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Abstract:  

Background: Turbulent natural convection in an enclosure plays a big part in heat transmission and the building 

environment. Sophisticated buildings around the world are outfitted with costly heaters and coolers to maintain 

comfortable temperatures for human existence, manufacturing, and sophisticated farming methods, a scenario 

that many people cannot afford. Over a time, researchers have consistently developed a number of numerical 

study models to simulate the natural turbulent flow in these rectangular enclosures to solve complex problems 

associated with turbulent flows. In spite of several experimental studies and model simulations on the structure 

of natural turbulence convection, the fundamental mechanism in turbulent phenomena is still incomplete. 

Significant variations in experimental data and model simulation data in previous studies have been noted. This 

is because the unknown turbulent correlation coefficients resulting from the nonlinear terms of the turbulent flow 

control equations make it difficult to accurately determine fluid flow variables such as mean velocity distribution, 

temperature distribution and kinetic energy in a model simulation. Thus, an accurate numerical prediction of 

natural turbulence convection is crucial to solving the nonlinear equations for subsequent practical applications. 

  

Methodology: The performance of a numerical turbulence model k-ε in estimating the amount of heat transfer 

that occurs as a result of the naturally occurring turbulent convection that takes place within an air-filled 

rectangular enclosure is investigated in this work using vorticity vector formulation. The workflow of simulating 

the heat transfer which results from the action of natural convection within an enclosed rectangular cavity takes 

into account the effect of turbulence for the Rayleigh numbers Ra = 1.552 × 1010, Ra = 9.934 × 1011, Ra = 1.552 

× 1013 and Ra = 2.425 × 1014. The Low-Reynolds-number turbulence. k-ε model was employed in this numerical 

study to model the non-linear relations 𝛻 ⋅ 𝜌𝑢′𝑢′̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅and 
𝜕𝐶𝑝𝑇′𝑢′

𝜕𝑥𝑖
  in the averaged Navier Stokes equation and energy 

equation respectively to complete the governing equations. Apart from the hot and cold walls, which are 

maintained at 308K and 288K, respectively, all of the walls of the enclosure are adiabatic. The vorticity vector 

formulation allowed the pressure term to be removed from the momentum equation. Finite difference 

approximations were used in the FLUENT program to solve the vorticity, energy, vector potential, and two 

resultant equations for each model together with their boundary conditions.                                    

Results and Conclusion: The outcomes of the study for the distribution of the velocity and temperature 

components are presented, demonstrating that the number of contours and vortices increases proportionally with 

the Rayleigh Number. In addition, a higher Rayleigh number indicates more turbulence, which in turn implies a 

higher absolute value of the velocity hence increased  Kinetic energy. 
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I. Introduction 
The fluid mechanics of today’s world are intensely dominated by the chaotic and volatile motion known 

as turbulent flow. Even if the flow occurs naturally or is forced into the surrounding, heat, momentum, and mass 

exchange are caused by large-scale irregular vortex movements rather than diffusion. Many thermofluidic devices 

such as pipes, boilers, compressors, integrated circuit motors, and capacitors are made to withstand the turbulence 

of the liquid flow around them. The movement of fluids is so closely related to these industrial disciplines of heat 

and mass transport that it is necessary to calculate turbulent flow before studying these fields. 

The process through which heat and mass are transferred in fluids is known as convection, and it is 

closely related to the computation of heat exchange rates between liquid and solid borders. Laminar and turbulent 

flows are the two types of convective heat exchange in which the viscosity of the liquid is important. In turbulent 

flow, small fluid components rotate in the flow direction and perpendicular to it, generating a turbulent mixture, 

while laminar flow is characterized by fluid elements traveling in parallel but not interacting with each other or 

the fluid in the adjacent paths. 
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There are two different kinds of convection, namely natural (free) convection and forced convection. In 

natural convection, fluid motion is caused solely by density differences derived from temperature gradients i.e., 

buoyancy driven and not by an external source. With the right surface geometry and orientation, a circular flow 

cycle of the liquid is created where the fluid around the heat source heats up and undergoes thermal expansion, 

becoming less dense and rising up while the cooler part of the fluid, which is denser, sinks and displaces the 

warmer less dense fluid. This cycle only ends when the fluid is evenly heated throughout. If the movement of the 

fluid is caused by an external force such as stirring, or pumping then we have a forced convection. Also, it’s 

critical to note that the fluid velocity and heat transfer coefficient that occur in natural turbulent flow are generally 

low compared to forced-controlled or man-controlled turbulent flow. Only natural turbulent convection in 

rectangular enclosed cavities will be taken into account in this study because it is an active area of research with 

numerous engineering applications including building insulation, nuclear reactor construction, electronic cooling 

devices, air conditioning systems, in- door air quality, and solar energy collectors among others. All these 

applications require a reliable data source for temperature and velocity distribution. 

The turbulent convection motion in this project is considered to be buoyancy driven as a result of heating 

a fraction of one of the vertical walls and cooling an equal fraction of the opposite wall in the enclosure. Hence, 

maintaining a temperature difference between the two walls that are not adjacent while other walls of the enclosure 

are considered to be adiabatic. 

 

II. Literature Review 
Numerous studies have been performed by different researchers on naturally occurring turbulence 

convection in enclosed cavities. In a rectangle-shaped confinement with partially insulated walls that trans- port 

heat at local substructure heating, [1]explored the effects of natural convection on turbulence. This is plausible 

given how heat is transferred in a frontier environment between convection and radioactivity. The mathematical 

formalism was based on the conventional k-ε turbulence equations with wall functions. The transient factor, 

thermal conductivity rate, and the Grashof number were all considered because of their unique impacts. 

[2]analyzed naturally occurring convection numerically in a trapezoidal enclosure with a wave-like top 

surface. In their work they studied the effects of wave amplitude, Rayleigh number and Darcy number on the free 

convection inside the cavity full of seawater of Prandtl number 7.2 by uniformly heating the bottom and partially 

heating the inclined boundaries. The results of their study demonstrate that different parameters affect convection 

motion, and that flow intensities and temperature distributions increase with increasing Rayleigh and Darcy 

numbers. The results also demonstrate that unlike Rayleigh numbers and Darcy numbers, the wave-like top surface 

has a negligible impact on the flow field pattern and temperature dispersion. [3]investigated heat transfer and free 

convective motion in a cylinder by studying the effects of increasing Reynolds, Froude, Euler, and Prandtl 

numbers on the temperature and velocity. According to the findings of their research, buoyancy forces caused by 

temperature differences between the top and bottom of cylinders influence significantly the air velocity within the 

enclosure, and that temperature and velocity are inversely related to cylindrical height. 

[4]numerically evaluated models of free convection turbulence in two- and three-dimensional rectangular housing 

by solving 2D and 3D unsteady state of the governing equations of turbulent using FLUENT 6.3.26. Surface 

averaged mean Nusselt numbers were used to compare the obtained heat transfer rates for the 2D and 3D RANS 

models. According to their findings, 3D RANS model produces mean Nusselt numbers that are more accurate 

than 2D for larger Rayleigh numbers. By creating isotherms and streamlines for various aspect ratios and making 

an observation on the 

impact of the same parameter along hot and cold walls of an enclosure, [5] statistically explored natural convection 

in rectangular enclosures. According to their study’s findings, in horizontal housings heated from the side, the 

aspect ratio has a substantial influence on the temperature dispersion and fluid flow throughout the housing. It 

also causes a decrease in speed and leads the vortices to become more parallel, which reduces turbulence. 

[6]mathematically analyzed naturally occurring turbulent convection at various aspect ratios and discovered that 

there is no uniformity to the distribution of velocity and temperature and that the aspect ratio of the enclosed cavity 

has a substantial impact on both their magnitudes and distributions. 

In a large eddy simulation of free turbulent convection in an inclined tall cavity, [7] employed the spectral method 

to SOLVE the Reyleigh-Benard problem. 

[8] conducted a numerical investigation of free turbulent convection inside a rectangular chamber that was heated 

and cooled in designated zones. Through their studies, they concluded that changing the Rayleigh number affects 

turbulence via changing the temperature distribution and the flow rate of the fluid. 

Through experimental and model studies of heat and mass transfer at Reynolds numbers 40,000 and 80,000, 

[9]investigated turbulence of internal cooling passages and the search for porous ribs that provide high thermal 

performance. 

Using OpenFOAM, [10]compared the predictions of two turbulence models for low turbulent convection in a 

rectangular enclosed chamber to the results found in the experimental literature. The results show that near the 
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isothermal walls, temperature and velocity changed dramatically, and that natural convection caused by turbulence 

occurred in an air-filled square cavity. 

