γ-Separated sets and γ-Connectedness in L-Fuzzy Topological Spaces

Dapke Sadashiv Ganpatrao

H. J. Thim College of Arts and Science, Mehrun, Jalgaon, India

Abstract

In this paper, we define the γ -connectedness by using of γ -separated sets in L-fuzzy topological spaces. We study the characterization and several properties of γ -connectedness. We have proved some equivalent conditions for γ -connectedness.

Keywords: γ -separated sets, γ -closed sets, γ -open sets, γ -connectedness, *L*-fuzzy topological spaces. 2020 AMS subject classifications: 46A32, 46A70, 46A99, 46B20.

Date of Submission: 14-03-2023

Date of Acceptance: 30-03-2023

Introduction

Let *S* be the set of all non-negative integers. Connectedness is an important notion in fuzzy topology. In 1975, Bruce Hutton [10] constructed L-fuzzy unit interval I(L) and studied fuzzy topological properties of I(L), where I = [0, 1]. He proved that if *L* is ortho-complemented, then fuzzy open sets of I(L) and usual open sets of *I* are in one-to-one correspondence which preserves unions and interesctions. It follows that I(L) has many fuzzy topological properties such as connectedness. He observed that I(L) does not satisfies connectedness, when *L* is a chain. Rodabaugh [14] proved that I(L), L-fuzzy open unit interval (0, 1)(L) and L-fuzzy real line R(L) are connected if $0 \in L^b$ (a condition satisfied by chains), where $L^b = \{\alpha \in L : \alpha < \beta \text{ and } \alpha < \gamma \Rightarrow \alpha < \beta \land \gamma\}$. His observation is stated as, A greater degree of connectivity should be associated with a lesser degree of dis-connectivity. Zheng Chong-You [17] studied some properties of L-fuzzy unit interval and defined L-fuzzy path connectedness, Q-connectedness, 1-connectedness and standard L-fuzzy path connectedness.

Ajmal and Kohli [3] introduced the notions of fuzzy connectedness and gave its characterizations. It is observed that fuzzy connectedness is preserved under fuzzy continuity. In [4] he showed that fuzzy C_2 -connectedness and fuzzy C_4 - connectedness are not preserved under product of spaces. Turanli [16] gives some counter-examples related to the product of fuzzy connected spaces. He coined the term fuzzy super C_s -connectedness and studied it's relations with fuzzy C_s - connectedness.

Liu and Pu [13] introduced the connectedness in fuzzy topological spaces in 1980. G. J. Wang [17] extended the Pu and Liu's definition of connectedness in fuzzy topological spaces to L-fuzzy topological spaces. Many researchers have studied various kinds of connectedness [1], [2], [8] in L-fuzzy topological spaces in the Chang's [6] sense. By using pre-closed sets, Bai [5] introduced P - connectedness and Li et. al. [11] introduced P_2 -connectedness in L-fuzzy topological spaces.

Recently, El-Atik [7] studied b-connectedness and their applications in general topology. Hanafy [9] defined the concept of γ -open set and introduced γ - connectedness in fuzzy topological space. He studied some properties of γ -open set and fuzzy γ -continuity in fuzzy topological spaces.

In this paper, we define the γ -connectedness by using of γ -separated sets in L-fuzzy topological spaces. We study the characterization and several properties of γ -connectedness. We have proved some equivalent conditions for γ -connectedness.

Separated Sets in L-Fuzzy Topological Spaces

In this section, we discuss some preliminary terms which are useful for our main results. Liu [12] introduced the concept of separated sets in L-fuzzy topological spaces. Separated sets in L-fuzzy topological spaces are also termed as separated L-fuzzy sets. We some definition given by Liu [12] as follows:

Definition 2.1. [12] Let (X, τ) be an L-fuzzy topological space and $A, B \in L^X$. Then A and B are called separated if $A \wedge cl(B) = 0$ and $B \wedge cl(A) = 0$.

