The Metric Propertices Of The Nilpotent Cayley Graph Of The Ring (Z_n, \oplus, \odot)

Tippaluri Nagalakshumma¹, Levaku Madhavi^{2*}, Jangiti Devendra³

Research Scholar, Department of Applied Mathematics, Yogi Vemana University, Kadapa, -516005, A.P.
Associate Professor, Department of Applied Mathematics, Yogi Vemana University, Kadapa, -516005, A.P.
Research Scholar, Department of Applied Mathematics, Yogi Vemana University, Kadapa, -516005, A.P.

ABSTRACT

The authors have studied a new class of arithmetic Cayley graphs, namely, the nilpotent Cayley graphs $G(Z_n, N)$ associated with the set N of nilpotent elements in the residue class ring $(Z_n, \oplus, \odot), n \ge 1$, an integer. The metric properties, such as the eccentricity of a vertex, the radius, the diameter, the girth and the circumference of the nilpotent Cayley graph $G(Z_n, N)$ associated with the residue class ring (Z_n, \oplus, \odot) are determined in this paper.

Key Words: Nilpotent Cayley Graph, Eccentricity, Radius, Diameter, Girth, Circumference

Date of Submission: 25-05-2023

Date of Acceptance: 05-06-2023

I. INTRODUCTION

The concept of a Cayley graph was introduced to study, whether given a group (X, .), there is a graph Γ , whose automorphism group is isomorphic to the group (X, .) [11]. Extensive studies have been carried out on the Cayley graphs by many graph theorists [3, 4, 6, 12]. Given a group (X, .) and a symmetric subset S of X, (a subset S of a group (X, .) is called a symmetric subset, if $s^{-1} \in S$ for every $s \in S$) is the graph G(X, S), whose vertex set V is X and the edge set $E = \{(x, y)/\text{either } xy^{-1} \in S, \text{ or } yx^{-1} \in S\}$. If S does not contain e, the identity element of the group (X, .), then G(X, S) is a simple undirected graph. Further G(X, S) is |S|-regular and contains $\frac{|X||S|}{2}$ edges [12]. Madhavi [12] introduced Cayley graphs associated with the arithmetical functions, namely, the Euler totient function $\varphi(n)$, the set of quadratic residues modulo a prime p and the divisor function $d(n), n \ge 1$, an integer and obtained various properties of these graphs.

In recent times Chen [7], Nikmehr and Khojasteh [20] and Dhiren Kumar Basnet *et al.*, [8] have studied the nilpotent graphs associated with a finite commutative ring R and the $n \times n$ matrix ring $M_n(R)$. In [18, 19], the authors have introduced a new class of arithmetic Cayley graphs, namely, the nilpotent Cayley graphs associated with the set of nilpotent elements in the residue class ring $(Z_n, \oplus, \bigcirc), n \ge 1$, an integer. An element $\bar{a} \neq \bar{0}$, in the ring (Z_n, \oplus, \bigcirc) is called a nilpotent element, if there exists a positive integer l such that $(\bar{a})^l = \bar{0}$. It is an easy verification that the set N of all nilpotent elements in the ring (Z_n, \oplus, \bigcirc) is a symmetric subset of the group (Z_n, \oplus) . The Cayley graph $G(Z_n, N)$ associated with the group (Z_n, \oplus) and its symmetric subset N, is the graph whose vertex set V is Z_n and the edge set $E = \{(x, y)/x, y \in Z_n \text{ and either } x - y \in N, \text{ or}, y - x \in N\}$ and it is called the **nilpotent Cayley graph of the ring** (Z_n, \oplus, \odot) .

In [19], it is proved that, if $n = \prod_{i=1}^{r} p_i^{\alpha_i}$, where $p_1 < p_2 < \cdots < p_r$, are primes, $\alpha_i \ge 1$ and $1 \le i \le r$, are integers and $m = p_1 p_2 p_3 \dots p_r$, then

- i. the graph $G(Z_n, N)$ is $(\prod_{i=1}^r p_i^{\alpha_i 1} 1)$ regular and contains $\frac{n}{2}(\prod_{i=1}^r p_i^{\alpha_i 1} 1)$ edges,
- ii. the graph $G(Z_m, N)$ contains only vertices and
- iii. the graph $G(\mathbb{Z}_n, N)$ is a union of *m* disjoint connected components of $G(\mathbb{Z}_n, N)$, each of which is a complete subgraph of $G(\mathbb{Z}_n, N)$.

