The Metric Propertices Of The Nilpotent Cayley Graph Of The Ring ($\left.Z_{n}, \oplus, \odot\right)$

Tippaluri Nagalakshumma ${ }^{1}$, Levaku Madhavi ${ }^{2 *}$, Jangiti Devendra ${ }^{3}$
1. Research Scholar, Department of Applied Mathematics, Yogi Vemana University, Kadapa,-516005, A.P.
2*. Associate Professor, Department of Applied Mathematics, Yogi Vemana University, Kadapa,-516005, A.P.
3. Research Scholar, Department of Applied Mathematics, Yogi Vemana University, Kadapa,-516005, A.P.

Abstract

The authors have studied a new class of arithmetic Cayley graphs, namely, the nilpotent Cayley graphs $G\left(Z_{n}, N\right)$ associated with the set N of nilpotent elements in the residue class ring $\left(Z_{n}, \oplus, \odot\right), n \geq 1$, an integer. The metric properties, such as the eccentricity of a vertex, the radius, the diameter, the girth and the circumference of the nilpotent Cayley graph $G\left(Z_{n}, N\right)$ associated with the residue class ring $\left(Z_{n}, \oplus, \odot\right)$ are determined in this paper.

Key Words: Nilpotent Cayley Graph, Eccentricity, Radius, Diameter, Girth, Circumference

I. INTRODUCTION

The concept of a Cayley graph was introduced to study, whether given a group ($X,$.), there is a graph Γ, whose automorphism group is isomorphic to the group ($X,$.) [11]. Extensive studies have been carried out on the Cayley graphs by many graph theorists [3, 4, 6, 12]. Given a group ($X,$.) and a symmetric subset S of X, (a subset S of a group $(X,$.$) is called a symmetric subset, if s^{-1} \in S$ for every $s \in S$) is the graph $G(X, S)$, whose vertex set V is X and the edge set $E=\left\{(x, y) /\right.$ either $x y^{-1} \in S$, or $\left.y x^{-1} \in S\right\}$. If S does not contain e, the identity element of the group $(X,$.$) , then G(X, S)$ is a simple undirected graph. Further $G(X, S)$ is $|S|$-regular and contains $\frac{|X||S|}{2}$ edges [12]. Madhavi [12] introduced Cayley graphs associated with the arithmetical functions, namely, the Euler totient function $\varphi(n)$, the set of quadratic residues modulo a prime p and the divisor function $d(n), n \geq 1$, an integer and obtained various properties of these graphs.

In recent times Chen [7], Nikmehr and Khojasteh [20] and Dhiren Kumar Basnet et al., [8] have studied the nilpotent graphs associated with a finite commutative ring R and the $n \times n$ matrix ring $M_{n}(R)$. In [18, 19], the authors have introduced a new class of arithmetic Cayley graphs, namely, the nilpotent Cayley graphs associated with the set of nilpotent elements in the residue class ring ($\left.Z_{n}, \oplus, \odot\right), n \geq 1$, an integer. An element $\bar{a} \neq \overline{0}$, in the ring $\left(Z_{n}, \oplus, \odot\right)$ is called a nilpotent element, if there exists a positive integer l such that $(\bar{a})^{l}=\overline{0}$. It is an easy verification that the set N of all nilpotent elements in the ring $\left(Z_{n}, \oplus, \odot\right)$ is a symmetric subset of the group $\left(Z_{n}, \oplus\right)$. The Cayley graph $G\left(\mathrm{Z}_{n}, N\right)$ associated with the group $\left(Z_{n}, \oplus\right)$ and its symmetric subset N, is the graph whose vertex set V is Z_{n} and the edge set $E=\left\{(x, y) / x, y \in Z_{n}\right.$ and either $x-y \in N$, or, $y-x \in N\}$ and it is called the nilpotent Cayley graph of the ring $\left(\boldsymbol{Z}_{\boldsymbol{n}}, \oplus, \odot\right)$.

