I}^*(\bar{A})$; (c) $\overline{c_{\mu_I}^*(\bar{A})} = i_{\mu_I}^*(A)$; (d) $c_{\mu_I}^*(A) = \overline{\iota_{\mu_I}^*(\bar{A})}$.

Proposition:2.3[3]Let *A* be an ISs of *X*. If $A \in Nd^*(\mu_I)$ in *X*, then $i^*_{\mu_I}(A) = \mathfrak{E}$.

Proposition:2.4[4](i) $i_{\mu_I}^*(A) \cup i_{\mu_I}^*(B) \subseteq i_{\mu_I}^*(A \cup B)$, where A and B are ISs in X.

(ii) $c_{\mu_I}^*(A) \cup c_{\mu_I}^*(B) \subseteq c_{\mu_I}^*(A \cup B)$, where A and B are ISs in X.

Corallary:2.5[3]Let $A \subseteq X$. If A is $\mu_I g$ -CSGITS with $i^*_{\mu_I}(A) = \mathfrak{E}$ then A is $\mu_I g$ -NDGITS.

Proposition:2.6[3]Let(X, μ_I) be a GITS. Then the following are equivalent

(i)(X, μ_I) is a $\mu_I g$ -Baire space.

(ii) $i_{\mu_I}^*(A) = \mathfrak{E}$, for every $A \in \mathcal{F}^*(\mu_I)$.

(iii) $c^*_{\mu_I}(B) = \acute{U}$, for every $\mu_I g$ -residual set B in X

Definition:2.7[1]An ISs A is said to be μ_I g-strongly nowhere dense set (in short, μ_I g-SNWDS) if $i_{\mu_I}^*$ $(c_{\mu_I}^*(A \cap \overline{A})) = \mathfrak{E}$.

Theorem:2.8[1]Let $A \subseteq X$. If A is $\mu_I g$ -CSGITS with $i^*_{\mu_I}(A) = \mathfrak{E}$ then A is $\mu_I g$ -SNDS.

III. $\mu_I g F_{\sigma}$ -set and $\mu_I g G_{\delta}$ -set in GITS

Properties:3.5 (i) \mathfrak{E} is always in $\mu_I g G_{\delta}$ -set.

(ii)Intersection of $\mu_I g G_{\delta}$ -set is always a $\mu_I g G_{\delta}$ -set.

(iii)Every μ_I g-OSGITS is μ_I g G_{δ} -set.

(iv) Ú' is always in $\mu_I g F_{\sigma}$ -set.

(v) Union of $\mu_I g F_{\sigma}$ -set is a $\mu_I g F_{\sigma}$ -set.

(vi) Every μ_I g-CSGITS is μ_I g F_{σ} -set.

Proof: The proof of(i),(ii),(ii),(iv),(v) and (vi) are obvious. The backforth of (iii) and (vi) are not required. For example,Let $X = \{\vartheta_X, \varrho_X, \varpi_X\}$ with $\mu_I = \{\mathfrak{C}, \langle X, \{\vartheta_X\}, \{\varrho_X\}, \langle X, \varphi, \{\varrho_X\}, \langle X, \varphi, \{\varrho_X\}, \langle X, \{\varphi_X\}, \varphi, \langle X, \{\varphi_X, \varphi, \{\varphi, X\}, \langle X, \{\varphi, X\}, \varphi, \langle X, \{\varphi, X\}, \varphi$

Remark:3.6 Union of $\mu_I g G_{\delta}$ -set need not be a $\mu_I g G_{\delta}$ -set. In example 3.4, the union of $\langle X, \phi, \{\mathfrak{t}_X\}\rangle$ and $\langle X, \{\mathfrak{t}_X\}, \{\lambda_X\}\rangle$ is $\langle X, \{\mathfrak{t}_X\}, \phi\rangle$ but which is not in $\mu_I g G_{\delta}$ -set.

Remark:3.7 Intersection of $\mu_I g F_{\sigma}$ -set need not be a $\mu_I g F_{\sigma}$ -set. In example:3.4, intersection of $\langle X, \phi, \{\eta_X\}\rangle$ and $\langle X, \{\mathfrak{t}_X\}, \{\lambda_X\}\rangle$ is $\langle X, \phi, \{\eta_X, \lambda_X\}\rangle$ but which is not in $\mu_I g F_{\sigma}$ -set.

Theorem:3.8 If g_X is $\mu_I g$ -DGITS and $\mu_I g G_{\delta}$ -set then $\overline{g_X}$ is a $\mu_I g$ -FCGITS.

Proof: Let \mathcal{G}_X be a $\mu_I g$ -DGITS and $\mu_I g \mathcal{G}_{\delta}$ -set. Then $c_{\mu_I}^*(\mathcal{G}_X) = \acute{U}$ and $\mathcal{G}_X = \bigcap_{i=1}^{\infty} \mathcal{G}_{X_i}$, where \mathcal{G}_{X_i} are $\mu_I g$ -OSGITS $\Rightarrow c_{\mu_I}^*(\bigcap_{i=1}^{\infty} \mathcal{G}_{X_i}) = \acute{U}$. But $c_{\mu_I}^*(\bigcap_{i=1}^{\infty} \mathcal{G}_{X_i}) \subseteq \bigcap_{i=1}^{\infty} c_{\mu_I}^*(\mathcal{G}_{X_i})$ and hence $\acute{U} \subseteq \bigcap_{i=1}^{\infty} c_{\mu_I}^*(\mathcal{G}_{X_i}) \Rightarrow \bigcap_{i=1}^{\infty} c_{\mu_I}^*(\mathcal{G}_{X_i}) = \acute{U}$. Thus we have $c_{\mu_I}^*(\mathcal{G}_{X_i}) = \acute{U}$, where \mathcal{G}_{X_i} are $\mu_I g$ -OSGITS $\Rightarrow c_{\mu_I}^*(i_{\mu_I}^*(\mathcal{G}_{X_i})) = \acute{U} \Rightarrow i_{\mu_I}^*(c_{\mu_I}^*(\mathcal{G}_{X_i})) = \acute{U}$. Therefore $\overline{\mathcal{G}_{X_i}}$ is a $\mu_I g$ -NDGITS. Now $\overline{\mathcal{G}_X} = \bigcap_{i=1}^{\infty} \mathcal{G}_{X_i} = \bigcup_{i=1}^{\infty} \overline{\mathcal{G}_{X_i}}$ and hence $\overline{\mathcal{G}_X} = \bigcup_{i=1}^{\infty} \overline{\mathcal{G}_{X_i}}$ is a $\mu_I g$ -NDGITS. Henceforth $\overline{\mathcal{G}_X}$ is a $\mu_I g$ -FCGITS.