The graphs of $G(Z_6, N)$, $G(Z_8, N)$, $G(Z_{12}, N)$ and $G(Z_{18}, N)$ are given below:

DOI: 10.9790/5728-1903021115

The terminology and notations that are used in this paper can be found in [5] for graph theory, [10] for algebra and [1] for number theory.

II. THE ECCENTRICITY OF A VERTEX, THE RADIUS AND THE DIAMETER OF THE NILPOTENT GRAPH $G(Z_n, N)$

For any two vertices u, v in a graph G, the **distance** d(u, v) is defined as the length of the shortest path, if any, joining u and v. If there is no path joining the vertices u and v, then it is defined that $d(u, v) = \infty$. The **eccentricity** e(v) of any vertex in G is defined as $e(v) = \max\{d(v, u): u \in V\}$. The **radius** r(G)and the **diameter** d(G) of G are respectively defined by $r(G) = \min\{e(v): v \in V\}$ and $d(G) = \max\{e(v): v \in V\}$.

Example 2.1: Consider the graph G, whose vertex set V and the edge set E are given by $V = \{a, b, c, d, e, f\}$ and $E = \{(a, b), (a, d), (a, e), (b, c), (c, d), (c, f)\}$. The diagram of the the graph G is given below.

The following table gives the values of the distances d(u, v), for all $u, v \in V$, the eccentricities e(v), for all $v \in V$, the diameter d(G) and the radius r(G) of the graph G.

d(u,v)	а	b	С	d	е	f
а	0	1	2	1	1	3
b	1	0	1	2	2	2
С	2	1	0	1	3	1
d	1	2	1	0	2	2
е	1	2	3	2	0	3
f	3	2	1	2	4	0
<i>e</i> (<i>v</i>)	3	2	3	2	4	3
d (G)	$max\{3, 2, 2, 2, 4, 3, 4\} = 4$					
r (G)	$min\{3, 2, 2, 2, 4, 3, 4\} = 2$					
Table 2.1						

Let us now find the eccentricity of a vertex in the nilpotent Cayley graph $G(Z_n, N)$.

Theorem 2.2: If $n = \prod_{i=1}^{r} p_i^{\alpha_i}$, where $p_1 < p_2 < \cdots < p_r$, are primes and $\alpha_i \ge 1$, $1 \le i \le r$ are integers such that $\alpha_i > 1$, for at least one *i* and if $m = p_1 p_2 \dots p_r$, then for any vertex *v* in $G(Z_n, N)$,

i.the eccentricity e(v) is ∞ ,

ii.the radius $r(G(Z_n, N)) = \infty$ and the diameter $d(G(Z_n, N)) = \infty$.

Proof :

i.Let v be any vertex of $G(Z_n, N)$. Then by the Theorem 3.5 of [19], the nilpotent Cayley

graph $G(Z_n, N)$ is decomposed into m disjoint complete components $\langle C_0 \rangle, \langle C_1 \rangle, \langle C_2 \rangle, \dots, \langle C_{m-1} \rangle$, where $C_k = \{\overline{k}, \overline{m+k}, \overline{2m+k}, \overline{3m+k}, \dots, \overline{m+k}, \overline{jm+k}, \dots, \overline{(n-m)+k}\}.$

That is, $Z_n = \bigcup_{k=1}^{m-1} C_k$. So $v \in C_i$ for some $i, 0 \le i \le m-1$. Let u be any vertex of the graph $G(Z_n, N)$, such that $u \ne v$.

If $u \in C_i$, then the vertices v and u belong to the same component C_i of the graph $G(Z_n, N)$. Since each C_i is a complete subgraph of the graph $G(Z_n, N)$, the vertices v and u are adjacent, so that, d(v, u) = 1.