In [19], it is proved that, if $n=\prod_{i=1}^{r} p_{i}^{\alpha_{i}}$, where $p_{1}<p_{2}<\cdots<p_{r}$, are primes, $\alpha_{i} \geq 1$ and $1 \leq i \leq r$, are integers and $m=p_{1} p_{2} p_{3} \ldots p_{r}$, then
i. the graph $G\left(Z_{n}, N\right)$ is $\left(\prod_{i=1}^{r} p_{i}^{\alpha_{i}-1}-1\right)$ - regular and contains $\frac{n}{2}\left(\prod_{i=1}^{r} p_{i}{ }^{\alpha_{i}-1}-1\right)$ edges,
ii. the graph $G\left(Z_{m}, N\right)$ contains only vertices and
iii. the graph $G\left(\mathrm{Z}_{n}, N\right)$ is a union of m disjoint connected components of $G\left(\mathrm{Z}_{n}, N\right)$, each of which is a complete subgraph of $G\left(\mathrm{Z}_{n}, N\right)$.
The graphs of $G\left(Z_{6}, N\right), G\left(Z_{\underline{8}}, N\right), G\left(Z_{12}, N\right)$ and $G\left(Z_{18}, N\right)$ are given below:

Figure 1.1

The terminology and notations that are used in this paper can be found in [5] for graph theory, [10] for algebra and [1] for number theory.

II. THE ECCENTRICITY OF A VERTEX, THE RADIUS AND THE DIAMETER OF THE
 NILPOTENT GRAPH $\boldsymbol{G}\left(\boldsymbol{Z}_{\boldsymbol{n}}, \boldsymbol{N}\right)$

For any two vertices u, v in a graph G, the distance $d(u, v)$ is defined as the length of the shortest path, if any, joining u and v. If there is no path joining the vertices u and v, then it is defined that $d(u, v)=$ ∞. The eccentricity $e(v)$ of any vertex in G is defined as $\quad e(v)=\max \{d(v, u): u \in V\}$. The radius $\boldsymbol{r}(\boldsymbol{G})$ and the diameter $\boldsymbol{d}(\boldsymbol{G})$ of G are respectively defined by $r(G)=\min \{e(v): v \in V\}$ and $d(G)=\max \{e(v): v \in$ V\}.
Example 2.1: Consider the graph G, whose vertex set V and the edge set E are given by $V=\{a, b, c, d, e, f\}$ and $E=\{(a, b),(a, d),(a, e),(b, c),(c, d),(c, f)\}$. The diagram of the the graph G is given below.

Figure 2.1
The following table gives the values of the distances $d(u, v)$, for all $u, v \in V$, the eccentricities $e(v)$, for all $v \in$ V, the diameter $d(G)$ and the radius $r(G)$ of the graph G.

$d(u, v)$	a	b	c	d	e	f
a	0	1	2	1	1	3
b	1	0	1	2	2	2
c	2	1	0	1	3	1
d	1	2	1	0	2	2
e	1	2	3	2	0	3
f	3	2	1	2	4	0
$\boldsymbol{e}(\boldsymbol{v})$	$\mathbf{3}$	$\mathbf{2}$	$\mathbf{3}$	$\mathbf{2}$	$\mathbf{4}$	$\mathbf{3}$
$\boldsymbol{d}(\boldsymbol{G})$	$\max \{\mathbf{3}, \mathbf{2}, \mathbf{2}, \mathbf{2}, \mathbf{4}, \mathbf{3}, \mathbf{4}\}=\mathbf{4}$					
$\boldsymbol{r}(\boldsymbol{G})$	$\mathbf{2}, \mathbf{2}, \mathbf{2}, \mathbf{4}, \mathbf{3}, \mathbf{4}\}=\mathbf{2}$					

Table 2.1
Let us now find the eccentricity of a vertex in the nilpotent Cayley graph $G\left(Z_{n}, N\right)$.
Theorem 2.2: If $n=\prod_{i=1}^{r} p_{i}{ }^{\alpha_{i}}$, where $p_{1}<p_{2}<\cdots<p_{r}$, are primes and $\alpha_{i} \geq 1,1 \leq i \leq r$ are integers such that $\alpha_{i}>1$, for at least one i and if $m=p_{1} p_{2} \ldots p_{r}$, then for any vertex v in $G\left(Z_{n}, N\right)$,
i.the eccentricity $e(v)$ is ∞,
ii.the radius $r\left(G\left(Z_{n}, N\right)\right)=\infty$ and the diameter $d\left(G\left(Z_{n}, N\right)\right)=\infty$.