[11]Using a custom Fortran 90 program while utilizing the lattice Boltzmann technique as the foundation, 

studied the Rayleigh-Bénard Convection numerically. They left the right wall open and added two cozy circular 

and elliptical feathers to the lower wall. They used the Red- Boltzmann equation, which is connected to the 

Boussinesq method, to develop the nonlinear associated differential equations. The heat transfer rates from 

elliptical heat sources were greater than those from circular ones according to the findings of their Code 

verification, which also demonstrated good dependability of the existing mesoscopic numerical approach. 

The foundation of the research by [12]was the variation of cylinder position between eccentric and 

concentric positions along the enclosure’s horizontal and vertical medians and diagonals. They conducted a 

mathematical study of free convection from a horizontally oriented cylinder at an eccentric position with a 

variation in aspect ratio of a cooled square cavity. To model the cylinder surface, they used quasi approximation 

conditions and the submerged boundary method. The heat transfer behavior with respect to Aspect ratio and 

Rayleigh number was determined using a combo of thermal classificatory effects, enhanced convectional flow, 

and thermal effect between combustor periphery and enclosure wall. According to their findings, the 

circumferential location of the cylinder leads to a higher thermal exchange at an Aspect Ratio of 0.15 for Ra of 

11140 and Aspect Ratio of 0.175 for Ra of 111400 for idiosyncratic position, and heat transfer was enhanced at 

the position closest to the vertical at Aspect Ratio greater than 0.175. 

Natural turbulent convection modeling in a rectangle-shaped cavity was further carried out by [13] by 

using a k -ω SST turbulent model while considering the Boussinesq approximations and vector potential 

approximation to determine the best position of a heater and a cooler in enclosure. Her research’s findings 

demonstrate that turbulence is reduced by rise in Rayleigh number, and that the location of heat source and the 

cooler has a significant impact on turbulence. As a result, the position of the heater and cooler affects how heat is 

distributed inside an enclosure. She also recommended placing the cooler and heater on the same side of the wall. 

 

III. Methodology 
General Governing Equations 

Since the majority of turbulent flows involve mass and heat transfers, it is crucial to take into account 

the dynamics of energy dissipation, multiple-point correlation, energy spectrum, and scalar transport. This is 

because explanations of turbulent flows ultimately rest in the physics of the momentum, energy, and vorticity 

fields as stated [14]In order to set the stage for discussion by creating fundamental equations that will clearly 

illustrate the physical processes that need to be investigated, understood, or predicted when solving natural 

turbulent convection, Natural turbulent convection has been studied in this section as a function of fluid flow 

characteristics in a rectangular enclosure with a fraction of one vertical wall heated and an equivalent percentage 

of the opposite wall cooled. The partial differential forms of Continuity Equation, Navier Stokes Equation and 

Energy Equation are presented in cartesian and tensor forms. The stated governing equations are: 
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Final Sets of Equation 

On statistically averaging and decomposition of the governing equations by Reynolds Decomposition 

method, the following final sets of equations were obtained and made simpler by taking the over-bar in the 

preceding time-averaged equation for mean values of the variables throughout time and replaced by upper case, 

while the prime denoting the fluctuating quantities are written in lower case. Below are the complete set of 

equations for turbulent natural convection. 
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∂𝜌‾
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where REYNOLDS STRESS EQUATION is given by       ∇ ⋅ 𝜌𝑢𝑖
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Non Dimensionalization 

We have adopted suitable dimensionless schemes in this study to reduce the number of parameters that are 

involved in the description of turbulent flow as well as to make the solutions bounded, for instance temperature 

can be made dimensionless such that it varies from 0 to 1. 

The following equations and dimensionless parameters were obtained upon the non – dimensionalization of the 

final sets of equations while taking U and T as the dimensionless velocity and temperature components 

respectively 
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∂

∂𝑥𝑘
(𝐴1𝜇𝑢𝑘

∂𝑢𝑖

∂𝑥𝑗

∂𝑢𝑗

∂𝑥𝑗
+ 2𝐴2𝑉

∂𝑢𝑘

∂𝑥𝑖

∂𝜌

∂𝑥𝑖

̅̅ ̅̅ ̅̅ ̅̅
− 𝐴1𝜇

∂𝜀

∂𝑥𝑘
) − 2𝐴1𝜇

∂𝑈𝑖

∂𝑥𝑗
(

∂𝑢𝑖

∂𝑥𝑗

∂𝑢𝑘

∂
+

∂𝑢𝑗

∂𝑥𝑗

∂𝑢𝑗

∂𝑥𝑘

̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅
) −

2𝐴1𝜇
∂2𝑈𝑖

∂𝑥𝑗 ∂𝑥𝑘
𝜇𝜇𝑢𝑘

∂𝑢𝑖

∂𝑥𝑗

̅̅ ̅̅ ̅̅ ̅̅ ̅
   

 

            

 (15) 

In which the coefficients 𝐵1, 𝐵2, 𝐵3 , 𝑀1, 𝑀2, 𝑀3, 𝑇1, 𝑇2, 𝑇3, 𝐴1, 𝐴2, 𝐴3 and 𝐴4 are represented in the table below. 

 

Table 1: Coefficients resulting from non dimensionalisation 

 𝑈∗ 
𝐵1 𝐵2 𝐵3 𝑀1 𝑀2 

  𝑃𝑐

𝜌𝑐𝑈2
2 

𝑔𝐿𝑐

𝑈2
 

𝜇𝑅

𝜌𝑅𝑈, 𝐿𝑅

 
𝑃𝑐

𝐶𝑃𝑝𝑐Δ𝑐Δ𝑇1

 
𝜆𝑐

𝜆𝑃𝑐𝜌𝑐𝑈𝐼𝑐

 

Scheme 
√𝑔𝛽Δ𝑇𝐿𝑐 

𝐸𝑈 ⋅ 𝐹𝑐

𝜁𝜂
 

1

𝜁𝜂
 

1

√𝐺𝑟

 𝐸𝜇𝐸𝐶  
1

𝑃𝑟√𝐺𝑟

 

 

 
𝑀3 𝑇1 𝑇2 𝑇3 𝐴1 𝐴2 𝐴3 𝐴4 
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  𝜇𝑐

𝜌𝑐𝑈𝐿𝑐

 
𝑔𝐿𝑐

𝑈, 2
 

𝑃𝑟

𝜌𝑐𝑈2
 

𝜇𝑐

𝜌𝑐𝑈𝑐𝐿𝑐

 
𝜇𝑐𝑃𝑐

𝜌𝑐
2𝑈𝐿𝑐

 (
𝑝𝑐 − 𝐿𝑐

𝜌𝑐𝑈𝑐𝐿𝑐

)
2

 
𝑔𝜇𝑐

𝜌𝑈3
 

Scheme 

𝐸𝑐𝑅𝑒
−1 

1

√𝐺𝑟

 
𝑖

𝜁𝜂
 

𝐸𝑟𝐹𝑟

𝜁𝜂
 

1

√𝐺𝑟

 
𝐸𝑟

√𝐺𝑟

 
√𝐺𝑟

1

√𝐺𝑟

 𝐹𝑟

√𝐺
 

 
𝑈∗

𝑔𝐿𝑐
= 𝐹𝑟 (Froude number);      

𝜌𝑅𝑈𝑧𝐿𝑐

𝜇𝑅
= Re (Reynolds - number)    

𝑃𝑐

𝜌𝑐𝑈∗
2 = 𝐸𝑢 (Euler number); 

𝑃𝑐

𝜌𝑐𝐶𝑃𝑅𝑇𝑐
= 𝑃𝑛 

(Pressure number) 

(𝜇𝑐𝑔/𝜌𝑐)/𝑐𝑝𝑐𝑇𝑐 = 𝐺𝑛 (Gravity number); 𝜁 =
Δ𝑇∗

𝑇𝑐
 (Non - dimensional temperature difference)      

𝜌𝑐
2𝐶𝑝𝑐𝑔𝛽Δ𝑇∗𝐿𝑐

𝜇𝑐𝐾𝑐
=

Ra (Rayleigh - number); 𝜂 = 𝛽𝑅𝑇𝑐 
𝑅𝑎

Pr
= 𝐺𝑟 (Grashof number);               

𝑈2𝑐

𝐶𝑝𝑐Δ𝑇∗
= 𝐸𝑐 (Eckert - number) 

𝜇𝑐𝐶𝑝𝑐

𝜆𝑐
= Pr (Prandtl number) 

 

IV. Mathematical Modeling 
 

These unknown turbulent correlations include ∇ ⋅ 𝜌𝑢′𝑢′̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅ and 
∂𝐶𝑝𝑇′𝑢′

∂𝑥𝑖
 known as Reynolds stress equation and heat 

flux equation respectively, for which it is crucial to identify the essential connections and equations for 

determining these unknown turbulent correlations. In this study, model turbulence for a k-ε model with explicitly 

expressed boundary conditions has been used. 