Definition 2.2. [12] Let (X, τ) be an L-fuzzy topological space and $A \in L^X$. Then A is said to be connected if A cannot be represented as join of two separated non-null L-fuzzy sets.

Definition 2.3. [9] Let (X, τ) be an L-fuzzy topological space and $A \in L^X$.

Then A is said to be γ -open if

$$A \leq cl(int(A)) \lor int(cl(A))$$

and γ -closed if

$$cl(int(A)) \lor int(cl(A)) \le A.$$

Definition 2.4. [9] Let (X, τ) be an L-fuzzy topological space and $A \in L^X$.

The fuzzy γ -interior of A (in short γ -int(A)) is defined as γ -int(A) = $\forall \{H: H \text{ is } \gamma - open L - fuzzy \text{ set}, H \leq A\}$. The γ -interior of A is the join of all γ -open subsets of L^X contained in A.

The γ -interior of $A \in L^X$ is just largest γ -open subset of L^X contained in A. Note that L-fuzzy set A is γ -open iff γ -int(A) = A.

Definition 2.5. [9] Let (X, τ) be an L-fuzzy topological space and $A \in L^X$.

The fuzzy γ -closure of A (in short γ -cl(A)) is defined as γ -cl(A) = Λ { $G: G \text{ is } \gamma - closed L - fuzzy \text{ set}, A \leq G$ }. The γ -closure of A is the meet of all γ -closed subsets of L^X containing A.

The γ -closure of $A \in L^X$ is just smallest γ -closed subset of L^X containing A. Note that L-fuzzy set A is γ -closed iff γ -cl(A) = A.

γ-Separated L-fuzzy Sets in L-Fuzzy Topological Spaces

In this section, We discuss γ –separated L-fuzzy sets in L-fuzzy topological spaces. We proved that every separated sets are γ -separated. We study some characterization and several properties of γ -separated sets.

Definition 3.1.[15]Let (X, τ) be an L-fuzzy topological space and $A, B \in L^X$. Then A, B are called γ -separated if $A \wedge \gamma - cl(B) = 0$ and $B \wedge \gamma - cl(A) = 0$.

Proposition 3.1. [15] Every separated L-fuzzy set in L-fuzzy topological space (X, τ) is γ - separated.

Proof. Let *A* and *B* are separated L-fuzzy sets in L-fts (X, τ) . By Definition 2.1, we have $A \wedge cl(B) = 0$ and $B \wedge cl(A) = 0$. By using the fact $\gamma - cl(A) \leq cl(A)$ for every $A \in L^X$, we get $A \wedge \gamma - cl(B) = 0$ and $B \wedge \gamma - cl(A) = 0$. Hence by Definition 2.6, *A* and *B* are γ -separated L-fuzzy sets in L-fts (X, τ) .

Theorem 3.1.[15] Let (X, τ) be L-fuzzy topological space and $A, B \in L^X$ such that

 $A \neq 0$ and $B \neq 0$. Then following statements hold;

- I. If A and B are γ -separated L-fuzzy sets and A_1 , B_1 are non-null L-fuzzy sets in L-fts (X, τ) such that $A_1 \leq A$ and $B_1 \leq B$, then A_1 , B_1 are also γ -separated.
- II. If $A \wedge B = 0$ such that each of A and B are both γ -closed (γ -open), then A and B are γ -separated.
- III. Let A and B be both γ -closed (γ -open). If $H = A \wedge B'$ and $G = B \wedge A'$, then H and G are γ -separated.

Proof:(I) Given $A_1 \leq A$ and $B_1 \leq B$ then $\gamma - cl(A_1) \leq \gamma - cl(A)$ and $\gamma - cl(B_1) \leq \gamma - cl(B)$. Since, A and B are γ -separated L-fuzzy sets, so $A \wedge \gamma - cl(B) = 0$ and $B \wedge \gamma - cl(A) = 0$, then

$$A \wedge \gamma - cl(B) = 0 \text{ and } B \wedge \gamma - cl(A) = 0$$
$$\implies A_1 \wedge \gamma - cl(B) = 0 \text{ and } B_1 \wedge \gamma - cl(A) = 0$$
$$\implies A_1 \wedge \gamma - cl(B_1) = 0 \text{ and } B_1 \wedge \gamma - cl(A_1) = 0$$

Hence, A_1 , B_1 are also γ -separated.