Proof:

i.Let v be any vertex of $G\left(Z_{n}, N\right)$. Then by the Theorem 3.5 of [19], the nilpotent Cayley graph $G\left(Z_{n}, N\right)$ is decomposed into m disjoint complete components $\left\langle C_{0}\right\rangle,\left\langle C_{1}\right\rangle,\left\langle C_{2}\right\rangle, \ldots,\left\langle C_{m-1}\right\rangle$, where
$C_{k}=\{\bar{k}, \overline{m+k}, \overline{2 m+k}, \overline{3 m+k}, \ldots, \overline{l m+k}, \overline{\jmath m+k}, \ldots, \overline{(n-m)+k}\}$.
That is, $Z_{n}=\bigcup_{k=1}^{m-1} C_{k}$. So $v \in C_{i}$ for some $i, 0 \leq i \leq m-1$. Let u be any vertex of the graph $G\left(Z_{n}, N\right)$, such that $u \neq v$.

If $u \in C_{i}$, then the vertices v and u belong to the same component C_{i} of the graph $G\left(Z_{n}, N\right)$. Since each C_{i} is a complete subgraph of the graph $G\left(Z_{n}, N\right)$, the vertices $\quad v$ and u are adjacent, so that, $d(v, u)=1$.

If $u \notin C_{i}$, then $u \in C_{j}$, for some $j \neq i, 0 \leq j \leq m-1$. Since $\left\langle C_{i}\right\rangle$ and $\left\langle C_{j}\right\rangle$ are edge disjoint components of the graph $G\left(Z_{n}, N\right)$, there is no edge between the vertices v and u, so that $d(v, u)=\infty$. So, $e(v)=\max \{1, \infty\}=\infty$.
ii.By part (i), the eccentricity $e(v)$ of a vertex v of the graph $G\left(Z_{n}, N\right)$ is ∞, for every vertex $v \in Z_{n}$. So, the radius $r(G)=\min \{e(v): v \in V\}=\infty$ and the diameter $d(G)=\max \{e(v): v \in V\}=\infty$.

III. ENUMERATION OF THE GIRTH AND THE CIRCUMFERENCE OF THE NILPOTENT CAYLEY GRAPH $\boldsymbol{G}\left(\boldsymbol{Z}_{\boldsymbol{n}}, \boldsymbol{N}\right)$

Let G be a graph G with vertex set V and edge set E. The length of the smallest cycle in G is called the girth of G and it is denoted by $g(G)$. The length of the largest cycle in G is called the circumference of G and it is denoted by $c(G)$. If the graph G has no cycles then the terms girth and circumference of G are undefined.
Lemma 3.1: If $n=4$, the girth and the circumference of the nilpotent Cayley graph $G\left(Z_{n}, N\right)$ are undefined.
Proof: If $n=4$, then the set of N of nilpotent elements of the ring $\left(Z_{4}, \oplus, \odot\right)$ is the singleton set $\{\overline{2}\}$, and the graph $G\left(Z_{4}, N\right)$ is the following bi-partite graph, which has no cycles. The girth and the circumference are undefined.