 

The resultant equations that regulate natural convection in an enclosure are presented below after applying the 

Bousinessq approximation and substituting them into the governing equations 11 to 15 in non-dimensional form; 

The equation for continuity, which is (11), is simplified as 

 
∂𝑈𝑗

∂𝑋𝑗
= 0             (16) 

The equation for the momentum (12) is: 
∂𝑈𝑗

∂𝑡
+

∂𝑈𝑖𝑈𝑗

∂𝑥𝑗
= −

𝐵1

𝜌𝑐

∂𝑃

∂𝑥𝑖
− 𝐵2Θ𝑔𝑖 +

∂

∂𝑥𝑗
(𝐵3 (

∂𝑈𝑖

∂𝑥𝑗
+

∂𝑈𝑗

∂𝑥𝑖
) − 𝑢𝑖𝑢𝑗̅̅ ̅̅ ̅)       (17) 

Where 𝐵2 = (𝐵2)old 𝛽𝑐Δ𝑇∗ and the (𝐵2)old  is shown in the table. 

The energy equation (13) results into: 
∂Θ

∂𝑡
+

∂

∂𝑥𝑗
𝑈𝑗Θ =

∂

∂𝑥𝑗
(𝑀2

∂Θ

∂𝑥𝑗
− 𝑢𝑗𝜃̅̅ ̅̅ )          (18) 

The turbulent kinetic 𝑘 becomes 

∂𝑘

∂𝑡
+

∂

∂𝑥𝑗
𝑈𝑗𝑘 = 𝑇1𝑢𝑗

∂

∂𝑥𝑗
𝑣 (

∂𝑢𝑖

∂𝑥𝑗
+

∂𝑢𝑗

∂𝑥𝑖
)

̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅
−

∂

∂𝑥𝑗
𝑢𝑗 (

𝑢𝑖𝑢𝑗

2
+

𝑃

𝜌
)

̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅
+ 𝑃𝑘 + 𝑇2𝐺𝑘     (19) 

Where 𝑃𝑘 = −𝑢𝑖
′𝑢𝑗

′̅̅ ̅̅ ̅̅ ∂𝑗

∂𝑥𝑖
 and 𝐺𝑘 = 𝜌𝑢𝑖̅̅ ̅̅̅

𝑔𝑖

𝜌
 

The energy dissipation equation becomes 

∂𝜀

∂𝑡
+

∂

∂𝑥𝑗

𝑈𝑗𝜀 = −
∂

∂𝑥𝑘

(𝐴1𝑣𝑢𝑘

∂𝑢𝑖

∂𝑥𝑗

∂𝑢𝑘

∂𝑥𝑗

̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅
+ 𝐴2𝑣

∂𝑢𝑘

∂𝑥𝑖

∂𝑃

∂𝑥𝑖

̅̅ ̅̅ ̅̅ ̅̅ ̅̅
− 𝐴1𝑣

∂𝜀

∂𝑥𝑘

) − 2𝐴1𝑣
∂𝑢𝑡

∂𝑥𝑗

∂𝑢𝑖

∂𝑥𝑗

∂𝑢𝑘

∂𝑥𝑗

̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅
− 

2𝐴3 (𝑣
∂2𝑢𝑖

∂𝑥𝑘 ∂𝑥𝑗

̅̅ ̅̅ ̅̅ ̅̅ ̅̅
)

2

+ 2𝐴4
𝑣

𝜌

∂𝑢𝑖 ∂𝑃

∂𝑥𝑗

∂𝑥𝑖

𝑔𝑖
− 2𝐴1𝑣

∂𝑢𝑖

∂𝑥𝑘
(

∂𝑢𝑖

∂𝑥𝑗

∂𝑢𝑘

∂𝑥𝑗

̅̅ ̅̅ ̅̅ ̅̅
+

∂𝑢𝑗

∂𝑥𝑖

∂𝑢𝑗

∂𝑥𝑘

̅̅ ̅̅ ̅̅ ̅̅
) − 2𝐴1𝑣

∂2𝑢𝑖

∂𝑥𝑗 ∂𝑥𝑘
𝑈𝑘

∂𝑢𝑖

∂𝑥𝑗

̅̅ ̅̅ ̅̅ ̅̅
    (20 

Turbulent Stresses 𝑢𝑖
′𝑢𝑗

′̅̅ ̅̅ ̅̅  a and heat flux  𝑢𝑗𝜃̅̅ ̅̅  in turbulent flows are calculated as below  

−𝑢𝑖
′𝑢𝐽

′̅̅ ̅̅ ̅̅ = 𝑣𝑡 (
∂𝑢𝑖

∂𝑥𝑗
+

∂𝑢𝑗

∂𝑥𝑖
) −

2

3
𝑘𝛿𝑖𝑗  

And 

𝑢𝑗𝜃̅̅ ̅̅ = −
𝑣𝑡

𝜎𝑇

∂Θ

∂𝑥𝑗
  

For which the 𝑣𝑡 for 𝑘 − 𝜀 model is given by 

𝑣𝑡 = 𝑐𝜇
𝑘2

𝜀
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Vorticity Vector Formulation  

A combination of vorticity stream function and vector potential has been considered as a vorticity vector 

formulation in this study. The formulation has been used to eliminate the pressure term from the Navier Stokes 

since calculation velocities and pressures simultaneously using interpolation of equal orders is impossible. Thus 

for efficient numerical solution we have employed vorticity stream function. The dimensionless form of continuity 

equation 16 and 17 are reduced to 
∂𝑈

∂𝑋
+

∂𝑉

∂𝑌
= 0           (21) 

Momentum equation in x coordinates becomes 

∂𝑈

∂𝑡
+ 𝑈

∂𝑈

∂𝑥
+ 𝑉

∂𝑈

∂𝑦
= −

𝐵1

𝜌𝑐

∂𝑃

∂𝑥
− 𝐵2𝜃cos 𝛾 +

∂

∂𝑥
((𝐵3 + 𝑣𝑡)2

∂𝑈

∂𝑥
−

2

3
𝑘) +

∂

∂𝑦
((𝐵3 + 𝑣𝑡)2

∂𝑈

∂𝑦
+

∂𝑉

∂𝑥
)  (22) 

Momentum equation in y coordinates becomes 

∂𝑉

∂𝑡
+ 𝑈

∂𝑉

∂𝑥
+ 𝑉

∂𝑈

∂𝑦
= −

𝐵1

𝜌𝑐

∂𝑃

∂𝑥
− 𝐵2Θsin 𝛾 +

∂

∂𝑦
((𝐵3 + 𝑣𝑡)

∂𝑉

∂𝑥
+

∂𝑈

∂𝑦
) +

∂

∂𝑦
((𝐵3 + 𝑣𝑡)2

∂𝑉

∂𝑦
−

2

3
𝑘)  (23) 

𝛾 represents the angle between the gravitational vector and the 𝑥-axis.  Velocity parameters are defined by stream 

function ψ (x, y,). as 

𝑈 =
∂𝜓

∂𝑦
  

𝑉 = −
∂𝜓

∂𝑥
  

The momentum equations in x and y coordinates (4.4.2) and (4.4.3) are merged together by introducing vorticity 

vector ξ, which [15] defined as the curl⃗V and where ⃗Vis the velocity vector. The connection between Stream 

function and vorticity vector is given by 

𝜉 =
∂𝑉

∂𝑥
−

∂𝑈

∂𝑦
           (24) 

and  
∂2𝜓

∂𝑥2 +
∂2𝜓

∂𝑦2 = −𝜉         (25) 

The pressure factor is removed from the momentum equations by cross differentiating equations (21) 

and (22) with respect to y and x, respectively, and getting the difference between the resulting equations 

while considering the definition of vorticity equation (24). The parabolic vorticity transport equation is the 

resultant equation below: 
𝐷𝜉

𝐷𝑡
= (𝐵3 + 𝑣𝑡)∇2𝜉 + 2 (

∂𝑣𝑡

∂𝑥

∂𝜉

∂𝑥
+

∂𝑣𝑡

∂𝑦

∂𝜉

∂𝑦
) − (∇2𝑣𝑡)𝜉 + 2 (

∂2𝑣𝑡

∂𝑥2

∂𝑉

∂𝑥
−

∂2𝑣𝑡

∂𝑦2

∂𝑈

∂𝑦
+ 2

∂2𝑣𝑡

∂𝑥 ∂𝑦

∂𝑉

∂𝑦
)