(II) Since A and B are γ -closed so $A = \gamma - cl(A)$, $B = \gamma - cl(B)$ and $A \wedge B = 0$, then $\gamma - cl(A) \wedge B = 0$, $\gamma - cl(B) \wedge A = 0$. Hence, A and B are γ -separated.

Since A and B are γ -open so A' and B' are γ -closed so $A' = \gamma - cl(A')$, $B' = \gamma - cl(B')$ and $A' \wedge B' = 0$. then $\gamma - cl(A) \wedge B = 0$, $\gamma - cl(B) \wedge A = 0$. Therefore, A' and B' are γ -separated. Clearly,

$$A \leq B' \Longrightarrow \gamma - cl(A) \leq \gamma - cl(B') \Longrightarrow \gamma - cl(A) \leq B' \Longrightarrow \gamma - cl(A) \land B = 0.$$

Similarly, we get $A \wedge \gamma - cl(B) = 0$. Hence, A and B are γ -separated.

(III) If A and B are γ -open L-fuzzy sets then A' and B' are γ -closed L-fuzzy sets so $A' = \gamma - cl(A')$, $B' = \gamma - cl(B')$. Since, $H = A \wedge B'$ and $G = B \wedge A'$ then $H \leq A$ and $G \leq B$, also

$$H = A \wedge B'$$
 and $G = B \wedge A'$

 $\Rightarrow \gamma - cl(H) \le \gamma - cl(B') = B' \text{and } \gamma - cl(G) \le \gamma - cl(A') = A'$

 $\Rightarrow \gamma - cl(H) \land B = 0 \text{ and } \gamma - cl(G) \land A = 0$

$$\Rightarrow \gamma - cl(H) \land G = 0 \text{ and } H \land \gamma - cl(G) = 0.$$

Hence, G and H are γ -separated.

If A and B are γ -closed L-fuzzy sets so $A = \gamma - cl(A)$, $B = \gamma - cl(B)$. Since, $H = A \wedge B'$ and $G = B \wedge A'$ then $H \leq B'$ and $G \leq A'$, also

$$H = A$$
 and $G = B$

 $\Rightarrow \gamma - cl(H) \le \gamma - cl(A) = A \text{ and } \gamma - cl(G) \le \gamma - cl(B) = B$

 $\Rightarrow \gamma - cl(H) \land A' = 0 \text{ and } \gamma - cl(G) \land B' = 0$

 $\Rightarrow \gamma - cl(H) \land G = 0$ and $H \land \gamma - cl(G) = 0$.

Hence, G and H are γ -separated.

Theorem 3.2.[15] Let (X, τ) be L-fuzzy topological space and $A, B \in L^X$ such that $A \neq 0$ and $B \neq 0$. Then A and B are γ -separated iff there exists γ -open L-fuzzy sets A_1 , B_1 in L-fuzzy topological space (X, τ) such that $A \leq A_1, B \leq B_1$ and $A \land B_1 = 0, A_1 \land B = 0$.