Theorem:3.9 If \mathcal{G}_X is $\mu_I g$ -DGITS and $\mu_I g \mathcal{G}_{\delta}$ -set then \mathcal{G}_X is a $\mu_I g$ -residual set.

Proof: Let \mathcal{G}_X be a $\mu_I g$ -DGITS and $\mu_I g G_{\delta}$ -set. Then by theorem:3.8, $\overline{\mathcal{G}_X}$ is a $\mu_I g$ -FCGITS. Therefore \mathcal{G}_X is a $\mu_I g$ -residual set.

Theorem:3.10 If \mathcal{G}_X is $\mu_I g$ -FCGITS in X then there is a non-void $\mu_I g F_\sigma$ -set μ_X in X such that $\mathcal{G}_X \subseteq \mu_X$. **Proof:** Let \mathcal{G}_X be a $\mu_I g$ -FCGITS in X. Then $\mathcal{G}_X = \bigcup_{i=1}^{\infty} \mathcal{G}_{X_i}$, where \mathcal{G}_{X_i} 's are $\mu_I g$ -NDGITS. Now $(c_{\mu_I}^*(\mathcal{G}_{X_i}))$ is a $\mu_I g$ -OSGITS in X. Then $\bigcap_{i=1}^{\infty} (c_{\mu_I}^*(\mathcal{G}_{X_i}))$ is a $\mu_I g \mathcal{G}_\delta$ -set. Take $\bigcap_{i=1}^{\infty} (c_{\mu_I}^*(\mathcal{G}_{X_i})) = \mathcal{G}_X$. Now $\bigcap_{i=1}^{\infty} (c_{\mu_I}^*(\mathcal{G}_{X_i})) = \mathcal{G}_X$.

 $\overline{\bigcup_{i=1}^{\infty} c_{\mu_i}^*(g_{X_i})} \subseteq \overline{\bigcup_{i=1}^{\infty} g_{X_i}} = \overline{g_X} \text{ and hence } \beta_X \subseteq \overline{g_X} \Longrightarrow g_X \subseteq \overline{\beta_X}. \text{ Then we take } \overline{\beta_X} = \mu_X. \text{ Since } \beta_X \text{ is a } \mu_I g_{G_{\delta}} \text{ set, } \mu_X \text{ is a } \mu_I g_{F_{\sigma}} \text{ set. Therefore } g_X \subseteq \mu_X.$

Theorem:3.11 If $i_{\mu_I}^*(\mu_X) = \mathfrak{E}$, for each $\mu_I g F_{\sigma}$ -set μ_X in X, then X is a $\mu_I g$ -Baire space.

Proof: Let g_X be a $\mu_I g$ -FCGITS in X. Then there is a non-void $\mu_I g F_{\sigma}$ -set μ_X in X such that

 $\mathcal{G}_X \subseteq \mathfrak{h}_X \Longrightarrow i_{\mu_I}^*(\mathcal{G}_X) \subseteq i_{\mu_I}^*(\mathfrak{h}_X) = \mathfrak{E}$ and hence $i_{\mu_I}^*(\mathcal{G}_X) = \mathfrak{E}$, for each μ_I g-FCGITS \mathcal{G}_X in X. By proposition:2.6, X is a μ_I g-Baire space.

Theorem:3.12 If $c_{\mu_I}^*(\mathfrak{G}_X) = \acute{U}$, for each $\mu_I g \mathcal{G}_{\delta}$ -set \mathfrak{G}_X in *X*, then *X* is a $\mu_I g$ -Baire space.

Proof: Let \mathcal{G}_X be a μ_I g-FCGITS in X. Then there is a non-void $\mu_I g F_{\sigma}$ -set \mathfrak{h}_X in X such that $\mathcal{G}_X \subseteq \mathfrak{h}_X$. Since \mathfrak{h}_X is a $\mu_I g F_{\sigma}$ -set, $\overline{\mathfrak{h}_X}$ is a $\mu_I g G_{\delta}$ -set and then $c^*_{\mu_I}(\overline{\mathfrak{h}_X}) = U \Longrightarrow i^*_{\mu_I}(\mathfrak{h}_X) = \mathfrak{E}$. Now $\mathcal{G}_X \subseteq \mathfrak{h}_X \Longrightarrow i^*_{\mu_I}(\mathcal{G}_X) \subseteq i^*_{\mu_I}(\mathfrak{h}_X) = \mathfrak{E}$ and hence $i^*_{\mu_I}(\mathcal{G}_X) = \mathfrak{E}$. By proposition: 2.6, X is a $\mu_I g$ -Baire space.

Theorem:3.13 If \mathfrak{G}_X is a $\mu_I g$ -residual set in X then there exist a $\mu_I g \mathfrak{G}_{\delta}$ -set \mathfrak{g}_X such that $\mathfrak{g}_X \subseteq \mathfrak{G}_X$.

Proof: Let \mathcal{B}_X be a $\mu_I g$ -residual set in X. Then $\overline{\mathcal{B}_X}$ is a $\mu_I g$ -FCGITS by theorem:3.10, we have there is a nonvoid $\mu_I g F_{\sigma}$ -set μ_X in X such that $\overline{\mathcal{B}_X} \subseteq \mu_X$. Hence $\overline{\mu_X} \subseteq \mathcal{B}_X$ and $\overline{\mu_X}$ is a $\mu_I g \mathcal{G}_{\delta}$ -set. Take $\mathcal{G}_X = \overline{\mu_X}$. Therefore we have $\mathcal{G}_X \subseteq \mathcal{G}_X$.

IV. $\mu_I g \sigma$ -Nowhere dense sets in GITS

Definition:4.1 An ISs \mathcal{G}_X in X is called $\mu_I g \sigma$ -Rare set $(\mu_I g \sigma$ -RS) if \mathcal{G}_X is a $\mu_I g F_{\sigma}$ -set such that $i^*_{\mu_I}(\mathcal{G}_X) = \mathfrak{E}$. **Definition:4.2** An ISs \mathcal{G}_X in X is called $\mu_I g \sigma$ -Nowhere dense set $(\mu_I g \sigma$ -NWDS) if \mathcal{G}_X is a $\mu_I g F_{\sigma}$ -set such that $i^*_{\mu_I}(c^*_{\mu_I}(\mathcal{G}_X)) = \mathfrak{E}$.

Remark:4.3 If g_X is a $\mu_I g F_{\sigma}$ -set and $\mu_I g$ -NDGITS in X then g_X is a $\mu_I g \sigma$ -RS.