 −𝐵2 (
∂Θ

∂𝑥
sin 𝛾 −

∂Θ

∂𝑦
cos 𝛾)

  (26) 

 

Three-dimensional flow using a vector potential formulation 

Since vorticity flow function formulation is only valid for two-dimensional flow issues, we introduce a solenoidal 

vector field with a vector potential denoted by ψ = ψ⃗ = U⃗ i +V⃗ j +W⃗k. For vector potential ψ is defined as U 

= ∇ × ψ. And the equation relating the stream function to the vorticity is given as  

ξ = −∇2ψ           (27) 

 

As a result, we obtain the three-dimensional vorticity equation as 
∂2𝜓1

∂𝑥2 +
∂2𝜓1

∂𝑦2 +
∂2𝜓1

∂𝑧2 = −𝜉1,
∂2𝜓2

∂𝑥2 +
∂2𝜓2

∂𝑦2 +
∂2𝜓2

∂𝑧2 = −𝜉2,
∂2𝜓3

∂𝑥2 +
∂2𝜓3

∂𝑦2 +
∂2𝜓3

∂𝑧2 = −𝜉3   (28) 

 

 

The momentum equation written as a vector potential of vorticity, avoids the need for the pressure and primitive 

variables that we saw the three components of vorticity vector 𝜉 are 

𝜉1 =
∂𝑊

∂𝑦
−

∂𝑉

∂𝑧
, 𝜉2 = − (

∂𝑊

∂𝑥
−

∂𝑈

∂𝑧
) , 𝜉3 =

∂𝑉

∂𝑥
−

∂𝑈

∂𝑦
       (29) 

The curl of the momentum equation (17) is thus utilized to produce vorticity transport equations below 
∂𝜉1

∂𝑡
+ 𝑈

∂𝜉1

∂𝑥
+ 𝑉

∂𝜉1

∂𝑦
+ 𝑊

∂𝜉1

∂𝑧
− 𝜉1

∂𝑈

∂𝑥
− 𝜉2

∂𝑈

∂𝑦
− 𝜉3

∂𝑈

∂𝑧
 = (𝐵3 + 𝑣𝑡)∇2𝜉1 +

∂𝑣𝑡

∂𝑥

∂𝜉1

∂𝑥
+ 2

∂𝑣𝑡

∂𝑦

∂𝜉1

∂𝑦
+ 2

∂𝑣𝑡

∂𝑧

∂𝜉1

∂𝑧
−

∂𝑣𝑡

∂𝑦

∂𝜉2

∂𝑥
 −

∂𝑣𝑙

∂𝑧

∂𝜉3

∂𝑥
− (

∂2𝑣𝑡

∂𝑦2 +
∂2𝑣𝑡

∂𝑧2 ) 𝜉1 +
∂2𝑣𝑡

∂𝑥 ∂𝑦
𝜉2 +

∂2𝑣𝑓

∂𝑥 ∂𝑧
𝜉3  + 2 [

∂2𝑣𝑧

∂𝑥 ∂𝑦

∂𝑊

∂𝑥
+

∂2𝑣𝑟

∂𝑦2

∂𝑊

∂𝑦
+

∂2𝑣𝑧

∂𝑦 ∂𝑧

∂𝑊

∂𝑧
− (

∂2𝑣1

∂𝑥 ∂𝑧

∂𝑉

∂𝑥
+

∂2𝑣𝑙

∂𝑦 ∂𝑧

∂𝑉

∂𝑦
+

∂2𝑣𝑧

∂𝑧2

∂𝑉

∂𝑧
)]  (30) 

 
∂𝜉2

∂𝑡
+ 𝑈

∂𝜉2

∂𝑥
+ 𝑉

∂𝜉2

∂𝑦
+ 𝑊

∂𝜉2

∂𝑧
− 𝜉1

∂𝑉

∂𝑥
− 𝜉2

∂𝑉

∂𝑦
− 𝜉𝑗

∂𝑉

∂𝑧
= (𝐵3 + 𝑣2)∇2𝜉2 + 2

∂𝑣1

∂𝑥

∂𝜉2

∂𝑥
+

∂𝑣1

∂𝑦

∂𝜉2

∂𝑦
+ 2

∂𝑣𝑦

∂𝑧

∂𝜉2

∂𝑧
−

∂𝑣𝑙

∂𝑥

∂𝜉1

∂𝑦
−

∂𝑣1

∂𝑧

∂𝜉3

∂𝑦
− (

∂2𝑣𝑙

∂𝑥2 +
∂2𝑣𝑙

∂𝑧2 ) 𝜉2 +
∂2𝑣𝑡

∂𝑥 ∂𝑦
𝜉1 +

∂2𝑣𝑙

∂𝑦 ∂𝑧
𝜉3 − 𝐵3

∂Θ

∂𝑧
+ 2 [

∂2𝑣𝑙

∂𝑥 ∂𝑧

∂𝑈

∂𝑥
+

∂2𝑣𝑡

∂𝑦 ∂𝑧

∂𝑊

∂𝑦
+

∂2𝑣𝑡

∂𝑧2

∂𝑈

∂𝑧
− (

∂2𝑣𝑡

∂𝑥2

∂𝑊

∂𝑥
+
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∂2𝑣𝐼

∂𝑥 ∂𝑦

∂𝑊

∂𝑦
+

∂2𝑣𝐼

∂𝑥 ∂𝑧

∂𝑊

∂𝑧
)]   (31) 

 
∂𝜉3

∂𝑡
+ 𝑈

∂𝜉3

∂𝑥
+ 𝑉

∂𝜉3

∂𝑦
+ 𝑊

∂𝜉3

∂𝑧
− 𝜉1

∂𝑊

∂𝑥
− 𝜉2

∂𝑊

∂𝑦
− 𝜉3

∂𝑊

∂𝑧
= (𝐵3 + 𝑣𝑡)∇2𝜉3 + 2

∂𝑣𝑙

∂𝑥

∂𝜉3

∂𝑥
+ 2

∂𝑣1

∂𝑦

∂𝜉3

∂𝑦
+

∂𝑣𝑡

∂𝑧

∂𝜉3

∂𝑧
−

∂𝑣𝑟

∂𝑥

∂𝜉1

∂𝑧
−

∂𝑣𝑡

∂𝑦

∂𝜉2

∂𝑧
− (

∂2𝑣𝑡

∂𝑥2 +
∂2𝑣𝑡

∂𝑦2 ) 𝜉3 +
∂2𝑣𝑡

∂𝑥 ∂𝑧
𝜉1 +

∂2𝑣𝑡

∂𝑦 ∂𝑧
𝜉2 − 𝐵2

∂Θ

∂𝑦
+ 2 [

∂2𝑣𝑡

∂𝑥2

∂𝑉

∂𝑥
+

∂2𝑣𝑡

∂𝑥 ∂𝑦

∂𝑉

∂𝑦
+

∂2𝑣𝑙

∂𝑥 ∂𝑧

∂𝑉

∂𝑧
− (

∂2𝑣𝑦

∂𝑥 ∂𝑦

∂𝑈

∂𝑥
+

∂2𝑣𝑦

∂𝑦2

∂𝑈

∂𝑦
+

∂2𝑣1

∂𝑦 ∂𝑧

∂𝑈

∂𝑧
)]       (32) 

 

The vorticity transport equations (30), (31), and (32), as well as the vorticity equation (28), are used to replace the 

continuity and momentum equations given by equations (16), (17) and (18). The variables to be solved includes; 

ξ1, ξ2, ξ3, U, V, W, Θ.  The k and ε are determined by making use of the equations for turbulent energy that Ince 

and Launde derived in 1989, which are as follows.; 

 
∂𝑘

∂𝑡
+

∂

∂𝑥𝑗
𝑈𝑗𝑘 = 𝑣𝐼 (

∂𝑈𝑖

∂𝑥𝑗
+

∂𝑈𝑗

∂𝑥𝑗
)

∂𝑈𝑖

∂𝑥𝑗
− 𝜀 +

∂

∂𝑥𝑗
[(𝑇2 +

𝑣𝑡

𝜎𝑘
)

∂𝑘

∂𝑥𝑗
] − 𝑇2𝑔𝑖𝑢𝑖𝜃̅̅ ̅̅       (33) 

∂𝜀‾

∂𝑡
+

∂

∂𝑥𝑗
𝑈𝑗𝜀 = 𝐶𝑟1

𝜀

𝑘
𝑣𝑖 (

∂𝑈𝑗

∂𝑥𝑗
+

∂𝑈𝑗

∂𝑥𝑖
)

∂𝑈𝑖

∂𝑥𝑗
− 𝐶𝑟2

𝜀2

𝑘
+ 2𝐹1

2𝑣𝑖 (
∂2𝑈𝑗

∂𝑥𝑗 ∂𝑥𝑘
)

2

+
∂

∂𝑥𝑗
[(𝐹1 +

𝑣2

𝜎𝜀
)

∂𝜀‾

∂𝑥𝑖
] + 𝐹4𝑔𝑖𝑈𝑖𝜃̅̅ ̅̅̅ 𝜀‾

𝑘
+

0.83 (
𝑘

3
2

𝜀𝐶1𝑥𝑛
− 1)

2
𝜀2

𝑘
  (34 

Where  

𝜀 = 𝜀‾ + 𝐷 and 𝐷 = 2𝑣 (
∂𝑘1

∂𝑥𝑗
)

2

  

Boundary Conditions 

Velocity Boundary Conditions 

Velocity is a unit used to indicate the conditions for fluid movement at a barrier. We utilize a no slip boundary 

condition, stating that a viscous fluid’s velocity with regard to a solid boundary is zero. As the fluid travels, the 

molecules are thought to have a larger adhesive force than cohesive force. In a closed hollow, every barrier is 

impermeable and only travels in that direction. This means that the normal velocity component is 0 at all 

boundaries. An impermeable solid surface cannot permit mass to pass through it, hence, considering the X-Y 

plane, the surface velocity component is always zero since X = 0. 