Proof. Let *A* and *B* are γ -separated *L*-fuzzy sets in L-fuzzy topological space (X, τ). Take $A_1 = (\gamma - cl(B))^c$ and $B_1 = (\gamma - cl(A))^c$ then A_1 and B_1 are γ -open L-fuzzy sets in L-fuzzy topological space (X, τ) such that $A \le A_1, B \le B_1$. We have, $A_1 = (\gamma - cl(B))^c$ and $B_1 = (\gamma - cl(A))^c$ $\Rightarrow A_1 \land \gamma - cl(B) = 0$ and $\gamma - cl(A) \land B_1 = 0$ $\Rightarrow A_1 \land B = 0$ and $A \land B_1 = 0$. Hence, $A_1 \land B = 0$ and $A \land B_1 = 0$. Conversely, Let A_1 , B_1 are γ -open *L*-fuzzy sets in L-fuzzy topological space (X, τ) such that $A \le A_1$, $B \le B_1$ and $A \land B_1 = 0$, $A_1 \land B = 0$. Then $=B_1 \le A'$ and $A_1 \le B'$. Since, A'_1 , B'_1 are γ -closed *L*-fuzzy sets in L-fuzzy topological space (X, τ) then γ -cl $(A'_1) = A_1$ and γ -cl $(B'_1) = B_1$.

Now,

$$\gamma$$
-cl(A) $\leq \gamma$ -cl(A₁) $\leq \gamma$ -cl(B') = B'

and

$$\gamma$$
-cl(B) $\leq \gamma$ -cl(B₁) $\leq \gamma$ -cl(A') = A'.

Thus, γ -cl(A) $\wedge B = 0$ and γ -cl(B) $\wedge A = 0$.

Hence, A and B are γ -separated.

Theorem 3.3.[15] Let (X, τ) be L-fuzzy topological space and $A, B, C \in L^X$. If B and C are γ -separated then $A \wedge B = 0$ and $A \wedge C = 0$ are γ -separated.

Proof. Let (X, τ) be L-fuzzy topological space and $A, B, C \in L^X$. If B and C are γ -separated then $B \land \gamma - cl(C) = 0$ and $\gamma - cl(B) \land C = 0$. Since, $A \land B \leq B$ and $A \land C \leq C$ implies $\gamma - cl(A \land B) \leq \gamma - cl(B)$ and $\gamma - cl(A \land C) \leq \gamma - cl(C)$.

We get,

$$\gamma$$
-cl($A \land B$) \land ($A \land C$) $\leq \gamma$ -cl(B) $\land C = 0$

And

$$(A \land B) \land \gamma - cl(A \land C) \le B \land \gamma - cl(C) = 0.$$

Hence, $A \land B$ and $A \land C$ are γ -separated.

γ-Connectedness in L-Fuzzy Topological Spaces

In this section, we define the γ -connectedness by using of γ -separated sets in L-fuzzy topological spaces. We study the characterization and several properties of γ -connectedness. We prove some equivalent conditions for γ -connectedness.

Definition 4.1 Let (X, τ) be L-fuzzy topological space and $A \in L^X$. Then A is said to be γ -connected if A cannot be represented as join of two γ -separated non-null L-fuzzy sets. If A = 1 is γ -connected, then (X, τ) said to be γ -connected.

Definition 4.2 Let (X, τ) be L-fuzzy topological space and $A \in L^X$. Then A is said to be γ -disconnected if A is not γ -connected.

Theorem 4.1 Every γ -connected L-fuzzy set in L-fuzzy topological space (X, τ) is connected, but converse need not be true.

Proof. Let $A \in L^X$ be γ -connected in L-fuzzy topological space (X, τ) . Sup-pose, A is not connected in (X, τ) . Then A can be represented as join of two separated non-null L-fuzzy sets. i.e. $A = B \lor C$ such that $B \neq 0$, $C \neq 0$, $B, C \in L^X$. By Proposition 3.1. We get B, C are γ -separated in (X, τ) . So, A can be represented as join of two γ -separated non-null L-fuzzy sets. Thus A is not γ -connected. Which contradicts to our assumption. Hence, every γ -connected L-fuzzy set in L-fuzzy topological space (X, τ) is connected.

To disprove converse, we see following example.

Example 4.1. Let $X = \{x, y\}, L = \{0, 1, a, b\},\$

where, 0' = 1, 1' = 0, a' = a, b' = b, 0 < a < 1, 0 < b < 1, $a \land b = 0$, $a \lor b = 1$, a and b are incomparable.