Example:4.4 In example $3.4, \mu_I g \sigma$ -RS = { $\langle X, \phi, \{\eta_X, t_X\} \rangle, \langle X, \{\lambda_X\}, \{\eta_X, t_X\} \rangle$ } and $\mu_I g \sigma$ -NWDS = { $\langle X, \phi, \{\eta_X, t_X\} \rangle, \langle X, \{\lambda_X\}, \{\eta_X, t_X\} \rangle$ } because $\langle X, \phi, \{\eta_X, t_X\} \rangle, \langle X, \{\lambda_X\}, \{\eta_X, t_X\} \rangle$ is a $\mu_I g F_{\sigma}$ -set with their $\mu_I g$ -interior will be \mathfrak{E} and also $\mu_I g$ -interior of $\mu_I g$ -closure is \mathfrak{E} .

Theorem:4.5 An ISs g_X in X is $\mu_I g \sigma$ -RS iff $\overline{g_X}$ is $\mu_I g$ -DSGITS and $\mu_I g G_{\delta}$ -set.

Proof: Let \mathscr{G}_X be $\mu_I g \sigma$ -RS in X. Then \mathscr{G}_X is $\mu_I g F_{\sigma}$ -set such that $i_{\mu_I}^*(\mathscr{G}_X) = \mathfrak{E} \Longrightarrow c_{\mu_I}^*(\overline{\mathscr{G}_X}) = \mathfrak{U}$ and $\overline{\mathscr{G}_X} = \bigcup_{i=1}^{\infty} \mathscr{G}_{X_i} = \bigcap_{i=1}^{\infty} \mathscr{G}_{X_i} = \bigcap_{i=1}^{\infty} \mathscr{G}_{X_i} \in \mu_I g$ -OSGITS. Therefore $\overline{\mathscr{G}_X}$ is a $\mu_I g$ -DSGITS and $\mu_I g \mathcal{G}_{\delta}$ -set. Conversely, assume that $\overline{\mathscr{G}_X}$ is $\mu_I g$ -DSGITS and $\mu_I g \mathcal{G}_{\delta}$ -set in X. Then $\overline{\mathscr{G}_X} = \bigcap_{i=1}^{\infty} \mathscr{G}_{X_i} \Longrightarrow \mathscr{G}_X = \bigcup_{i=1}^{\infty} \mathscr{G}_{X_i}$ where \mathscr{G}_{X_i} 's are $\mu_I g$ -CSGITS $\Longrightarrow \mathscr{G}_X$ in X is $\mu_I g F_{\sigma}$ -set. Also $c_{\mu_I}^*(\overline{\mathscr{G}_X}) = \mathfrak{U} \Longrightarrow i_{\mu_I}^*(\mathscr{G}_X) = \mathfrak{E}$. Therefore \mathscr{G}_X is $\mu_I g \sigma$ -RS.

Corralary:4.6 An ISs g_X in X is $\mu_I g \sigma$ -RS iff $E_{\mu_I}^*(\overline{g_X}) = \mathfrak{E}$ and $\overline{g_X}$ is a $\mu_I g G_{\delta}$ -set.

Proof: Let \mathcal{G}_X be $\mu_I g \sigma$ -RS in X. Then \mathcal{G}_X is $\mu_I g F_\sigma$ -set such that $i_{\mu_I}^*(\mathcal{G}_X) = \mathfrak{E}$. Now $E_{\mu_I}^*(\overline{\mathcal{G}_X}) = i_{\mu_I}^*(\mathcal{G}_X) = \mathfrak{E}$ and $\overline{\mathcal{G}_X} = \overline{\bigcup_{i=1}^{\infty} \mathcal{G}_{X_i}} = \bigcap_{i=1}^{\infty} \overline{\mathcal{G}_{X_i}} = \bigcap_{i=1}^{\infty} \overline{\mathcal{G}_{X_i}} = \bigcap_{i=1}^{\infty} \overline{\mathcal{G}_{X_i}} \in \mu_I g$ -OSGITS. Therefore $E_{\mu_I}^*(\overline{\mathcal{G}_X}) = \mathfrak{E}$ and $\overline{\mathcal{G}_X}$ is a $\mu_I g G_\delta$ -set. Conversely, assume that $E_{\mu_I}^*(\overline{\mathcal{G}_X}) = \mathfrak{E}$ and $\overline{\mathcal{G}_X}$ is a $\mu_I g G_\delta$ -set in X. Then $\overline{\mathcal{G}_X} = \bigcap_{i=1}^{\infty} \overline{\mathcal{G}_{X_i}} \Longrightarrow \mathcal{G}_X = \bigcup_{i=1}^{\infty} \mathcal{G}_{X_i}$ where \mathcal{G}_{X_i} 's are $\mu_I g$ -CSGITS $\Rightarrow \mathcal{G}_X$ in X is $\mu_I g F_\sigma$ -set. Also $i_{\mu_I}^*(\mathcal{G}_X) = i_{\mu_I}^*(\overline{\mathcal{G}_X}) = \mathfrak{E}$. Therefore \mathcal{G}_X is $\mu_I g \sigma$ -RS.

Theorem:4.7 If an ISs g_X in X is $\mu_I g \sigma$ -RS then $\mu_I g$ -border is a subset of $\mu_I g$ -Frontier.

Proof: Suppose \mathcal{G}_X in X is $\mu_I g \sigma$ -RS then \mathcal{G}_X is a $\mu_I g F_{\sigma}$ -set and $i_{\mu_I}^*(\mathcal{G}_X) = \mathfrak{G} \Longrightarrow \mathcal{G}_X = \bigcup_{i=1}^{\infty} \mathcal{G}_{X_i}$, where \mathcal{G}_{X_i} 's are $\mu_I g$ -CSGITS. Now $b_{\mu_I}^*(\mathcal{G}_X) = \mathcal{G}_X - i_{\mu_I}^*(\mathcal{G}_X) = \mathcal{G}_X$ and $Fr_{\mu_I}^*(\mathcal{G}_X) = c_{\mu_I}^*(\mathcal{G}_X) - i_{\mu_I}^*(\mathcal{G}_X) = c_{\mu_I}^*(\mathcal{G}_X)$. Henceforth $\mu_I g$ -border is a subset of a $\mu_I g$ -Frontier.

Theorem:4.8 If \mathcal{G}_X in X is $\mu_I g \sigma$ -RS then \mathcal{G}_X is $\mu_I g$ -SFCS.