Temperature Boundary Conditions 

The equation Θ =
𝑇−𝜏∗

Δ𝑇+
   provides the definition of the temperature in a non-dimensional form. The temperature 

difference between warm and cool surfaces, denoted by Δ𝑇∗ That is Δ𝑇∗ = 𝑇ℎ − 𝑇𝑐, where the selection of Δ𝑇, 

guarantees that it is constrained and ranges from 0 to 1. The following equations reflect the isothermal and 

adiabatic boundary conditions for heat flow, respectively. 

Δ𝑇∗ =  Constant   
∂Θ

∂𝑛
= 0 

Where n indicates the wall's perpendicularity. The other four walls of the enclosure are kept in an adiabatic state 

since the core problem requires cooling on one wall and heating on the other. The Dirichlet boundary conditions 

are implemented as follows on the hot and cold walls. 

 Θher = 1 and Θ𝑐𝑜𝑙𝑑 = 0 while the Neumann boundary conditions are applied to the remaining four walls such 

as  
∂Θ

∂𝑛
= 0. 

 

Vector Potential Boundary Condition 

On the non-slip edge, the contour conditions are challenging. The tangential components on the surface and the 

normal derivatives of the normal component are the only 𝜓 components that are not completely zero. For instance, 

considering the wall along the 𝑦-z level where 𝑋 = 0 we have 
∂𝜓1

∂𝑥
, 𝜓2 = 𝜓3 = 0. In the same way, along the 𝑥 −

𝑧 level at 𝑌 = 0 we have 
∂𝜓2

∂𝑦
, 𝜓1 = 𝜓3 = 0 and on 𝑥 − 𝑦 level at 𝑍 = 0, 

∂𝜓1

∂𝑧
, 𝜓1 = 𝜓2 = 0. 

In our investigation, several Rayleigh numbers were used to produce the results, but the aspect ratios remained 

fixed at 2. The opposite cold wall is maintained at 288 K, while the hot wall is maintained at 308 K. While the 

other walls are kept adiabatic, the enclosure operates at a temperature of 298 K. 
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Vorticity Boundary Conditions 

Equation (27), produces the boundary conditions for vorticity. The equation's fundamental velocities can be used 

to express the elements of the no-slip vorticity (29). Taking into account the 𝑦-z boundary.                                                   

where 
∂𝑊

∂𝑦
=

∂𝑉

∂𝑧
=

∂𝑈

∂𝑧
=

∂𝑈

∂𝑦
= 0, by application of right hand rule the vorticity boundary becomes 𝜉1 = 0, 𝜉2 =

−
∂𝑤

∂𝑥
, 𝜉3 =

∂𝑦

∂𝑥
. 

Similarly, the wall along the 𝑥 − 𝑦 level where
∂𝑈

∂𝑦
=

∂𝑉

∂𝑥
=

∂𝑊

∂𝑥
=

∂𝑊

∂𝑦
= 0 giving vorticity boundary conditions of 

𝜉1 = −
∂𝑦

∂𝑧
, 𝜉2 =

∂𝑈

∂𝑧
, 𝜉3 = 0 . For the wall along the 𝑥 − 𝑧 level, we have 

∂𝑊

∂𝑥
=

∂𝑈

∂𝑧
=

∂𝑉

∂𝑧
=

∂𝑉

∂𝑥
= 0, resulting to𝜉1 =

∂𝑊

∂𝑦
, 𝜉2 = 0, 𝜉3 =  −

∂𝑈

∂𝑦
.  

 

Table 2: Turbulence Coefficients. 

C1ε C2ε Cµ σϵ σk 

1.44 1.92 0.09 1.3 1.0 

 

V. Numerical Methods 
With the assistance of the finite difference approach, we are able to determine the solutions to the systems 

of nonlinear partial differential equations, coupled with their boundary conditions. To get an approximation of the 

partial differential equations in this scenario, we solve a set of linear equations that are based on the values of the 

functions at each mesh position. Due to the non-linear nature of these partial differential equations, an iterative 

method is required; the false transient method is an excellent choice for this particular application. [16]developed 

a method known as the false transient method, which adds false transient derivatives which is the process of 

transforming an equation into its parabolic equivalent. If a steady-state solution is sufficient, then the transient 

terms in the equations can be eliminated. 

 

False Transient Method 

In this strategy, transitory fictitious components 
1

𝛽𝜃
 is added to the mean energy equation's time derivative, (18), 

1

𝛽3
 is added to the vorticity transport equations,(30), (31), and (32), Both the turbulent kinetic energy equation (33) 

and the turbulent kinetic energy dissipation equation (34) are modified by the addition of 
1

𝛽𝑘
 and 

1

𝛽𝜀
, respectively. 

The coefficients 𝛽Θ, 𝛽𝜉 , 𝛽𝑘 and 𝛽𝜀 are useful for establishing the right time step for the solution as well as enabling 

for speedier solution convergence. For estimating the differential equations, a mesh grid that works well must be 

chosen. In this way, the solution space is partitioned into rectangular volume elements, which, individually, stand 

in for volumes of depth one and are centred on respective mesh nodes, and whose coordinates are expressed in 

form of the integer variables 𝑖, 𝑗 and 𝑘 

 

Finite Difference Approximations 

The approach of approximation employing central, forward, and backward differences is utilized 

correctly; for example, we use backward and forward differences at corners and near edges. The convective term 

is approximated using a hybrid differentiation technique that blends central and upwind patterns. In addition, non-

uniform grids have been employed because convective terms are predominant. The spacing of the grid varies over 

the solution volume. Thus, parts with higher flow gradients use smaller spacing, while parts with lower flow 

gradients use larger distances. 

    

Mesh Points 

Natural turbulent convection flow in a structure is characterized by a thermally stratified center and a 

thin boundary layer around the walls. The border layer has very substantial flow gradients that call for large 

number of lattice points. In this case study, the enclosure’s domain of the solution is divided into a network of 

uniform rectangular grids of 60 by 50 meshes with very fine spacing as shown below 
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Figure 1: 60 by 50 Mesh points are represented as below, 

 

 

Figure 2: Mesh points 

 
 

Figure 3: Nodes and elements 
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After utilizing the finite difference approximation for PDEs, the following mesh point variables are recorded: ∅ =
∅(𝑖, 𝑗, 𝑘) 

∅(𝑖 − 1) = ∅(𝑖 − 1, 𝑗, 𝑘)           (35) 

Differentials at mesh locations are given by, 

 
∂∅

∂𝑥
=

ℎ𝑖
2

ℎ𝑖
2ℎ𝑖+1+ℎ𝑖ℎ𝑖+1

2 ∅𝑖+1 +
−(ℎ𝑖

2+ℎ𝑖+1
2 )

ℎ𝑖
2ℎ𝑖+1+ℎ𝑖ℎ𝑖+1

2 ∅ +
−ℎ𝑖+1

2

ℎ𝑖
2ℎ𝑖+1+ℎ𝑖ℎ𝑖+1

2 ∅𝑖−1        (36) 

∂∅

∂𝑦
=

ℎ𝑗
2

ℎ𝑗
2ℎ𝑗+1+ℎ𝑗ℎ𝑗+1

2 ∅𝑗+1 +
−(ℎ𝑗

2+ℎ𝑗+1
2 )