Define, $A, B, C, D \in L^X$ as

$$A(x) = 1,$$
 $A(y) = 0,$
 $B(x) = a,$ $B(y) = b,$
 $C(x) = a,$ $C(y) = 0,$
 $D(x) = 0,$ $D(y) = b.$

Then, $\tau = \{0, \underline{1}, \underline{A}\}$ is *L*-fuzzy topology on *X*. Thus, (X, τ) is *L*-fuzzy topological space.

We obtain, $cl(C) = \underline{1}$ and $cl(C) \land D = \underline{0}$. Therefore, C and D are not separated. Now, B can only be expressed as join of disjoint non-null L-fuzzy sets C and D. Thus, B is connected L-fuzzy set.

By simple computation, we can see that,

 $int(cl(B)) \wedge cl(int(B)) \leq \underline{1} \wedge \underline{0} = \underline{0} \leq B.$ $int(cl(C)) \wedge cl(int(C)) \leq \underline{1} \wedge \underline{0} = \underline{0} \leq C.$ $int(cl(D)) \wedge cl(int(D)) \leq \underline{0} \wedge \underline{0} = \underline{0} \leq D.$

So, B, C, D are γ -closed L-fuzzy sets. Thus, γ -cl(B) = B, γ -cl(C) = C and

 γ -cl(D) = D. Now, $C \wedge \gamma$ -cl(D) = $C \wedge D = \underline{0}$. Hence, C and D are γ -separated non-null L-fuzzy sets. Since, $B = C \vee D$. Hence, B is γ -disconnected.

Theorem 4.2. Let (X, τ) be an *L*-fuzzy topological space and $A \in L^X$. Then following conditions are equivalent:

(i) (X, τ) is γ -connected.

(ii) A_1, A_2 are γ -open L-fuzzy sets in $L^X, A_1 \lor A_2 = 1$, $A_1 \land A_2 = 0 \implies 0 \in \{A_1, A_2\}$.

(iii) A_1, A_2 are γ -closed L-fuzzy sets in $L^X, A_1 \lor A_2 = 1$, $A_1 \land A_2 = 0 \implies 0 \in \{A_1, A_2\}$.

Proof. (i) \Rightarrow (ii) : If (ii) is not true then there exist two non-null γ -open L- fuzzy sets A_1, A_2 such that $A_1 \lor A_2 = 1$ and $A_1 \land A_2 = 0$. Since, the compliment of γ -open L-fuzzy set is γ -closed L- fuzzy set. So A'_1, A'_2 are γ -closed. Clearly, γ -cl $(A'_1) = A'_1$ and γ -cl $(A'_2) = A'_2$. We have

$$\gamma$$
-cl(A'_1) $\wedge A'_2 = A'_1 \wedge A'_2 = 0$, $A'_1 \vee \gamma$ -cl(A'_2) = $A'_1 \vee A'_2 = 1$ and

 $A'_1 \land \gamma - cl(A'_2) = A'_1 \land A'_2 = 0$, $\gamma - cl(A'_1) \lor A'_2 = A'_1 \lor A'_2 = 1$. Since, no one of A'_1 and A'_2 is 0. So, A'_1 and A'_2 are γ -separated L-fuzzy sets. This implies that (X, τ) is γ -disconnected. Hence, proof.

(ii) \Rightarrow (iii) : Let A_1 , A_2 are γ -open and $A_1 \lor A_2 = 1$, $A_1 \land A_2 = 0 \Rightarrow 0 \in \{A_1, A_2\}$. Then $A'_1 \lor A'_2 = 1$, $A'_1 \land A'_2 = 0 \Rightarrow 0 \in \{A'_1, A'_2\}$. where A'_1 and A'_2 are γ -closed *L*-fuzzy sets. Hence, we get (iii).

(iii) \Rightarrow (i) : If (i) is not true then there exist γ -separated two non-null γ -closed *L*-fuzzy sets A_1 and A_2 such that $A_1 \lor A_2 = 1$ which says that (iii) is not true. Hence, the proof.