Proof: Suppose \mathcal{G}_X in X is $\mu_I g \sigma$ -RS then \mathcal{G}_X is a $\mu_I g \mathcal{F}_\sigma$ -set $(\mathcal{G}_X = \bigcup_{i=1}^{\infty} \mathcal{G}_{X_i})$, where \mathcal{G}_{X_i} 's are $\mu_I g$ -CSGITS) and $i_{\mu_I}^*(\mathcal{G}_X) = \mathfrak{E}$. By proposition: 2.4, $\bigcup_{i=1}^{\infty} i_{\mu_I}^*(\mathcal{G}_{X_i}) \subseteq i_{\mu_I}^*(\bigcup_{i=1}^{\infty} \mathcal{G}_{X_i}) = i_{\mu_I}^*(\mathcal{G}_X) = \mathfrak{E} \Longrightarrow i_{\mu_I}^*(\mathcal{G}_{X_i}) = \mathfrak{E}$, where \mathcal{G}_{X_i} 's are $\mu_I g$ -CSGITS. By theorem: 2.8, \mathcal{G}_{X_i} 's are $\mu_I g$ -SNWDS and hence $\mathcal{G}_X = \bigcup_{i=1}^{\infty} \mathcal{G}_{X_i}$, where \mathcal{G}_{X_i} 's are $\mu_I g$ -SNWDS. Therefore \mathcal{G}_X is $\mu_I g$ -SFCS.

Remark:4.9 The reverse of Theorem:4.8 is not required. For example, Let $X = \{c_X, d_X, \sigma_X, \tau_X\}$ with $\mu_I = \{\mathfrak{E}, \langle X, \{c_X, d_X, \sigma_X\}, \phi \rangle, \langle X, \phi, \{c_X, \sigma_X\} \rangle, \langle X, \{c_X\}, \{d_X, \tau_X\} \rangle, \langle X, \{c_X\}, \phi \rangle,$

 $\langle X, \{d_X, \mathfrak{D}_X\}, \{\mathfrak{T}_X\}\rangle, \langle X, \{d_X, \mathfrak{D}_X\}, \phi\rangle, \langle X, \{\mathfrak{c}_X, d_X, \mathfrak{D}_X\}, \{\mathfrak{T}_X\}\rangle\}. \text{Then}\langle X, \{\mathfrak{T}_X, \mathfrak{D}_X\}, \{\mathfrak{c}_X, d_X\}\rangle, \langle X, \{\mathfrak{T}_X, \mathfrak{c}_X\}, \{\mathfrak{D}_X, d_X\}\rangle, \langle X, \{\mathfrak{T}_X, \mathfrak{D}_X, \mathfrak{$

 $\langle X, \{c_X, \mathfrak{d}_X\}, \{d_X\}\rangle, \langle X, \{c_X, \mathfrak{d}_X\}, \{d_X, \mathfrak{r}_X\}\rangle$ are $\mu_I g$ -SFCS but not $\mu_I g \sigma$ -RS.

Theorem:4.10 Every $\mu_I g \sigma$ -NWDS is $\mu_I g \sigma$ -RS.

Proof: Let $\mathcal{G}_X \subseteq X$ be a $\mu_I g \sigma$ -NWDS. Then \mathcal{G}_X is a $\mu_I g F_{\sigma}$ -set and $\mu_I g$ -NDGITS. Using theorem:2.3, \mathcal{G}_X is a $\mu_I g F_{\sigma}$ -set and $i_{\mu_I}^*(\mathcal{G}_X) = \mathfrak{G}$ and hence \mathcal{G}_X is a $\mu_I g \sigma$ -RS.

The reverse is wrong but we can add one more condition that the subset is $\mu_I g$ -CSGITS then the reverse part of theorem:4.10 is true.

Corrolary:4.11 An ISs g_X in X is $\mu_I g \sigma$ -RS and $\mu_I g$ -CSGITS after that g_X is $\mu_I g \sigma$ -NWDS.

Proof: Given that g_X in X is $\mu_I g \sigma$ -RS and $\mu_I g$ -CSGITS. Then g_X is a $\mu_I g F_{\sigma}$ -set with $i_{\mu_I}^*(g_X) = \mathfrak{E}$ and $c_{\mu_I}^*(g_X) = g_X$. Therefore by Corrolary:2.5, we get g_X is $\mu_I g$ -NDGITS and hence g_X is $\mu_I g \sigma$ -NWDS.

Remark:4.12 Every $\mu_I g \sigma$ -NWDS is $\mu_I g$ -NDGITS but the reverse is not valid.

Theorem:4.13 If g_X in X is $\mu_I g \sigma$ -NWDS then g_X is $\mu_I g$ -SFCS.

Proof: Using theorems: 4.10 and 4.8, g_X is μ_I g-SFCS.

Theorem:4.14 If an ISs g_X in X is $\mu_I g \sigma$ -NWDS then $\overline{g_X}$ is $\mu_I g$ -DSGITS and $\mu_I g G_{\delta}$ -set.

Proof: Using theorems:4.10 and 4.5, we have $\overline{g_X}$ is $\mu_I g$ -DSGITS and $\mu_I g G_{\delta}$ -set.

The converse is true when the subset is μ_I g-CSGITS.

Theorem:4.15 If an ISs g_X in X is $\mu_I g \sigma$ -NWDS then $E^*_{\mu_I}(\overline{g_X}) = \mathfrak{E}$ and $\overline{g_X}$ is a $\mu_I g G_{\delta}$ -set.

Proof: Using corollary:4.6 and theorem:4.10, $E_{\mu_I}^*(\overline{g_X}) = \mathfrak{E}$ and $\overline{g_X}$ is a $\mu_I g G_{\delta}$ -set.

Theorem:4.16 If an ISs g_X in X is $\mu_I g \sigma$ -NWDS then $\mu_I g$ -border is a subset of a $\mu_I g$ -Frontier.

Theorem:4.17 (i)Every subset of $a\mu_I g\sigma$ -RS is a $\mu_I g\sigma$ -RS.

(ii)Every subset of $a\mu_I g\sigma$ -NWDS is a $\mu_I g\sigma$ -NWDS.

Definition:4.18An ISs \S_X is said to be $\mu_I g\sigma$ -Category I Set in GITS ($\mu_I g\sigma$ -C-I) if $\S_X = \bigcup_{i=1}^{\infty} \S_{X_i}$ where \S_{X_i} 's are $\mu_I g\sigma$ -RS. Remaining sets are called $\mu_I g\sigma$ -Category II Set ($\mu_I g\sigma$ -C-II). The complement of $\mu_I g\sigma$ -C-I is named as a $\mu_I g\sigma$ -complement set.