If $u \notin C_i$, then $u \in C_j$, for some $j \neq i$, $0 \leq j \leq m-1$. Since $\langle C_i \rangle$ and $\langle C_j \rangle$ are edge disjoint components of the graph $G(Z_n, N)$, there is no edge between the vertices v and u, so that $d(v, u) = \infty$. So,

 $e(v) = \max\{1, \infty\} = \infty.$

ii.By part (i), the eccentricity e(v) of a vertex v of the graph $G(Z_n, N)$ is ∞ , for every vertex $v \in Z_n$. So, the radius $r(G) = \min\{e(v): v \in V\} = \infty$ and the diameter $d(G) = \max\{e(v): v \in V\} = \infty$.

III. ENUMERATION OF THE GIRTH AND THE CIRCUMFERENCE OF THE NILPOTENT CAYLEY GRAPH $G(Z_n, N)$

Let G be a graph G with vertex set V and edge set E. The length of the smallest cycle in G is called the **girth** of G and it is denoted by g(G). The length of the largest cycle in G is called the **circumference** of G and it is denoted by c(G). If the graph G has **no cycles** then the terms girth and circumference of G are **undefined**. Lemma 3.1: If n = 4, the girth and the circumference of the nilpotent Cayley graph $G(Z_n, N)$ are undefined.

Proof: If n = 4, then the set of N of nilpotent elements of the ring (Z_4, \bigoplus, \odot) is the singleton set $\{\overline{2}\}$, and the graph $G(Z_4, N)$ is the following bi-partite graph, which has no cycles. The girth and the circumference are undefined.

Lemma 3.2: If $n = p_1 p_2 \dots p_r$, where $p_1 < p_2 < \dots < p_r$, are primes and if n > 4, then the graph $G(Z_n, N)$ has no cycles, so that the girth and the circumference are undefined.

Proof: If $n = p_1 p_2 \dots p_r$, where $p_1 < p_2 < \dots < p_r$, are primes, then the set *N* of nilpotent elements of the ring $(Z_n, \bigoplus, \bigcirc)$ is empty, so that the edge set of $G(Z_n, N)$ is empty and the graph contains only vertices and but no edges. So the graph $G(Z_n, N)$ has no cycles, so that the girth and the circumference of the graph $G(Z_n, N)$ are undefined.

Lemma 3.3 : If $n = 2^2 p_2 p_3 \dots p_r$, where $2 < p_2 < p_3 < \dots < p_r$ are primes and if n > 4, then the graph $G(Z_n, N)$ has no cycles and the girth and the circumference are undefined.

Proof : Let $n = 2^2 p_2 p_3 \dots p_r$, where $2 < p_2 < p_3 < \dots < p_r$, are primes. By the Theorem 2.2.12 of [18], the graph $G(Z_n, N)$ is the following bipartite graph, with the bipartition (U, V), where $U = \{\overline{0}, \overline{1}, \dots, \overline{m-1}\}$ and $V = \{\overline{m}, \overline{m+1}, \dots, \overline{n-1}\}$.

Clearly $G(Z_n, N)$ has no cycles, and hence the girth and the circumference of $G(Z_n, N)$ are undefined.

In the following theorem, the girth and the circumference of the graph $G(Z_n, N)$, when $n \neq 2^2 p_2 p_3 \dots p_r$, where $p_{2\leq} p_{3\leq} \dots < p_r$ are primes are found.

Theorem 3.4 : If $n = \prod_{i=1}^{r} p_i^{\alpha_i}$, where $p_1 < p_2 < \cdots < p_r$, are primes, $\alpha_i \ge 1, 1 \le i \le r$ are integers, such that $\alpha_i > 1$ for at least one *i* and $m = p_1 p_2 p_3 \dots p_r$, then the girth $g(G(Z_n, N))$ is 3 and the circumference $c(G(Z_n, N))$ is $\frac{n}{m}$.

Proof : Let $n = \prod_{i=1}^{r} p_i^{\alpha_i}$, where $p_1 < p_2 < \cdots < p_r$, are primes, $\alpha_i \ge 1, 1 \le i \le r$ are integers, such that $\alpha_i > 1$ for at least one *i*, and let $m = p_1 p_2 \dots p_r$. Consider the vertices $\overline{0}$, \overline{m} , $\overline{2m}$ in $G(Z_n, N)$. Since $\overline{m} - \overline{0} = \overline{m} \in N, \overline{2m} - \overline{m} = \overline{m} \in N$, and $\overline{2m} - \overline{0} = \overline{2m} \in N$,

it follows that $(\overline{0}, \overline{m}, \overline{2m}, \overline{0})$ is a cycle of length 3. Clearly, this is a cycle of smallest length, so that $g(G(Z_n, N)) = 3$.

