Even Sum Labeling Of Subdivision, Super Subdivision And Arbitrary Super Subdivision Of Graphs

M. M. Trivedi¹, Venus Chaudhary¹

¹(Department of Mathematics, Maharaja Krishnakumarsinhji Bhavnagar University, Bhavnagar, Gujarat, India)

Abstract:

This Study Focuses On Even Sum Property Of Graphs In The Context Of Subdivision, Super Subdivision And Arbitrary Super Subdivision Of Graphs. We Have Established That A Subdivision Of A Star Graph $K_{1,n}$ And A Complete Bipartite Graph $K_{2,n}$ Are Even Sum Graphs. We Have Also Proved That A Super Subdivision Of A Cycle C_{4n} When Each Edge Is Replaced By $K_{2,t}$ And An Arbitrary Super Subdivision Of Path P_n When Each Edge Of The Path Is Replaced By K_{2,m_i} With Arbitrary m_i Are Even Sum Graphs.

Key Word: Even Sum Labeling, Even Sum Graph, Subdivision, Super Subdivision, Arbitrary Super Subdivision.

Date of Submission: 19-06-2023

Date of Acceptance: 29-06-2023

I. Introduction

A word 'graph'is used to mean a finite, simple and undirected graph, the number of vertices in a graph is denoted by p or |V(G)| and the number of edges in a graph is denoted by q or |E(G)| throughout this paper. Graph labeling was initiated by Rosa¹ and a detailed survey on graph labeling is updated every year by Gallian².

In 2013, the idea of odd sum labeling was set by Arockiaraj and Mahalakshmi³. Recently, Trivedi and Chaudhary⁴ presented odd sum labeling of a complete bipartite graph and its splitting and subdivision. Monika and Murugan⁵ have introduced odd-even sum labeling in 2017. Monika and Murugan⁶ further concluded that the subdivision of a star graph, subdivision of a bistar graph and an *H* graph of a path P_n are odd-even sum graphs. The notion of even sum labeling of graph. They concluded that a slanting ladder graph SL_n is an even sum graph for 1 < n < 9. Later, Kaneria and Andharia⁸ discussed even sum labeling of path, cycle, complete bipartite graph of $K_{1,n}$, $K_{2,n}$ and $K_{1,n,n}$ and degree splitting graph of $K_{1,n}$ are even sum graphs. Recently, Andharia and Kaneria¹⁰ proved that the graphs J_n , B(3,n), TB_n , $P_m(+)\overline{K_n}$ and $(\overline{K_n} \cup P_3) + 2K_1$ are even sum graphs.

This paper deals with even sum labeling of subdivision of a star $K_{1,n}$ and a complete bipartite graph $K_{2,n}$, super subdivision of a cycle C_{4n} when each edge is replaced by $K_{2,t}$ and an arbitrary super subdivision of path P_n when each edge of the path is replaced by K_{2,m_i} with arbitrary m_i .

Definition 1: A (p,q) graph G = (V, E) is said to admit even sum labeling⁸ if there exists an injective function $f: V(G) \rightarrow \{0, \pm 2, \pm 4, \dots, \pm 2q\}$ such that the induced mapping $f^*: E(G) \rightarrow \{2, 4, \dots, 2q\}$ defined by $f^*(uv) = f(u) + f(v), \forall uv \in E(G)$ is bijective. The function f is called an even sum labeling of G. The graph which admits even sum labeling is called even sum graph.

Definition 2: If each edge of a graph G is broken into two edges by exactly one vertex, then the resultant graph is said to be a subdivision of G and it is denoted by S(G).

Definition 3: A super subdivision of a graph G^{11} , denoted by SS(G) is a graph obtained from G by replacing every edge xy of G with a complete bipartite graph $K_{2,t}$, for some t in such a way that the end vertices x, y of each edge are merged with the two vertices of 2-vertices part of $K_{2,t}$ after removing the edge xy from G.