Example:4.19 Let $X = \{c_X, d_X, \vartheta_X, \vartheta_X\}$ with $\mu_I = \{\mathfrak{E}, \langle X, \{c_X, d_X, \vartheta_X\}, \phi \rangle, \langle X, \phi, \{c_X, \vartheta_X\} \rangle, \langle X, \{c_X, \xi_X, \xi_X\}, \phi \rangle, \langle X, \{d_X, \vartheta_X\}, \langle X, \{d_X, \vartheta_X\}, \langle X, \{d_X, \vartheta_X\}, \phi \rangle, \langle X, \{d_X, \vartheta_X\}, \langle X, \{d_X, \vartheta_X\}, \langle X, \{d_X, \vartheta_X\}, \phi \rangle, \langle X, \{d_X, \vartheta_X\}, \langle X, \{d_X, \chi, \{d_X, \chi, \chi, \langle X, \{d_X, \chi, \chi, \langle X, \{d_X, \chi, \chi$

Set

_

 $\{\langle X, \{\mathfrak{r}_X\}, \{\mathfrak{d}_X, \mathfrak{F}_X, \mathfrak{c}_X\} \rangle, \langle X, \phi, \{\mathfrak{d}_X, \mathfrak{F}_X, \mathfrak{c}_X\} \rangle\}$

 $\mu_I g \sigma$ -Complement $\mu_I g \sigma$ -Complement

{ $\langle X, \{d_X, \vartheta_X, \varsigma_X\}, \{\mathfrak{r}_X\} \rangle, \langle X, \{d_X, \vartheta_X, \varsigma_X\}, \phi \rangle$ }. **Theorem:4.20** Every subset of $a\mu_I g\sigma$ -C-I is a $\mu_I g\sigma$ -C-I.

Theorem:4.20 Every subset of $\mu\mu_{Ig}\sigma$ C Fis $\mu\mu_{Ig}\sigma$ C Fis $\mu\mu_{Ig}\sigma$ C Fi. **Theorem:4.21** If μ_{X} is $\mu_{Ig}\sigma$ -C-I.

Theorem:4.22 If \mathcal{G}_X is $\mu_I g \sigma$ -C-I in X then $\mathcal{G}_X \subseteq \mu_X$ where μ_X is a non-void $\mu_I g F_{\sigma}$ -set in X.

Theorem:4.23 If β_X is a $\mu_I g \sigma$ -Complement Set in *X* then there exist a $\mu_I g G_{\delta}$ -set g_X such that $g_X \subseteq \beta_X$.

Proof: Let \mathcal{B}_X be a $\mu_I g \sigma$ -Complement Set in X. Then $\overline{\mathcal{B}_X}$ is a $\mu_I g \sigma$ -C-I by theorem:4.22, we have there is a nonvoid $\mu_I g F_{\sigma}$ -set μ_X in X such that $\overline{\mathcal{B}_X} \subseteq \mu_X$. Hence $\overline{\mu_X} \subseteq \mathcal{B}_X$ and $\overline{\mu_X}$ is a $\mu_I g \mathcal{G}_{\delta}$ -set. Take $\mathcal{G}_X = \overline{\mu_X}$. Therefore we have $\mathcal{G}_X \subseteq \mathcal{G}_X$.

Theorem:4.24 (i)Every $\mu_I g \sigma$ -C-Iis $a \mu_I g F_{\sigma}$ -set.

(ii)Every $\mu_I g \sigma$ -Complement Set is a $\mu_I g G_{\delta}$ -set.

Definition:4.25An ISs \S_X is said to be $\mu_I g \sigma$ -First Category Set in GITS ($\mu_I g \sigma$ -I-CS) if $\S_X = \bigcup_{i=1}^{\infty} \S_{X_i}$ where \S_{X_i} 's are $\mu_I g \sigma$ -NWDS. Remaining sets are called $\mu_I g \sigma$ -Second Category Set ($\mu_I g \sigma$ -II-CS). The complement of $\mu_I g \sigma$ -I-CS is named as a $\mu_I g \sigma$ -Residual Set.

Example:4.26 Let $\mu_I = \{ \mathfrak{E}, \langle X, \{\varsigma_X, \zeta_X\}, \{\xi_X\} \rangle, \langle X, \{\varsigma_X, \zeta_X\}, \phi \rangle, \langle X, \{\zeta_X\}, \phi \rangle \}.$ Then $\mu_I g \sigma$ -I-CS = $\{ \langle X, \phi, \{\varsigma_X, \zeta_X\} \rangle, \langle X, \{\xi_X\}, \{\varsigma_X, \zeta_X\} \rangle \}$ and $\mu_I g \sigma$ -Residual Set = $\{ \langle X, \{\varsigma_X, \zeta_X\}, \{\xi_X\}, \langle X, \{\varsigma_X, \zeta_X\}, \phi \rangle \}.$

Theorem:4.27 Every subset of $a\mu_I g\sigma$ -I-CS is a $\mu_I g\sigma$ -I-CS.

Theorem:4.28 If g_X is $\mu_I g$ -DGITS and $\mu_I g G_{\delta}$ -set then $\overline{g_X}$ is a $\mu_I g \sigma$ -I-CS.

Theorem:4.29 If \mathcal{G}_X is $\mu_I g \sigma$ -I-CS in X then $\mathcal{G}_X \subseteq \mu_X$ where μ_X is a non-void $\mu_I g F_{\sigma}$ -set in X.

Theorem:4.30 If \mathfrak{G}_X is a $\mu_I g \sigma$ -Residual Set in *X* then there exist a $\mu_I g \mathcal{G}_{\delta}$ -set \mathfrak{G}_X such that $\mathfrak{G}_X \subseteq \mathfrak{G}_X$.

Proof: Let \mathcal{G}_X be a $\mu_I g \sigma$ -Residual Set in X. Then $\overline{\mathcal{G}_X}$ is a $\mu_I g \sigma$ -I-CS by theorem:4.28, we have there is a nonvoid $\mu_I g F_{\sigma}$ -set μ_X in X such that $\overline{\mathcal{G}_X} \subseteq \mu_X$. Hence $\overline{\mu_X} \subseteq \mathcal{G}_X$ and $\overline{\mu_X}$ is a $\mu_I g \mathcal{G}_{\delta}$ -set. Take $\mathcal{G}_X = \overline{\mu_X}$. Therefore we have $\mathcal{G}_X \subseteq \mathcal{G}_X$.

Theorem:4.31 (i)Every $\mu_I g \sigma$ -I-CSis $a \mu_I g F_{\sigma}$ -set.

(ii)Every $\mu_I g \sigma$ -Residual Set is a $\mu_I g G_{\delta}$ -set.