Theorem 4.3. Let (X, τ) be an *L*-fuzzy topological space and $A \in L^X$. Then following conditions are equivalent:

- (i) $A ext{ is } \gamma ext{-connected.}$
- (ii) $A_1, A_2 \in L^X$ are γ -separated, $A \leq A_1 \lor A_2 \Rightarrow A \leq A_1$ or $A \leq A_2$.
- (iii) $A_1, A_2 \in L^X$ are γ -separated, $A \leq A_1 \lor A_2 \Rightarrow A \land A_1 = 0$ or $A \land A_2 = 0$.

Proof.(i) \Rightarrow (iii) : Let *A* be γ -connected. If $A_1, A_2 \in L^X$ are γ -separated, then by theorem 3.3, $A \land A_1$ and $A \land A_2$ are γ -separated. Since A is γ -connected, so A cannot be represented as join of two γ -separated non-null L-fuzzy

sets. We have $A = A \wedge (A_1 \vee A_2) = (A \wedge A_1) \vee (A \wedge A_2)$ and $A \leq A_1 \vee A_2$, which implies that $A \wedge A_1 = 0$ or $A \wedge A_2 = 0$. Hence, we get (iii).

(iii) \Rightarrow (ii) :Let A_1, A_2 are γ -separated L-fuzzy sets in (X, τ) such that $A \leq A_1 \lor A_2$. Then $A \land A_1 = 0$ or $A \land A_2 = 0$. Suppose, $A \land A_1 = 0$, then $A = A \land (A_1 \lor A_2) = (A \land A_1) \lor (A \land A_2) = 0 \lor (A \land A_2) = (A \land A_2) \Rightarrow A \leq A_2$.

Similarly, suppose, $A \wedge A_2 = 0$, then $A = A \wedge (A_1 \vee A_2) = (A \wedge A_1) \vee (A \wedge A_2) = (A \wedge A_1) \vee 0 = (A \wedge A_1) \Rightarrow A \leq A_1$.

Hence, we get (ii).

(ii) \Rightarrow (i) :Let $A_1, A_2 \in L^X$ are γ -separated and $A \leq A_1 \lor A_2$. Then $A \leq A_1$ or $A \leq A_2$. Since, A_1 and A_2 are γ -separated, so $A_1 \land \gamma$ -cl $(A_2) = 0$ and γ -cl $(A_1) \land A_2 = 0$. If $A \leq A_1$, then $A_2 = (A_2 \land A) \leq (A_2 \land A_1) \leq (A_2 \land \gamma - cl(A_1)) = 0$. If $A \leq A_2$, then $A_1 = (A_1 \land A) \leq (A_1 \land A_2) \leq (A_1 \land \gamma - cl(A_2)) = 0$. So A can not be represented as join of two γ -separated non-null L-fuzzy sets. Thus, A is γ -connected. Hence, we get (i).

Theorem 4.4. Let (X, τ) be an L-fuzzy topological space. Then following statements are equivalent:

- (a) (X, τ) is γ -disconnected.
- (b) There exist two non-null γ -closed L-fuzzy sets A and B in L^X such that $A \lor B = 1$ and $A \land B = 0$.
- (c) There exist two non-null γ -open L-fuzzy sets A and B in L^X such that $A \lor B = 1$ and $A \land B = 0$.

Proof. This is an immediate consequence of Theorem 4.2.

Theorem 4.5. Let (X, τ) be an L-fuzzy topological space and $A \in L^X$. If A is γ -connected then γ -cl(A) is γ -connected.