ℎ𝑗
2ℎ𝑗+1+ℎ𝑗ℎ𝑗+1

2 ∅ +
−ℎ𝑗+1

2

ℎ𝑗
2ℎ𝑗+1+ℎ𝑗ℎ𝑗+1

2 ∅𝑗−1      

 (37)) 
∂∅

∂𝑧
=

ℎ𝑘
2

ℎ𝑘
2ℎ𝑘+1+ℎ𝑘ℎ𝑘+1

2 ∅𝑘+1 +
−(ℎ𝑘

2+ℎ𝑘+1
2 )

ℎ𝑘
2ℎ𝑘+1+ℎ𝑘ℎ𝑘+1

2 ∅ +
−ℎ𝑘+1

2

ℎ𝑘
2ℎ𝑘+1+ℎ𝑘ℎ𝑘+1

2 ∅𝑘−1            (38)

  

The second derivatives are given as below; 
∂2∅

∂𝑥2 =
2ℎ𝑖

ℎ𝑖
2ℎ𝑖+1+ℎ𝑖ℎ𝑖+1

2 ∅𝑖+1 +
−2(ℎ𝑖+ℎ𝑖+1)

ℎ𝑖
2ℎ𝑖+1+ℎ𝑖ℎ𝑖+1

2 ∅ +
2ℎ𝑖+1

ℎ𝑖
2ℎ𝑖+1+ℎ𝑖ℎ𝑖+1

2 ∅𝑖−1       (39) 

∂2∅

∂𝑦2 =
2ℎ𝑗

ℎ𝑗
2ℎ𝑗+1+ℎ𝑗ℎ𝑗+1

2 ∅𝑗+1 +
−2(ℎ𝑗+ℎ𝑗+1)

ℎ𝑗
2ℎ𝑗+1+ℎ𝑗ℎ𝑗+1

2 ∅ +
2ℎ𝑗+1

ℎ𝑗
2ℎ𝑗+1+ℎ𝑗ℎ𝑗+1

2 ∅𝑗−1      

 (40) 
∂2∅

∂𝑧2 =
2ℎ𝑘

ℎ𝑘
2ℎ𝑘+1+ℎ𝑘ℎ𝑘+1

2 ∅𝑘+1 +
−2(ℎ𝑘+ℎ𝑘+1)

ℎ𝑘
2ℎ𝑘+1+ℎ𝑘ℎ𝑘+1

2 ∅ +
2ℎ𝑘+1

ℎ𝑘
2ℎ𝑘+1+ℎ𝑘ℎ𝑘+1

2 ∅𝑘−1      (41) 

We use the following designations to simplify the equations on the 𝑥-axis. 

𝐷1𝑥 =
2ℎ𝑖

ℎ𝑖
2ℎ𝑖+1+ℎℎ𝑖

2ℎ𝑖+1
  

𝐷2𝑥 =
−(ℎ𝑖

2+ℎ𝑗+1
2 )

ℎ𝑖
2ℎ𝑖+1+ℎ𝑖ℎ𝑖+1

2   

𝐷3𝑥 =
−ℎ𝑖+1

2

ℎ𝑖
2ℎ𝑖+1+ℎ𝑖ℎ𝑖+1

2   

𝐷4𝑥 =
2ℎ𝑖

ℎ𝑖
2ℎ𝑖+1+ℎ𝑖ℎ𝑖+1

2   

𝐷5𝑥 =
−2(ℎ𝑖+ℎ𝑖+1)

ℎ𝑖
2ℎ𝑖+1+ℎ𝑖ℎ𝑖+1

2   

𝐷6𝑥 =
2ℎ𝑖+1

ℎ𝑖
2ℎ𝑖+1+ℎ𝑖ℎ𝑖+1

2   

The equations in the y-and z-axes are then simplified with the help of the corresponding indices 

Thus equation (36) and (39) reduces to, 
∂∅

∂𝑥
= 𝐷1𝑥𝜗𝑖+1 + 𝐷2𝑥𝜗 + 𝐷3𝑥𝜗𝑖−1 and 

∂2∅

∂𝑥2 = 𝐷4𝑥∅𝑖+1 + 𝐷5𝑥𝜃 +

𝐷6𝑥𝜃𝑖−1 . 

The application of these on equation (18), (30) (32), (33) and (34) are used to derive the finite difference equations, 

the steps below are then taken. 

Mean equation energy equation (18) becomes: 
Θ 𝑛+1−Θ

𝛽ΘΔ𝑡
= −𝑈(𝐷1𝑥Θ𝑖−1 + 𝐷2𝑥Θ + 𝐷3𝑥Θ𝑖+1) − 𝑉(𝐷1𝑦Θ 𝑗−1 + 𝐷2𝑦Θ + 𝐷3𝑦Θ𝑗𝑗+1) − 𝑊(𝐷1𝑧Θ𝐾−1 + 𝐷2𝑦Θ +

𝐷3𝑧Θ𝐾+1) + (𝑀2 +
𝑣𝑡

𝜎𝑗
) (𝐷4𝑥Θ𝑖−1 + 𝐷5𝑥Θ + 𝐷6𝑥Θ𝑖+1 + 𝐷4𝑦Θ𝑗−1 +(𝐷5𝑦Θ + 𝐷6𝑦Θ𝑗+1 + 𝐷4𝑧Θ𝑘−1 +

𝐷5𝑧Θ + 𝐷6𝑦Θ𝑘+1) +
1

𝜎𝑇
[(𝐷1𝑥𝑣𝑡𝑡−1 + 𝐷2𝑥𝑣𝑡 +) .(𝐷3𝑥𝑣𝑡𝑖+1

)(𝐷1𝑥Θ𝑖−1 + 𝐷2𝑥Θ + 𝐷3𝑥Θ𝑖+1) + (𝐷1𝑦𝑣𝑡𝑗−1
+

𝐷2𝑦𝑣𝑡 + 𝐷3𝑦𝑣𝑡𝑗+1
) (𝐷1𝑦Θ𝑗𝑗−1 +)(𝐷2𝑦Θ + 𝐷3𝑦Θ𝑗+1) + (𝐷1𝑧𝑣𝑡𝑘−1

+ 𝐷2𝑧𝑣𝑡 + 𝐷3𝑧𝑣𝑡𝑘+1
)(𝐷1𝑧Θ𝑘−1 +

𝐷2𝑧Θ + 𝐷3𝑧Θ𝑘+1)]   (42) 

Where 𝑀2 =
1

𝑃𝑟√𝐺𝑟
  

Velocity equations are as follows: 

 

𝑈 = 𝐷1𝑦𝜓3𝑗−1 + 𝐷2𝑦𝜓3 + 𝐷3𝑦𝜓3𝑗+1 − (𝐷1𝑧𝜓2𝑘−1 + 𝐷2𝑧𝜓2 + 𝐷3𝑧𝜓2𝑘+1)               (43) 

𝑉 = 𝐷1𝑧𝜓1𝑘−1 + 𝐷2𝑧𝜓1 + 𝐷3𝑧𝜓3𝑘+1 − (𝐷1𝑥𝜓3𝑖−1 + 𝐷2𝑥𝜓3 + 𝐷3𝑥𝜓3𝑖+1)               (44) 

𝑊 = 𝐷1𝑥𝜓2𝑖−1 + 𝐷2𝑥𝜓2 + 𝐷3𝑥𝜓3𝑖+1 − (𝐷1𝑦𝜓1𝑗−1 + 𝐷2𝑦𝜓1 + 𝐷3𝑦𝜓1𝑗+1)     (45) 

Vector potential equations resulting from (28) are as follows: 



Numerical simulation of natural turbulent convection with vorticity vector formulation.  