V. $\mu_I g B_{\sigma}$ - Space and $\mu_I g \sigma$ -Baire spaces in GITS

Definition:5.1 If $i_{\mu_I}^* (\bigcup_{i=1}^{\infty} \S_{X_i}) = \mathfrak{E}$, where \S_{X_i} 's are $\mu_I g \sigma$ -RS then X is a $\mu_I g B_{\sigma}$ -space.

Definition:5.2 If $i_{\mu_I}^* (\bigcup_{i=1}^{\infty} \S_{X_i}) = \mathfrak{E}$, where \S_{X_i} 's are $\mu_I g \sigma$ -NWDS then X is a $\mu_I g \sigma$ -Baire space.

Example:5.3 In example:4.19, $i_{\mu_I}^*(\langle X, \{ \mathfrak{r}_X \}, \{ \mathfrak{d}_X, \mathfrak{d}_X, \mathfrak{c}_X \})) = \mathfrak{E}$. Hence (X, μ_I) is a $\mu_I g B_{\sigma}$ - space.

Theorem:5.4 If $c_{\mu_I}^*(\bigcap_{i=1}^{\infty} \S_{X_i}) = U$, where \S_{X_i} 's are $\mu_I g$ -DGITS and $\mu_I g G_{\delta}$ -set, then (X, μ_I) is a $\mu_I g B_{\sigma}$ -space. **Proof:** Given that $c_{\mu_I}^*(\bigcap_{i=1}^{\infty} \S_{X_i}) = U$ which gives $\overline{c_{\mu_I}^*(\bigcap_{i=1}^{\infty} \S_{X_i})} = \mathfrak{E} \Longrightarrow i_{\mu_I}^*(\bigcup_{i=1}^{\infty} \overline{\S_{X_i}}) = \mathfrak{E}$. Take $B_i = \overline{\S_{X_i}}$. Then $i_{\mu_I}^*(\bigcup_{i=1}^{\infty} B_i) = \mathfrak{E}$. Now \S_{X_i} 's are $\mu_I g$ -DGITS and $\mu_I g G_{\delta}$ -set in X, by theorem:4.5 $\overline{\S_{X_i}}$ is a $\mu_I g \sigma$ -RS and hence $i_{\mu_I}^*(\bigcup_{i=1}^{\infty} B_i) = \mathfrak{E}$, where B_i 's are $\mu_I g \sigma$ -RS. Therefore (X, μ_I) is a $\mu_I g B_{\sigma}$ -space.

Theorem:5.5 Let(X, μ_I) be GITS. Then the following are equivalent

(i)(X, μ_I) is $\mu_I g B_\sigma$ -space.

(ii) $i_{\mu_I}^*(\S_X) = \mathfrak{E}$, for every $\mu_I g \sigma$ -C-I \S_X in X.

(iii) $c_{\mu_I}^*(g_X) = \dot{U}$, for every $\mu_I g \sigma$ -Complement Set g_X in X.

Proof: (i) \Rightarrow (ii), Let \S_X be $\mu_I g \sigma$ -C-I in X. Then $\S_X = \bigcup_{i=1}^{\infty} \S_{X_i}$ where \S_{X_i} 's are $\mu_I g \sigma$ -RS and $i_{\mu_I}^*(\S_X) = i_{\mu_I}^*(\bigcup_{i=1}^{\infty} \S_{X_i})$. Since (X, μ_I) is a $\mu_I g B_\sigma$ -space, $i_{\mu_I}^*(\S_X) = \mathfrak{E}$.

(ii) \Rightarrow (iii) Let \mathcal{G}_X be $\mu_I g \sigma$ -Complement Set in X. Then $\overline{\mathcal{G}_X}$ is $\mu_I g \sigma$ -C-I in X. From(ii), $i_{\mu_I}^*(\overline{\mathcal{G}_X}) = \mathfrak{E} \Rightarrow \overline{c_{\mu_I}^*(\mathcal{G}_X)} = \mathfrak{E}$. Hence $c_{\mu_I}^*(\mathcal{G}_X) = \dot{\mathbb{U}}$.

(iii) \Rightarrow (i) Let \S_X be $\mu_I g \sigma$ -C-I in X. Then $\S_X = \bigcup_{i=1}^{\infty} \S_{X_i}$ where \S_{X_i} 's are $\mu_I g \sigma$ -RS. We have, if \S_X is $\mu_I g \sigma$ -C-I in X then $\overline{\S_X}$ is $\mu_I g \sigma$ -Complement Set. By (iii) we get $c_{\mu_I}^*(\overline{\S_X}) = U$, which gives $\overline{\iota_{\mu_I}^*(\S_X)} = U$. Therefore $\iota_{\mu_I}^*(\S_X) = \mathfrak{E}$ and hence $\iota_{\mu_I}^*(\bigcup_{i=1}^{\infty} \S_{X_i}) = \mathfrak{E}$, where \S_{X_i} 's are $\mu_I g \sigma$ -RS. Hence (X, μ_I) is a $\mu_I g \sigma_\sigma$ -space.

Theorem:5.6 If $i_{\mu_I}^*(\mu_X) = \mathfrak{E}$, for each $\mu_I g F_{\sigma}$ -set μ_X in X, then X is a $\mu_I g B_{\sigma}$ -space.

Proof: Let \mathscr{G}_X be a $\mu_I g \sigma$ -C-I in X. Then $\mathscr{G}_X \subseteq \mathfrak{p}_X$ where \mathfrak{p}_X is a non-void $\mu_I g \mathcal{F}_{\sigma}$ -set in $X \Longrightarrow i_{\mu_I}^*(\mathscr{G}_X) \subseteq i_{\mu_I}^*(\mathfrak{p}_X) = \mathfrak{E}$, for each $\mu_I g \sigma$ -C-I \mathscr{G}_X in X. By theorem:5.5, X is a $\mu_I g \mathcal{B}_{\sigma}$ -space.

Theorem:5.7 If $c_{\mu_I}^*(\mathfrak{G}_X) = \acute{U}$, for each $\mu_I g \mathcal{G}_{\delta}$ -set \mathfrak{G}_X in X, then X is a $\mu_I g \mathcal{B}_{\sigma}$ -space.