Figure 3.1: $G\left(Z_{4}, N\right)$
Lemma 3.2: If $n=p_{1} p_{2} \ldots p_{r}$, where $p_{1}<p_{2}<\cdots<p_{r}$, are primes and if $n>4$, then the graph $G\left(Z_{n}, N\right)$ has no cycles, so that the girth and the circumference are undefined.
Proof : If $n=p_{1} p_{2} \ldots p_{r}$, where $p_{1}<p_{2}<\cdots<p_{r}$, are primes, then the set N of nilpotent elements of the ring $\left(Z_{n}, \oplus, \odot\right)$ is empty, so that the edge set of $G\left(Z_{n}, N\right)$ is empty and the graph contains only vertices and but no edges. So the graph $G\left(Z_{n}, N\right)$ has no cycles, so that the girth and the circumference of the graph $G\left(Z_{n}, N\right)$ are undefined.
Lemma 3.3: If $n=2^{2} p_{2} p_{3} \ldots p_{r}$, where $2<p_{2}<p_{3}<\cdots<p_{r}$ are primes and if $n>4$, then the graph $G\left(Z_{n}, N\right)$ has no cycles and the girth and the circumference are undefined.
Proof : Let $n=2^{2} p_{2} p_{3} \ldots p_{r}$, where $2<p_{2}<p_{3}<\cdots<p_{r}$, are primes. By the Theorem 2.2.12 of [18], the graph $G\left(Z_{n}, N\right)$ is the following bipartite graph, with the bipartition (U, V), where $U=\{\overline{0}, \overline{1}, \ldots, \overline{m-1}\}$ and $V=\{\bar{m}, \overline{m+1}, \ldots, \overline{n-1}\}$.

Figure 3.2: $G\left(Z_{n}, N\right)$
Clearly $G\left(Z_{n}, N\right)$ has no cycles, and hence the girth and the circumference of $G\left(Z_{n}, N\right)$ are undefined.
In the following theorem, the girth and the circumference of the graph $G\left(Z_{n}, N\right)$, when $\boldsymbol{n} \neq$ $2^{2} p_{2} p_{3} \ldots p_{r}$, where $p_{2<} p_{3<\ldots<p_{r}}$ are primes are found.

Theorem 3.4: If $n=\prod_{i=1}^{r} p_{i}^{\alpha_{i}}$, where $p_{1}<p_{2}<\cdots<p_{r}$, are primes, $\alpha_{i} \geq 1,1 \leq i \leq r$ are integers, such that $\alpha_{i}>1$ for at least one i and $m=p_{1} p_{2} p_{3} \ldots p_{r}$, then the girth $g\left(G\left(Z_{n}, N\right)\right)$ is 3 and the circumference $c\left(G\left(Z_{n}, N\right)\right)$ is $\frac{n}{m}$.
Proof : Let $n=\prod_{i=1}^{r} p_{i}^{\alpha_{i}}$, where $p_{1}<p_{2}<\cdots<p_{r}$, are primes, $\alpha_{i} \geq 1,1 \leq i \leq r$ are integers, such that $\alpha_{i}>$ 1 for at least one i, and let $m=p_{1} p_{2} \ldots p_{r}$. Consider the vertices $\overline{0}, \bar{m}, \overline{2 m}$ in $G\left(Z_{n}, N\right)$. Since $\bar{m}-\overline{0}=$ $\bar{m} \in N, \overline{2 m}-\bar{m}=\bar{m} \in N$, and $\overline{2 m}-\overline{0}=\overline{2 m} \in N$,
it follows that $(\overline{0}, \bar{m}, \overline{2 m}, \overline{0})$ is a cycle of length 3 . Clearly, this is a cycle of smallest length, so that $g\left(G\left(Z_{n}, N\right)\right)=3$.

By the Theorem 3.5 [19], the nilpotent Cayley graph $G\left(Z_{n}, N\right)$ is decomposed into m disjoint components $\left\langle C_{0}\right\rangle,\left\langle C_{1}\right\rangle, \ldots,\left\langle C_{k}\right\rangle, \ldots,\left\langle C_{m-1}\right\rangle$, where,

$$
C_{k}=\left\{\bar{k}, \overline{m+k}, \overline{2 m+k}, \overline{3 m+k}, \ldots, \overline{m+k}, \ldots, \overline{\jmath m+k}, \ldots, \overline{\left(\frac{n}{m}-1\right) m+k}\right\} .
$$

For $0 \leq k \leq m-1$, clearly each

$$
\mathcal{C}_{k}=\left(\bar{k}, \overline{m+k}, \overline{2 m+k}, \overline{3 m+k}, \ldots, \overline{l m+k}, \ldots, \overline{\jmath m+k}, \ldots, \overline{\left(\frac{n}{m}-1\right) m+k}, \bar{k}\right),
$$

is a cycle of length $\frac{n}{m}$ and it is a cycle of maximum length in $G\left(Z_{n}, N\right)$. Hence the circumference $c\left(G\left(Z_{n}, N\right)\right)$ of $G\left(Z_{n}, N\right)$ is $\frac{n}{m}$.