Proof. Suppose that γ -cl(A) is γ -disconnected then there are two non-null γ -separated L-fuzzy sets G and H in L^X such that γ -cl(A) = GVH. We have, $A = (G \land A) \lor (H \land A)$ and γ -cl(G \land A) $\leq \gamma$ -cl(G), γ -cl(H \land A) $\leq \gamma$ -cl(H). Since, G and H are γ -separated, so

$$\gamma - cl(G) \wedge H = 0 \text{ and } G \wedge \gamma - cl(H) = 0$$
$$\gamma - cl(G \wedge A) \wedge H = 0 \text{ and } G \wedge \gamma - cl(H \wedge A) = 0$$
$$\gamma - cl(G \wedge A) \wedge (H \wedge A) = 0 \text{ and } (G \wedge A) \wedge \gamma - cl(H \wedge A) = 0$$

Therefore, A is γ -disconnected. It is contradiction to assumption. Hence, γ -cl(A) is γ -connected.

References

- [1]. D. M. Ali, Some other types of fuzzy connectedness, Fuzzy Sets and Systems, 46 (1992) 55-61.
- [2]. D. M. Ali and A. K. Srivastava, On fuzzy connectedness, Fuzzy Sets and Systems, 28 (1988) 203-208.
- [3]. N. Ajmal and J. K. Kohli, Connectedness in fuzzy topological spaces, Fuzzy Sets and Systems, 31 (1989) 369-388.
- [4]. N. Ajmal and J. K. Kohli, Connectedness and local connectedness in fuzzy topological spaces and heyting algebra valued sets, Fuzzy Sets and Systems, 44 (1991) 93-108.
- [5]. S. Z. Bai, P-connectedness in L-topological spaces, Soochow Journal of Mathematics, 29 (1) (2003) 35-42.
- [6]. C. L. Chang, Fuzzy topological spaces, J. Math. Anal. Appl., 24 (1986) 182-190.
- [7]. A. A. El-Atik, H. M. Abu Donia, A. S. Salama, On b-connectedness and b- disconnectedness and their applications, Journal of Egyptian Mathematical Society, 21 (2013) 63-67.
- B. Ghosh, Semi-continuous and semi-closed mappings and semi- connectedness infuzzy seting, Fuzzy Sets and Systems, 35 (1990), 345-355.
- [9]. I. M. Hanafy, Fuzzy γ-open sets and fuzzy γ-continuity, J. Fuzzy Math., 7 (1999) 419-430.
- [10]. B. Hutton, Normality in fuzzy topological spaces, J. Math. Anal. Appi., 50 (1975) 74-79.
- [11]. S-P Li, Z. Fang and J. Zhao, P2-connectedness in L-topological spaces, Iranian Journal of Fuzzy Systems, 2 (1) (2005) 29-36.
- [12]. Y. M. Liu and M. K. Luo, Fuzzy topology, vol. 9 of advances in fuzzy system-applications and theory, World Scientific, River Edge, NJ, USA, 1997.
- [13]. P. M. Pu, Y. M. Liu, Fuzzy topology. I. neighborhood structure of a fuzzy point and Moore-Smith convergence, J. Math. Anal. Appl., 76 (1980) 571- 599.
- [14]. S. E. Rodabaugh, Connectivity and the L-fuzzy unit interval, Rocky Mountain Journal of Mathematics, 12 (1) (1982) 113-121.

- [15]. S. G. Dapke, γ-Separated L-fuzzy Sets in L-Fuzzy Topological Spaces, Journal of Applied Science and Computations, 10 (1) (2023) 75-81.
- [16]. N. Turanli and D. Coker, Fuzzy connectedness in intuitionistic fuzzy topological spaces, Fuzzy Sets and Systems, 116 (2000) 369-375.
- [17]. G. J. Wang, Theory of L-fuzzy topological space, Shaanxi normal University Publishers, Xian, (1988).
- [18]. Zheng Chong-You, L-Fuzzy unit interval and fuzzy connectedness, Fuzzy Sets and Systems, 27 (1988) 73-76.

Dapke Sadashiv Ganpatrao. "γ-Separated sets and γ-Connectedness in L-Fuzzy Topological Spaces." *IOSR Journal of Mathematics (IOSR-JM)*, 19(2), (2023): pp. 20-26.

·