Proof: Let \mathcal{G}_X be a $\mu_I g \sigma$ -C-I in X. Then $\mathcal{G}_X \subseteq \mathfrak{h}_X$ where \mathfrak{h}_X is a non-void $\mu_I g F_{\sigma}$ -set in X. Since \mathfrak{h}_X is a $\mu_I g F_{\sigma}$ -set, $\overline{\mathfrak{h}_X}$ is a $\mu_I g G_{\delta}$ -set and then $c^*_{\mu_I}(\overline{\mathfrak{h}_X}) = U \cong i^*_{\mu_I}(\mathfrak{h}_X) = \mathfrak{E}$. Now $\mathcal{G}_X \subseteq \mathfrak{h}_X \Longrightarrow i^*_{\mu_I}(\mathcal{G}_X) \subseteq i^*_{\mu_I}(\mathfrak{h}_X) = \mathfrak{E}$ and hence $i^*_{\mu_I}(\mathcal{G}_X) = \mathfrak{E}$. By theorem:5.5, X is a $\mu_I g B_{\sigma}$ -space.

Theorem:5.8 If $i_{\mu_I}^* (\bigcup_{i=1}^{\infty} \S_{X_i}) = \mathfrak{E}$, where \S_{X_i} 's are $\mu_I g$ -CSGITS and $\mu_I g \sigma$ -RS in X, then (X, μ_I) is a $\mu_I g \sigma$ -Baire space.

Proof: Given that $i_{\mu_I}^*(\bigcup_{i=1}^{\infty} \S_{X_i}) = \mathfrak{E}$, where \S_{X_i} 's are $\mu_I g$ -CSGITS in X and $\mu_I g \sigma$ -RS. By corollary:4.11, \S_{X_i} 's are $\mu_I g \sigma$ -NWDS. Therefore $i_{\mu_I}^*(\bigcup_{i=1}^{\infty} \S_{X_i}) = \mathfrak{E}$, \S_{X_i} 's are $\mu_I g \sigma$ -NWDS and hence (X, μ_I) is a $\mu_I g \sigma$ -Baire space.

Remark:5.9 Every $\mu_I g B_{\sigma}$ -space is a $\mu_I g$ -Baire space if every $\mu_I g \sigma$ -RS is $\mu_I g$ -closed.

Theorem:5.10 Every $\mu_I g \sigma$ -Baire space is a $\mu_I g$ -Baire space.

Theorem:5.11 Let(X, μ_I) be GITS. Then the following are equivalent

(i)(X, μ_I) is $\mu_I g \sigma$ -Baire space.

(ii) $i_{\mu_I}^*(\S_X) = \mathfrak{E}$, for every $\mu_I g \sigma$ -I-CS \S_X in *X*.

(iii) $c_{\mu_I}^*(g_X) = \dot{U}$, for every $\mu_I g \sigma$ -Residual Set g_X in X.

Proof: (i) \Rightarrow (ii), Let \S_X be $\mu_I g \sigma$ -I-CS in X. Then $\S_X = (\bigcup_{i=1}^{\infty} \S_{X_i})$ where \S_{X_i} 's are $\mu_I g \sigma$ -NWDS and $i_{\mu_I}^*(\S_X) = i_{\mu_I}^*(\bigcup_{i=1}^{\infty} \S_{X_i})$. Since (X, μ_I) is a $\mu_I g \sigma$ -Baire space, $i_{\mu_I}^*(\S_X) = \mathfrak{E}$.

(ii) \Rightarrow (iii) Let \mathcal{G}_X be $\mu_I g \sigma$ - Residual Set in X. Then $\overline{\mathcal{G}_X}$ is $\mu_I g \sigma$ -I-CS in X. From(ii), $i_{\mu_I}^*(\overline{\mathcal{G}_X}) = \mathfrak{E} \Rightarrow \overline{c_{\mu_I}^*(\mathcal{G}_X)} = \mathfrak{E}$. Hence $c_{\mu_I}^*(\mathcal{G}_X) = \dot{\mathbb{U}}$.

(iii) \Rightarrow (i) Let \S_X be $\mu_I g \sigma$ -I-CS in X. Then $\S_X = \bigcup_{i=1}^{\infty} \S_{X_i}$ where \S_{X_i} 's are $\mu_I g \sigma$ -NWDS. We have, if \S_X is $\mu_I g \sigma$ -I-CS in X then $\overline{\S_X}$ is $\mu_I g \sigma$ -Residual Set. By (iii) we get $c_{\mu_I}^*(\overline{\S_X}) = U$, which gives $\overline{\iota_{\mu_I}^*(\S_X)} = U$. Therefore $\iota_{\mu_I}^*(\S_X) = \mathfrak{E}$ and hence $\iota_{\mu_I}^*(\bigcup_{i=1}^{\infty} \S_{X_i}) = \mathfrak{E}$, where \S_{X_i} 's are $\mu_I g \sigma$ -RS. Hence (X, μ_I) is a $\mu_I g \sigma$ -Baire space.

Theorem:5.12 If $i_{\mu_I}^*(\mathfrak{h}_X) = \mathfrak{E}$, for each $\mu_I g F_{\sigma}$ -set \mathfrak{h}_X in X, then X is a $\mu_I g \sigma$ -Baire space.

Proof: Let \mathcal{G}_X be a $\mu_I g \sigma$ -I-CS in X. Then $\mathcal{G}_X \subseteq \mathfrak{p}_X$ where \mathfrak{p}_X is a non-void $\mu_I g F_{\sigma}$ -set in $X \Longrightarrow i_{\mu_I}^*(\mathcal{G}_X) \subseteq i_{\mu_I}^*(\mathfrak{p}_X) = \mathfrak{E}$ and hence $i_{\mu_I}^*(\mathcal{G}_X) = \mathfrak{E}$, for each $\mu_I g \sigma$ -I-CS \mathcal{G}_X in X. By theorem:5.11, X is a $\mu_I g \sigma$ -Baire space. **Theorem:5.13** If $c_{\mu_I}^*(\mathfrak{G}_X) = \mathfrak{U}$, for each $\mu_I g \mathcal{G}_{\delta}$ -set \mathfrak{G}_X in X, then X is a $\mu_I g \sigma$ -Baire space.