By the Theorem 3.5 [19], the nilpotent Cayley graph $G(Z_n, N)$ is decomposed into *m* disjoint components $\langle C_0 \rangle, \langle C_1 \rangle, \dots, \langle C_k \rangle, \dots, \langle C_{m-1} \rangle$, where,

$$C_{k} = \left\{ \overline{k}, \overline{m+k}, \overline{2m+k}, \overline{3m+k}, \dots, \overline{im+k}, \dots, \overline{jm+k}, \dots, \left(\frac{n}{m}-1\right)m+k \right\}.$$

For $0 \le k \le m-1$, clearly each
$$C_{k} = (\overline{k}, \overline{m+k}, \overline{2m+k}, \overline{3m+k}, \dots, \overline{im+k}, \dots, \overline{jm+k}, \dots, \overline{\left(\frac{n}{m}-1\right)m+k}, \overline{k}),$$

is a cycle of length $\frac{n}{m}$ and it is a cycle of maximum length in $G(Z_n, N)$. Hence the circumference $c(G(Z_n, N))$ of $G(Z_n, N)$ is $\frac{n}{m}$.

The following corollary is immediate from the Theorem 3.4.

Corollary 3.5: If $n = p^r$, where p is a prime and r > 2, an integer, then $c(G(Z_n, N)) = p^{r-1}$.

Example 3.6 : Consider the graph $G(Z_{18}, N)$ together with its components given below.

Each of the six components of the graph is a triangle, which is a cycle of minimum as well as maximum length 3 in $G(Z_{18}, N)$. So $g(G(Z_{18}, N)) = c(G(Z_{18}, N)) = 3$.

Example 3.7: Consider the graph $G(Z_{36}, N)$ together with its components given below.

Figure 3.4

The graph $G(Z_{36}, N)$ has triangles. For example $(\overline{0}, \overline{6}, \overline{12}, \overline{0})$ is a triangle and it has length 3, so that $g(G(Z_{36}, N)) = 3$.

Further $G(Z_{36}, N)$ has six components $\langle \{\overline{0}, \overline{6}, \overline{12}, \overline{18}, \overline{24}, \overline{30}\} \rangle$, $\langle \{\overline{1}, \overline{7}, \overline{13}, \overline{19}, \overline{25}, \overline{31}\} \rangle$, $\langle \{\overline{2}, \overline{8}, \overline{14}, \overline{20}, \overline{26}, \overline{32}\} \rangle$, $\langle \{\overline{3}, \overline{9}, \overline{15}, \overline{21}, \overline{27}, \overline{33}\} \rangle$, $\langle \{\overline{4}, \overline{10}, \overline{16}, \overline{22}, \overline{28}, \overline{34}\} \rangle$, $\langle \{\overline{5}, \overline{11}, \overline{17}, \overline{23}, \overline{29}, \overline{35}\} \rangle$ and each of the six components of the graph $G(Z_{36}, N)$ gives a cycle of the length 6, which is of maximum length. So $c(G(Z_{36}, N)) = 6$.

Example 3.8: Consider the graph $G(Z_{27}, N)$. Here $27 = 3^3$. This graph has the triangle $(\overline{0}, \overline{3}, \overline{6}, \overline{0})$, so that $g(G(Z_{27}, N)) = 3$.

Further $G(Z_{27}, N)$ has the three components $\langle \{\overline{0}, \overline{3}, \overline{6}, \overline{9}, \overline{12}, \overline{15}, \overline{18}, \overline{21}, \overline{24}, \} \rangle$, $\langle \{\overline{1}, \overline{4}, \overline{7}, \overline{10}, \overline{13}, \overline{16}, \overline{19}, \overline{22}, \overline{25}, \} \rangle$ and $\langle \{\overline{2}, \overline{5}, \overline{8}, \overline{11}, \overline{14}, \overline{17}, \overline{20}, \overline{23}, \overline{26}, \} \rangle$ and each of the three components gives a cycle of maximum length 9. So $c(G(Z_{27}, N)) = 9$.