DOI: 10.9790/5728-1903026279                            www.iosrjournals.org                                                  72 | Page 

𝐷4𝑥𝜓1𝑖−1 + 𝐷5𝑥𝜓1 + 𝐷6𝑥𝜓1𝑖+1 + 𝐷4𝑦𝜓1𝑗−1 + 𝐷5𝑦𝜓1 + 𝐷6𝑦𝜓1𝑗+1 + 𝐷4𝑧𝜓1𝑘−1 + 𝐷5𝑧𝜓1 + 𝐷6𝑧𝜓1𝑘+1 =

−𝜉1  

𝐷4𝑥𝜓2𝑖−1 + 𝐷5𝑥𝜓1 + 𝐷6𝑥𝜓2𝑖+1 + 𝐷4𝑦𝜓2𝑗−1 + 𝐷5𝑦𝜓2 + 𝐷6𝑦𝜓2𝑗+1 + 𝐷4𝑧𝜓2𝑘−1 + 𝐷5𝑧𝜓2 + 𝐷6𝑧𝜓2𝑘+1 =

−𝜉2  

𝐷4𝑥𝜓3𝑖−1 + 𝐷5𝑥𝜓3 + 𝐷6𝑥𝜓3𝑖+1 + 𝐷4𝑦𝜓3𝑗−1 + 𝐷5𝑦𝜓3 + 𝐷6𝑦𝜓1𝑗+1 + 𝐷4𝑧𝜓3𝑘−1 + 𝐷5𝑧𝜓3 + 𝐷6𝑧𝜓3𝑘+1 =

−𝜉3  

   

 
𝜉1

𝑛+1−𝜉1

𝛽𝜉𝛥𝑡
= −𝑈(𝐷1𝑥𝜉1𝑖−1 + 𝐷2𝑥𝜉1 + 𝐷3𝑥𝜉1𝑖+1) − 𝑉(𝐷1𝑦𝜉1𝑗−1 + 𝐷2𝑦𝜉1 + 𝐷3𝑦𝜉1𝑗+1) −

𝑊(𝐷1𝑧𝜉1𝑘−1 + 𝐷2𝑧𝜉1 + 𝐷3𝑧𝜉1𝑘+1) + 𝜉1(𝐷1𝑥𝑈𝑖−1 + 𝐷2𝑥𝑈 + 𝐷3𝑥𝑈𝑖+1) + 𝜉2(𝐷1𝑦𝑈𝑗−1 +

𝐷2𝑦𝑈 + 𝐷3𝑦𝑈𝑗+1) + 𝜉3(𝐷1𝑧𝑈𝑘−1 + 𝐷2𝑧𝑈 + 𝐷3𝑧𝑈𝑘+1) + (𝐷3𝑥𝑣𝑡)[𝐷4𝑥𝜉3𝑖−1 + 𝐷5𝑥𝜉1 +

𝐷6𝑥𝜉1𝑖+1 + 𝐷4𝑦𝜉1𝑗−1 + 𝐷5𝑦𝜉1 + 𝐷6𝑦𝜉1𝑗+1 + 𝐷4𝑧𝜉1𝑘−1 + 𝐷5𝑧𝜉1 + 𝐷6𝑧𝜉1𝑘+1] +

(𝐷1𝑥𝑣𝑢𝑡−1 + 𝐷2𝑥𝑣𝑡 + 𝐷3𝑥𝑣𝑡+1)(𝐷1𝑥𝜉1𝑖−1 + 𝐷2𝑥𝜉1 + 𝐷3𝑥𝜉1𝑡+1) + 2(𝐷1𝑦𝑣𝑡𝑗−1 + 𝐷2𝑦𝑣𝑙 +

𝐷3𝑦𝑣𝑡𝑗+1)(𝐷1𝑦𝜉1𝑗−1 + 𝐷2𝑦𝜉1 + 𝐷3𝑦𝜉1𝑗+1) + 2(𝐷1𝑧𝑣𝑡𝑘−1 + 𝐷2𝑧𝑣𝑡 +

𝐷3𝑧𝑣𝑡𝑘+2)(𝐷1𝑧𝜉1𝑘−1 + 𝐷2𝑧𝜉1 + 𝐷3𝑧𝜉1𝑘+1) − (𝐷1𝑦𝑣𝑡𝑗−1 + 𝐷2𝑦𝑣𝑡 + 𝐷3𝑦𝑣𝑡𝑗+1)(𝐷1𝑥𝜉2𝑖−1 +

𝐷2𝑥𝜉2 + 𝐷3𝑥𝜉2𝑡+1) − (𝐷1𝑧𝑣𝑡𝑘−1 + 𝐷2𝑧𝑣𝑡 + 𝐷3𝑧𝑣𝑘𝑘+1)(𝐷1𝑥𝜉2𝑖−1 + 𝐷2𝑥𝜉2 + 𝐷3𝑥𝜉2𝑡+1) −

(𝐷4𝑦𝑣𝑡𝑗−1 + 𝐷5𝑦𝑣𝑡 + 𝐷6𝑦𝑣𝑡𝑗+1 + 𝐷4𝑧𝑣𝑡𝑘−1 + 𝐷5𝑧𝑣𝑙 + 𝐷6𝑧𝑣𝑡𝑘+1)𝜉1 +

[𝐷1𝑦(𝐷1𝑥𝑣𝑢−1,𝑗−1 + 𝐷2𝑥𝑣𝑢,𝑗−1 + 𝐷3𝑥𝑣𝑢𝑖+1,𝑗−1) + 𝐷2𝑦(𝐷1𝑥𝑣𝑡𝑖−1 + 𝐷2𝑥𝑣𝑓𝑖 + 𝐷3𝑥𝑣𝑡𝑖+1) +

𝐷3𝑦(𝐷1𝑥𝑣𝑡𝑖−1,𝑗+1 + 𝐷2𝑥𝑣𝑡,𝑗+1 + 𝐷3𝑥𝑣𝑡𝑖+1,𝑗+1)]𝜉2 + [𝐷1𝑧(𝐷1𝑥𝑣𝑡𝑖−1,𝑘−1 + 𝐷2𝑥𝑣𝑡,𝑘−1 +

𝐷3𝑥𝑣𝑡𝑖+1,𝑘−1) + 𝐷2𝑧(𝐷1𝑥𝑣𝑡𝑖−1 + 𝐷2𝑥𝑣𝑡 + 𝐷3𝑥𝑣𝑡𝑖+1) + 𝐷3𝑧(𝐷1𝑥𝑣𝑡𝑖−1,𝑘+1 + 𝐷2𝑥𝑣𝑡𝑖+1 +

𝐷3𝑥𝑣𝑡𝑖+1,𝑘+1)]𝜉3 + 2{[𝐷1𝑦(𝐷1𝑥𝑣𝑡𝑖−1,𝑗−1 + 𝐷2𝑥𝑣𝑡,𝑗−1 + 𝐷3𝑥𝑣𝑡𝑖+1,𝑗−1) +

𝐷2𝑦(𝐷1𝑥𝑣𝑡𝑖−1,𝑗−1 + 𝐷2𝑥𝑣𝑡,𝑗−1 + 𝐷3𝑥𝑣𝑡𝑖+1,𝑗−1)](𝐷1𝑥𝑊𝑖−1 + 𝐷2𝑥𝑊 + 𝐷3𝑥𝑊𝑖+1) +

(𝐷4𝑦𝑣𝑡𝑗−1 + 𝐷5𝑦𝑣𝑡 + 𝐷6𝑦𝑣𝑡𝑗+1)(𝐷1𝑥𝑊𝑖−1 + 𝐷2𝑥𝑊 + 𝐷3𝑥𝑊𝑖+1) + [𝐷1𝑧(𝐷1𝑦𝑣𝑡𝑗−1𝑘−1 +

𝐷2𝑦𝑣𝑡𝑘−1 + 𝐷3𝑦𝑣𝑡𝑗+1𝑘−1) + 𝐷2𝑧(𝐷1𝑦𝑣𝑡𝑗−1 + 𝐷2𝑦𝑣𝑙 + 𝐷3𝑦𝑣𝑡𝑗+1) + 𝐷3𝑧(𝐷1𝑦𝑣𝑡,𝑗−1,𝑘+1 +

𝐷2𝑦𝑣𝑡𝑘+1 + 𝐷3𝑦𝑣𝑡𝑗+1𝑘+1)](𝐷1𝑥𝑊𝑖−1 + 𝐷2𝑥𝑊 + 𝐷3𝑥𝑊𝑖+1) − [𝐷1𝑧(𝐷1𝑥𝑣𝑡𝑖−1,𝑘−1 +

𝐷2𝑥𝑣𝑡,𝑘−1 + 𝐷3𝑥𝑣𝑡+1,𝑘−1) + 𝐷2𝑧(𝐷1𝑦𝑣𝑡𝑖−1 + 𝐷2𝑦𝑣𝑡 + 𝐷3𝑦𝑣𝑡𝑖+1) + 𝐷3𝑧(𝐷1𝑥𝑣𝑡𝑖−1𝑘+1 +

𝐷2𝑥𝑣𝑡𝑘+1 + 𝐷3𝑥𝑣𝑡,𝑖+1,𝑘+1)](𝐷1𝑥𝑉𝑖−1 + 𝐷2𝑥𝑉 + 𝐷3𝑥𝑉𝑖+1) + [𝐷1𝑧(𝐷1𝑦𝑣𝑡𝑗−1,𝑘−1 +

𝐷2𝑦𝑣𝑡𝑘−1 + 𝐷3𝑦𝑣𝑡𝑗+1𝑘−1) + 𝐷2𝑧(𝐷1𝑦𝑣𝑡𝑗−1 + 𝐷2𝑦𝑣𝑡 + 𝐷3𝑦𝑣𝑡,𝑗+1) + 𝐴𝑍3(𝐷1𝑦𝑣𝑡𝑗−1,𝑘+1 +

𝐷2𝑦𝑣𝑡𝑘+1 + 𝐷3𝑦𝑣𝑡𝑗+1𝑘+1)(𝐷1𝑦𝑉𝑗−1 + 𝐷2𝑦𝑉 + 𝐷3𝑦𝑉𝑗+1)(𝐷4𝑦𝑉𝑡𝑘−1 + 𝐷5𝑦𝑉𝑡 +

𝐷6𝑦𝑉𝑡𝑘+1)(𝐷1𝑦𝑉𝑘−1 + 𝐷2𝑦 + 𝐷3𝑦𝑉𝑘+1)]} 

  

 

Turbulent flow essential input 

Table no 3: The input of turbulent flow necessary to simulate and acquire the results of this study. 