Definition 4: A super subdivision of a graph G^{11} is said to be an arbitrary super subdivision of a graph G if every edge of a graph G is replaced by an arbitrary $K_{2,m}$ where m varies arbitrarily. We shall denote it by ASS(G).

II. Main Results

Theorem 1: Subdivision of a star graph $K_{1,n}$ is an even sum graph.

Proof: Consider a star graph $K_{1,n}$ with vertices u, u_1, u_2, \dots, u_n and edges uu_i ; $i = 1, 2, \dots, n$. Suppose for each $i = 1, 2, \dots, n$, the edge uu_i is broken into two edges by a vertex v_i . It will divide each edge uu_i of $K_{1,n}$ into two edges uv_i and v_iu_i ; $\forall i = 1, 2, \dots, n$. The resultant graph G is a subdivision of a star graph i.e. $S(K_{1,n})$. The ordinary labeling of $S(K_{1,5})$ is shown in Figure 1.

Clearly, $V(G) = \{u, u_i, v_i \mid 1 \le i \le n\}$, $E(G) = \{uv_i, v_iu_i \mid 1 \le i \le n\}$ and hence |V(G)| = p = 2n + 1 and |E(G)| = q = 2n.

Figure – 1: Ordinary labeling of $S(K_{1,5})$

Now, define a function $f: V(G) \rightarrow \{0, \pm 2, \pm 4, \dots, \pm 2q\}$ as f(u) = -2, $f(u_1) = 0,$ $f(u_i) = 4(i - n - 1); \forall i = 2, 3, \dots, n,$ $f(v_i) = 2(2n + 1 - i); \forall i = 1, 2, \dots, n.$ Then the induced edge labeling f^* for the graph $G = S(K_{1,n})$ is given by $f^*(xy) = f(x) + f(y); \ \forall xy \in E(G).$ $\therefore f^*(uv_i) = f(u) + f(v_i)$ $= 4n - 2i; \forall i = 1, 2, ..., n$ $= \{4n - 2, 4n - 4, \dots, 2n + 2, 2n\},\$ $f^*(v_1u_1) = f(v_1) + f(u_1)$ = 4n $f^*(v_i u_i) = f(v_i) + f(u_i)$ $= 2i - 2; \forall i = 2, 3, ..., n$ $= \{2, 4, 6, \dots, 2n - 2\}.$ Thus, $f^*(xy) \in \{2, 4, 6, \dots, 2n, \dots, 4n\} = \{2, 4, 6, \dots, 2q\}; \forall xy \in E(G).$ So, $f^*(E(G)) = \{2, 4, 6, \dots, 2q\}.$

Therefore, f is the even sum labeling of G, and hence, $S(K_{1,n})$ is an even sum graph.

Illustration 1: Subdivision of $K_{1,5}$ with its even sum labeling is shown in Figure 2.

Figure – 2: Even sum labeling of $S(K_{1,5})$

Theorem 2: Subdivision of a complete bipartite graph $K_{2,n}$ is an even sum graph. **Proof:** Let $V(K_{2,n}) = \{u, v, w_i | 1 \le i \le n\}$ and $E(K_{2,n}) = \{uw_i, vw_i | 1 \le i \le n\}$.

Figure – 3: Ordinary labeling of $S(K_{2,5})$

Let *G* be a graph obtained by breaking edges uw_i into two edges by a vertex u_i and breaking edges vw_i into two edges by a vertex v_i . Then *G* is a subdivision of $K_{2,n}$ i.e. $G = S(K_{2,n})$. Figure 3 show the subdivision of $K_{2,5}$ with its ordinary labeling.