The following corollary is immediate from the Theorem 3.4.
Corollary 3.5 : If $n=p^{r}$, where p is a prime and $r>2$, an integer, then $c\left(G\left(Z_{n}, N\right)\right)=p^{r-1}$.
Example 3.6 : Consider the graph $G\left(Z_{18}, N\right)$ together with its components given below.

The graph $\boldsymbol{G}\left(\boldsymbol{Z}_{18}, N\right)$

The components in the graph $G\left(Z_{18}, N\right)$
Figure 3.3
Each of the six components of the graph is a triangle, which is a cycle of minimum as well as maximum length 3 in $G\left(Z_{18}, N\right)$. So $g\left(G\left(Z_{18}, N\right)\right)=c\left(G\left(Z_{18}, N\right)\right)=3$.

Example 3.7: Consider the graph $G\left(Z_{36}, N\right)$ together with its components given below.

The graph $G\left(Z_{36}, N\right)$

The components of the graph $G\left(Z_{36}, N\right)$

Figure 3.4

The graph $G\left(Z_{36}, N\right)$ has triangles. For example $(\overline{0}, \overline{6}, \overline{12}, \overline{0})$ is a triangle and it has length 3 , so that $g\left(G\left(Z_{36}, N\right)\right)=3$.
Further $G\left(Z_{36}, N\right)$ has six components $\langle\{\overline{0}, \overline{6}, \overline{12}, \overline{18}, \overline{24}, \overline{30}\}\rangle,\langle\{\overline{1}, \overline{7}, \overline{13}, \overline{19}, \overline{25}, \overline{31}\}\rangle$, $\langle\{\overline{2}, \overline{8}, \overline{14}, \overline{20}, \overline{26}, \overline{32}\}\rangle,\langle\{\overline{3}, \overline{9}, \overline{15}, \overline{21}, \overline{27}, \overline{33}\}\rangle,\langle\{\overline{4}, \overline{10}, \overline{16}, \overline{22}, \overline{28}, \overline{34}\}\rangle,\langle\{\overline{5}, \overline{11}, \overline{17}, \overline{23}, \overline{29}, \overline{35}\}\rangle$ and each of the six components of the graph $G\left(Z_{36}, N\right)$ gives a cycle of the length 6 , which is of maximum length. So $c\left(G\left(Z_{36}, N\right)\right)=6$.
Example 3.8: Consider the graph $G\left(Z_{27}, N\right)$. Here $27=3^{3}$. This graph has the triangle $(\overline{0}, \overline{3}, \overline{6}, \overline{0})$, so that $g\left(G\left(Z_{27}, N\right)\right)=3$.

Further $G\left(Z_{27}, N\right)$ has the three components $\langle\{\overline{0}, \overline{3}, \overline{6}, \overline{9}, \overline{12}, \overline{15}, \overline{18}, \overline{21}, \overline{24}\}$,$\rangle \quad ,$ $\langle\{\overline{1}, \overline{4}, \overline{7}, \overline{10}, \overline{13}, \overline{16}, \overline{19}, \overline{22}, \overline{25}\}$,$\rangle and \langle\{\overline{2}, \overline{5}, \overline{8}, \overline{11}, \overline{14}, \overline{17}, \overline{20}, \overline{23}, \overline{26}\}$,$\rangle and each of the three components gives a$ cycle of maximum length 9 . So $c\left(G\left(Z_{27}, N\right)\right)=9$.

The graph $G\left(Z_{27}, N\right)$

The components of the graph $G\left(Z_{27}, N\right)$

Figure 3.5

ACKNOWLEDGMENT

The authors express their thanks to Prof. L. Nagamuni Reddy for his suggestions during the preparation of this paper.