DOI: 10.9790/5728-1903021115

The graph $G(Z_{27}, N)$

The components of the graph $G(Z_{27}, N)$

Figure 3.5

ACKNOWLEDGMENT

The authors express their thanks to Prof. L. Nagamuni Reddy for his suggestions during the preparation of this paper.

References:

- [1]. Apostol, T. M., Introduction to Analytic Number Theory, Springer International Student Edition (1989).
- [2]. Beck, I., Colouring of commutative rings, J. Algebra 116, 208-206 (1998).
- [3]. Berrizbeitia, P., and Giudici, R.E., Counting pure k-cycles in sequences of Cayley graphs, Discrete Math., 149, 11-18(1996).
- [4]. Berrizbeitia, P., and Giudici, R.E., On cycles in the sequence of unitary Cayley graphs. Reporte Techico No.01-95, Universidad Simon Bolivar, Dpt.de Mathematics Caracas, Venezula (1997).
- [5]. Bondy, J.A., and Murty, U.S.R, Graph Theory with Applications, Macmillan, London (1976).
- [6]. Chalapathi,T., Madhavi, L., Venkataramana, S., Enumeration of Triangles in Divisor Cayley graphs, Momona Ethiopian Journal of Science, V5(1), 163-173 (2013).
- [7]. Chen, P.W., A kind of graph structure of rings, Algebra Colloq. 10:2, 229-238 (2003).
- [8]. Dhiren Kumar Basnet, Ajay Sharma and Rahul Dutta, Nilpotent Graph, arXiv: 1804. 08937 v1 [math. RA], 24 April 2018.
- [9]. Devendra Jangiti, Madhavi Levaku, Nagalakshumma Tippaluri., "The Radius, Diameter, girth and Circumference of the Zero-Divisor Cayley Graph of the Ring (Z_n,⊕,⊙)" IOSR Journal of Mathematics (IOSR-JM) e-ISSN: 2278-5728, p-ISSN: 2319-765X. Volume 15, Issue 4 Ser. I (Jul – Aug 2019), PP 58-62. www.iosrjournals.org.
- [10]. Gallian, J.A., Contemporary Abstract Algebra, Narosa publications.
- [11]. Konig, D., Theorie der endlichen and unendlichen Graphen, Leipzig (1936), Reprinted Chelsia, New York, (1950).
- [12]. Madhavi, L.: Studies on domination parameters and Enumeration of cycles in some arithmetic graphs, Ph.D. Thesis, Sri Venkateswara University, Tirupati, India (2003).
- [13]. Madhavi, L.,and Chalapathi, T., Enumeration of Disjoint Hamilton Cycles in a Divisor Cayley Graph, Malaya Journal of Mathematik, Vol.6, No.3, 492-498, 2018..
- [14]. Madhavi, L., Chalapathi, T.: Enumeration of Triangles in Cayley graphs, Pure and Applied Mathematics Journal, Science Publishing Group 4(3): 128-132 (2015).
- [15]. Madhavi, L., and Maheswari, B., Enumeration of Triangles and Hamilton Cycles in Quadratic Residue Cayley Graphs, Chamchuri Journal of Mathematics, Vol(1), (2009): No.1 pp 95-103.
- [16]. Maheswari, B., Madhavi, L., Counting of Triangles in Mangoldt Graph, Journal of Pure & Applied Physics. Vol.20, No.3, July-Sep., 2008, pp.165-169.
- [17]. Maheswari, B., Madhavi, L., Enumeration of Hamilton Cycles and Triangles in Euler totient Cayley Graphs, Graph Theory Notes of Newyork LIX,28-31(2010). The Mathematical Association of America.
- [18]. Nagalakshumma, T., Studies on the Nilpotent Cayley Graph of the Residue Class Ring (Z_n, \oplus, \odot) and its Neighborhood Graph, Ph.D. Thesis, Yogi Vemana University (2019).
- [19]. Nagalakshumma, T., Devendra, J., Madhavi,L.: The Nilpotent Cayley Graph of the Residue Class Ring (Z_n, \oplus, \odot) , Journal of Computer and Mathematical Sciences, vol.10(6),1244-1252 June 2019.
- [20]. Nikmehr, M. J., Khojasteh, S.: On the nilpotent graph of a ring, Turkish Journal of Mathematics, 37: 553-559, (2013).