Input Value 

Geometry  Aspect Ratio 

Ra =1.552 x 1010 2 x 1 x 1 2 

Ra =9.934 x 1011 8 x 4 x 4 2 

Ra =1.552 x 1013 20 x 10 x 10 2 

Ra =2.425 x 1014 50 x 25 x 25 2 

Models  

Energy On 

Viscous Standard 𝑘−𝜀 

Material Properties at 298 K  

Density 1.1845kg/m3 

Dynamic Viscousity 1.8444E-05 Kg/ms 

Specific heat capacity 1.0063E+03 J/Kg/K 

Thermal Conductivity 0.025969 W/m.K 
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Thermal Expansion coefficient 3.3540E-03 1/K 

Prandtl number 0.7147 

Gravitational force 9.81 m/s2 

Solution models  

Pressure PRESTO 

Momentum First Order Upwind 

Turbulent Kinetic Energy First Order Upwind 

Turbulent Dissipation Rate First Order Upwind 

Table 2: Turbulent flow input 

 

VI. RESULTS 
Distribution of streamlines 

A streamline is the path traced by a massless particle moving with the flow. Resistance to flow in fluids 

like air is minimized along these lines, which extend at right angles to the flow direction. For this study, the results 

were found for Rayleigh numbers between 1.522 × 1010 and 2.452 × 1014. The figures show how the streamlines 

are spread out, and they prove that two separate vortices are in motion. A vortex is defined as a swirling fluid 

motion. It has been noticed that as the Rayleigh number increases, so does the velocity, with the minimum being 

1.30 × 10−1Kg/s and maximum being 2.53 × 101Kg/s. The movement of the streamlines originates from the hot 

wall. Thus, this conclusion is consistent with the idea of heat transfer. The buoyancy forces, the magnitude of the 

vortices, and the strength of the stream function all rise with the Rayleigh number. The results reported here agree 

with those from the experimental studies published by [17] 

 

 

Figure 4: Streamline distribution for Ra = 1.552 × 1010 

 

 
Figure 5: Streamline distribution for Ra = 9.934 × 1110 
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Figure 6: Streamline distribution for Ra = 1.552 × 1013 

 

Figure 7: Streamline distribution for Ra = 2.425 × 1014 

 

Contours of Velocity magnitudes (m/s) 

The figures below 8, 9, 10, 11 represents the contours of velocity magnitude. As the number of Rayleigh 

grows, there is a corresponding increase in the number of vortices. Furthermore, the streamlines on the heated 

wall grow as the number of Rayleigh rises. The flow becomes more chaotic with rising Rayleigh number, leading 

to a rise in velocity magnitude, as shown in figures 8 and 11, where a slowest velocity of 0.308 m/s was recorded 

and the maximum velocity was measured at 2.23 m/s, respectively. These findings are consistent with those of the 

practical investigational study by [17]which found that a higher Rayleigh number leads to a greater velocity 

 

                                 

Figure 8: Contours of velocity magnitude for Ra = 1.552 × 1010 
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Figure 9: Contours of velocity magnitude for Ra = 9.934 × 1011 

 

                            
Figure 10: Contours of velocity magnitude for Ra = 1.552 × 1013 

 
 

Figure 11: Contours of velocity magnitude for Ra = 2.425 × 1014 

 
Contours of total temperature/Isotherms 

The term "isotherm" refers to a line or curve on a temperature graph that joins two spots with the same 

temperature. Convection has a larger part in heat transfer as the Rayleigh number rises. It’s clear that as the 

Rayleigh number rises, the maximum temperature falls. The highest temperature depicted is 290 degrees Kelvin 

in Figure 12, 288 degrees Kelvin in Figure 13, 282 degrees Kelvin in Figure 14, and 279 degrees Kelvin in Figure 

15. The heat flow is portrayed as a series of contours that begin at the warm wall and terminate at the cool wall. 

It’s also important to note that the buoyancy forces get stronger as the Rayleigh number goes up. This thins the 

thermal boundary layer along the hot wall and brings the hot spots closer to the centre. It is easy to see from the 

figures below how the Rayleigh number varies in relation to the overall temperature. 
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Figure 12: Contours of isotherms for Ra = 1.552 × 1010 

 

 

Figure 13: Contours of isotherms for Ra = 9.934 × 1011 

 

                                 
Figure 14: Contours of isotherms for Ra = 1.552 × 1013 
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Figure 15: Contours of isotherms for Ra = 2.425 × 1014 

 
Contours of Turbulent Kinetic Energy 

For this purpose, the results reveal that the kinetic energy of the turbulent fluid increases as the Rayleigh number 

increases. The following diagrams illustrate this point perfectly. The kinetic energy fluctuations, and hence the 

fluid velocity inside the enclosure, increase with increasing Rayleigh number. It is also discovered that at high-

velocity regimes close to the heated wall, the Rayleigh number has a major impact on the flow structure of 

turbulent kinetic energy. The top wall has more kinetic energy than the lower wall. 

  

   Figure 16: Contours of Turbulent Kinetic Energy for Ra = 1.552 × 1010 

 

Figure 17: Contours of Turbulent Kinetic Energy for Ra = 9.934 × 1011 
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Figure 18: Contours of Turbulent Kinetic Energy for Ra = 1.552 × 1013 

 

Figure 19: Contours of Turbulent Kinetic Energy for Ra = 2.425 × 1014 

 

VII. Conclusion 
The focus of this research was to use vorticity vector formulation to conduct a numerical simulation and 

investigation of natural turbulent flow inside a rectangular chamber filled with air. In order to accomplish this, we 

had established a number of specific objectives, all of which were met in the following ways: 

In this work, we considered the partial differential forms of the Continuity Equation, the Navier-Stokes 

Equation, and the Energy Equation. These equations were statistically averaged and decomposed using the 

Reynolds Decomposition method. To complete the set of equations that defined turbulence, the resulting nonlinear 

equations comprising the Reynolds Stress equation were modeled by a k-ε turbulence model. Numeric data were 

set for k-ε turbulence model by application of vorticity stream function and vector potential formulation. The 

boussinesq estimation was used, which simplified the conservation equations. Three-point forward, central, and 

backward difference approximations discretized boundary-conditioned governing equations to numerically 

simulate the turbulent flow in the rectangular enclosure filled with air. 

Streamlines, Velocity magnitudes, Isotherms and contours of kinetic energy were generated by FLU ENT 

6.2.3 for Rayleigh numbers Ra = 1.552 × 1010, Ra = 9.934 × 1011, Ra = 1.552 × 1013 and 

Ra = 2.425 × 1014 while keeping the aspect ratio of 2 constant. The results reveal that changing the 

Rayleigh number has an effect on fluid parameters including velocity and temperature. As a consequence of this, 

the magnitude of the velocity and the magnitude of the vortices both increase in tandem with an increase in the 

Rayleigh number. Maximum velocity was measured at 2.23 meters per second, and minimum velocity was 

measured at 0.308 meters per second. 

For low Rayleigh numbers case, the temperature is higher than expected, and this is in relation to the way 

temperatures are distributed across the case. The flow becomes increasingly turbulent and chaotic as the Rayleigh 

number grows, which leads to the temperature being distributed toward the center of the enclosure. At the lowest 

Rayleigh number, the temperature reached a maximum of 290 degrees Kelvin, while at the highest Rayleigh 

number, the temperature reached a maximum of 279 degrees. 

A rise in the Rayleigh number is responsible for the accompanying rise in kinetic energy. The results show that 

as the Rayleigh number increases, the kinetic energy of the fluid in the domain’s turbulent regions also increases. 

In addition, the higher the value of the Rayleigh number, the greater the kinetic energy fluctuations, and thus the 

greater the fluid velocity of the liquid within the container. At high velocity regimes close to the heated wall, it 
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has also been discovered that the Rayleigh number has a considerable influence on the flow structure as well as 

the turbulent kinetic energy. 
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