References:

[1]. Apostol, T. M., Introduction to Analytic Number Theory, Springer International Student Edition (1989).
[2]. Beck, I., Colouring of commutative rings, J. Algebra 116, 208-206 (1998).
[3]. Berrizbeitia, P., and Giudici, R.E., Counting pure k-cycles in sequences of Cayley graphs, Discrete Math., 149, 11-18(1996).
[4]. Berrizbeitia, P., and Giudici, R.E., On cycles in the sequence of unitary Cayley graphs. Reporte Techico No.01-95, Universidad Simon Bolivar, Dpt.de Mathematics Caracas, Venezula (1997).
[5]. Bondy, J.A., and Murty, U.S.R, Graph Theory with Applications, Macmillan, London (1976).
[6]. Chalapathi,T., Madhavi, L., Venkataramana, S., Enumeration of Triangles in Divisor Cayley graphs, Momona Ethiopian Journal of Science, V5(1), 163-173 (2013).
[7]. Chen, P.W., A kind of graph structure of rings, Algebra Colloq. 10:2, 229-238 (2003).
[8]. Dhiren Kumar Basnet, Ajay Sharma and Rahul Dutta, Nilpotent Graph, arXiv: 1804. 08937 v1 [math. RA], 24 April 2018.
[9]. Devendra Jangiti, Madhavi Levaku, Nagalakshumma Tippaluri., "The Radius, Diameter, girth and Circumference of the ZeroDivisor Cayley Graph of the Ring $\left(\mathrm{Z}_{\mathrm{n}}, \oplus, \odot\right)$ " IOSR Journal of Mathematics (IOSR-JM) e-ISSN: 2278-5728, p-ISSN: 2319-765X. Volume 15, Issue 4 Ser. I (Jul - Aug 2019), PP 58-62. www.iosrjournals.org.
[10]. Gallian, J.A., Contemporary Abstract Algebra, Narosa publications.
[11]. Konig, D., Theorie der endlichen and unendlichen Graphen, Leipzig (1936), Reprinted Chelsia, New York, (1950).
[12]. Madhavi, L.: Studies on domination parameters and Enumeration of cycles in some arithmetic graphs, Ph.D. Thesis, Sri Venkateswara University, Tirupati, India (2003).
[13]. Madhavi, L., and Chalapathi,T., Enumeration of Disjoint Hamilton Cycles in a Divisor Cayley Graph, Malaya Journal of Mathematik, Vol.6, No.3, 492-498, 2018..
[14]. Madhavi, L., Chalapathi, T.: Enumeration of Triangles in Cayley graphs, Pure and Applied Mathematics Journal, Science Publishing Group 4(3): 128-132 (2015).
[15]. Madhavi, L., and Maheswari ,B., Enumeration of Triangles and Hamilton Cycles in Quadratic Residue Cayley Graphs, Chamchuri Journal of Mathematics, Vol(1), (2009): No. 1 pp 95-103.
[16]. Maheswari, B., Madhavi, L., Counting of Triangles in Mangoldt Graph, Journal of Pure \& Applied Physics. Vol.20, No.3, JulySep., 2008, pp.165-169.
[17]. Maheswari, B., Madhavi, L., Enumeration of Hamilton Cycles and Triangles in Euler totient Cayley Graphs, Graph Theory Notes of Newyork LIX,28-31(2010). The Mathematical Association of America.
[18]. Nagalakshumma, T., Studies on the Nilpotent Cayley Graph of the Residue Class Ring $\left(\mathrm{Z}_{\mathrm{n}}, \oplus, \odot\right)$ and its Neighborhood Graph, Ph.D. Thesis, Yogi Vemana University (2019).
[19]. Nagalakshumma, T., Devendra, J., Madhavi,L.: The Nilpotent Cayley Graph of the Residue Class Ring ($\mathrm{Z}_{\mathrm{n}}, \oplus$, \odot), Journal of Computer and Mathematical Sciences, vol.10(6),1244-1252 June 2019.
[20]. Nikmehr, M. J., Khojasteh, S.: On the nilpotent graph of a ring, Turkish Journal of Mathematics, 37: 553-559, (2013).