Proof: Let \mathcal{G}_X be a $\mu_I g \sigma$ -I-CS in X. Then $\mathcal{G}_X \subseteq \mathfrak{h}_X$ where \mathfrak{h}_X is a non-void $\mu_I g F_{\sigma}$ -set in X. Since \mathfrak{h}_X is a $\mu_I g F_{\sigma}$ -set, $\overline{\mathfrak{h}_X}$ is a $\mu_I g G_{\delta}$ -set and then $c^*_{\mu_I}(\overline{\mathfrak{h}_X}) = U \Longrightarrow i^*_{\mu_I}(\mathfrak{h}_X) = \mathfrak{E}$. Now $\mathcal{G}_X \subseteq \mathfrak{h}_X \Longrightarrow i^*_{\mu_I}(\mathcal{G}_X) \subseteq i^*_{\mu_I}(\mathfrak{h}_X) = \mathfrak{E}$ and hence $i^*_{\mu_I}(\mathcal{G}_X) = \mathfrak{E}$. By theorem:5.11, X is a $\mu_I g \sigma$ -Baire space

VI. $\mu_I g$ D-Baire space in GITS

Definition:6.1 A GITS X is said to be a $\mu_I gD$ -Baire space if $i^*_{\mu_I}(c^*_{\mu_I}(\mathcal{G}_X)) = \mathfrak{G}$ for each $\mu_I g$ -FCGITS \mathcal{G}_X in X. **Example:6.2** (X, { $\mathfrak{G}, \langle X, \{\zeta_X, \zeta_X\}, \{\xi_X\}$ }, $\langle X, \{\zeta_X, \zeta_X\}, \phi$), $\langle X, \{\zeta_X\}, \phi$ }) is a $\mu_I gD$ -Baire space.

Theorem:6.3 Every $\mu_I g$ D-Baire space is a $\mu_I g$ -Baire space.

Proof: Let \mathfrak{h}_X be a $\mu_I g$ -FCGITS in a $\mu_I g$ D-Baire space X. Then $\mathfrak{h}_X = \bigcup_{i=1}^{\infty} \mathfrak{h}_{X_i}$ where \mathfrak{h}_{X_i} 's are $\mu_I g$ -NDGITS and $i_{\mu_I}^*(c_{\mu_I}^*(\mathfrak{h}_X)) = \mathfrak{E}$. By proposition:2.3, $i_{\mu_I}^*(\mathfrak{h}_X) = \mathfrak{E}$ and hence $i_{\mu_I}^*(\bigcup_{i=1}^{\infty} \mathfrak{h}_{X_i}) = \mathfrak{E}$, where \mathfrak{h}_{X_i} 's are $\mu_I g$ -NDGITS. Therefore X is a $\mu_I g$ -Baire space.

Theorem:6.4 If \mathfrak{h}_X is a $\mu_I g$ -FCGITS and $\mu_I g$ -CSGITS in a $\mu_I g$ -Baire Space X then X is a $\mu_I g$ D-Baire space. **Proof:**Let \mathfrak{h}_X be a $\mu_I g$ -FCGITS in a $\mu_I g$ -Baire space X. By proposition:2.6, $i_{\mu_I}^*(\mathfrak{h}_X) = \mathfrak{E}$. Now $i_{\mu_I}^*(c_{\mu_I}^*(\mathfrak{h}_X)) = i_{\mu_I}^*(\mathfrak{h}_X) = \mathfrak{E}$. Therefore X is a $\mu_I g$ D-Baire space.

Theorem:6.5 If $c_{\mu_1}^*(i_{\mu_1}^*(\mathfrak{h}_X)) = \acute{U}$ for each $\mu_I g$ -DGITS and $\mu_I g G_{\delta}$ -set \mathfrak{h}_X in X then X is a $\mu_I g$ -D-Baire space. **Proof:** Let \mathfrak{h}_X be a $\mu_I g$ -DGITS and $\mu_I g G_{\delta}$ -set in X. By theorem:3.8, $\overline{\mathfrak{h}_X}$ is a $\mu_I g$ -FCGITS. By hypothesis, $c_{\mu_I}^*(i_{\mu_I}^*(\mathfrak{h}_X)) = \acute{U} \Longrightarrow i_{\mu_I}^*(c_{\mu_I}^*(\overline{\mathfrak{h}_X})) = \mathfrak{E}$. Henceforth X is a $\mu_I g$ D-Baire space.

Theorem:6.6 If $c_{\mu_I}^*(i_{\mu_I}^*(\mathfrak{h}_X)) = U$ for each $\mu_I g$ -residual set \mathfrak{h}_X in X then X is a $\mu_I g$ D-Baire space.

Proof: Let \mathfrak{h}_X be a $\mu_I g$ -residual set in X. Then $\overline{\mathfrak{h}_X}$ is a $\mu_I g$ -FCGITS. By hypothesis, $c_{\mu_I}^*(i_{\mu_I}^*(\mathfrak{h}_X)) = U \Longrightarrow i_{\mu_I}^*(c_{\mu_I}^*(\overline{\mathfrak{h}_X})) = \mathfrak{E}$. Henceforth $\overline{\mathfrak{h}_X}$ is a $\mu_I g$ -NDGITS. Therefore X is a $\mu_I g$ D-Baire space.

VII. Conclusion:

In this paper, first we defined $\mu_I g G_{\delta}$ -setthen introduce $\mu_I g \sigma$ -Baire space and D-Baire space. Various properties of their Baire spaces are to be discussed and their characterizations are to be analysed.

References:

- [1]. G.Helen Rajapushpam, P.Sivagami and G. Hari siva annam, Natures of $\mu_I g$ strongly nowhere dense sets(communicated)
- [2]. G.Helen Rajapushpam, P.Sivagami and G. Hari siva annam, Some new operators on μIg-closed sets in GITS, J.Math.Comput.Sci.11(2021), No:2,1868-1887,ISSN:1927-5307.
- [3]. G.Helen Rajapushpam, P.Sivagami and G. Hari siva annam, μlg-Dense sets and μlg-Baire Spaces in GITS, Asia Mathematica, Vol:5, Issue:1,(2021) Pages:158-167.
- [4]. P.Sivagami, G.Helen Rajapushpam, and G. Hari siva annam, Intuitionistic Generalized closed sets in Generalized intuitionistic topological space, Malaya Journal Of Mathematik, vol.8, No3, 1142-1147. E ISSN:2251-5666, P ISSN:2319-3786.
- [5]. G.Thangaraj and E.Poongothai, On Fuzzy σ-Baire Spaces, International Journal of Fuzzy Mathematics and Systems. ISSN:2248-9940, Vol-3, No-4(2013), pp.275-283.

- [6]. G.Thangaraj and R.Anjalmose, A Note On fuzzy Baire spaces, International Journal of Fuzzy Mathematics and Systems, Vol:3, No.4,(2013), pp.269-274, ISSN:2248-9940. http://www.ripublication.com.
- [7]. G.Thangaraj and R.Anjalmose, On fuzzy D-Baire spaces, Annals of Fuzzy Mathematics and Informatics, Vol:x, No.x, (mm 201y), pp.1-xx, ISSN:2093-9310(p), ISSN:2287-6235(o). http://www.afmi.or.kr.

G.HELEN RAJAPUSHPAM, et. al. "An Extension of µ_Ig - Baire Spaces." *IOSR Journal of Mathematics (IOSR-JM)*, 18(1), (2022): pp. 59-64.