Clearly, $V(G) = \{u, v, u_i, v_i w_i | 1 \le i \le n\}$ and $E(G) = \{uu_i, u_i w_i, vv_i, v_i w_i | 1 \le i \le n\}$. Hence, |V(G)| = p = 3n + 2 and |E(G)| = q = 4n. Define vertex labeling function $f: V(G) \rightarrow \{0, \pm 2, \pm 4, \dots, \pm 2q\}$ as f(u) = 0,

f(v) = -4n $f(u_i) = 2(3n+i); \forall i = 1, 2, \dots, n,$ $f(w_i) = 2(1-2i); \forall i = 1, 2, \dots, n,$ $f(v_i) = 2(2n+i); \forall i = 1, 2, ..., n.$ The induced edge labeling f^* for the graph G is given by $f^*(xy) = f(x) + f(y); \ \forall xy \in E(G).$ ∴ $f^*(uu_i) = f(u) + f(u_i) = 6n + 2i; \forall i = 1, 2, ..., n$ $= \{6n + 2, 6n + 4, \dots, 8n\},\$ $f^*(u_i w_i) = f(u_i) + f(w_i) = 6n + 2 - 2i; \quad \forall i = 1, 2, \dots, n$ $= \{6n, 6n - 2, \dots, 4n + 2\},\$ $f^*(vv_i) = f(v) + f(v_i) = 2i; \forall i = 1, 2, ..., n$ $= \{2, 4, 6, \dots, 2n\},\$ $f^*(v_i w_i) = f(v_i) + f(w_i) = 4n + 2 - 2i; \forall i = 1, 2, ..., n$ $= \{4n, 4n - 2, \dots, 2n + 2\}.$ Thus, $f^*(xy) \in \{2, 4, 6, \dots, 8n\} = \{2, 4, 6, \dots, 2q\}; \forall xy \in E(G).$ So, $f^*(E(G)) = \{2, 4, 6, \dots, 2q\}.$

Therefore, *f* is the even sum labeling of *G*, and hence, $S(K_{2,n})$ is an even sum graph.

Illustration 2: Subdivision of $K_{2,5}$ and its even sum labeling is shown in Figure 4.

Figure – 4: Even sum labeling of $S(K_{2,5})$

Theorem 3: A super subdivision of cycle C_{4n} when each edge is replaced by $K_{2,t}$ is an even sum graph. **Proof:** Suppose $u_1, u_2, \dots, u_{4n-1}, u_{4n}$ are the vertices of given cycle C_{4n} . Let $e_i = u_i u_{i+1}$; $\forall i = 1, 2, \dots, 4n - 1$ and $e_{4n} = u_{4n} u_1$ be the edges of the cycle C_{4n} . Then it's super subdivision $SS(C_{4n})$ is obtained by replacing each edge e_i ; $i = 1, 2, \dots, 4n$ by a complete bipartite graph $K_{2,t}$ for some positive integer t as shown in Figure 5. If we take $G = SS(C_{4n})$ then, $V(G) = \{u_i \mid i = 1, 2, \dots, 4n\} \cup \{v_{i,j} \mid i = 1, 2, \dots, 4n; j = 1, 2, \dots, t\}$ and $E(G) = \{u_i v_{i,j}, v_{i,j} u_{i+1} \mid i = 1, 2, \dots, 4n - 1; j = 1, 2, \dots, t\}$.

Figure – 5: Ordinary labeling of $SS(C_8)$ when each edge is replaced by $K_{2,3}$

Clearly, q = |E(G)| = 8nt. Now, we define a vertex labeling function $f: V(G) \rightarrow \{0, 1, 2, \dots, q\}$ as follow: $f(u_i) = 2t(1-i); \forall i = 1, 2, \dots, 2n,$ $f(u_i) = -2ti; \forall i = 2n + 1, 2n + 2, \dots, 4n,$ $f(v_{i,j}) = 2q - 2(j-1) - 2t(i-1); \forall i = 1, 2, \dots, 4n; \forall j = 1, 2, \dots, t.$ The above vertex labeling pattern with the induced edge labeling f

The above vertex labeling pattern with the induced edge labeling function $f^*: E(G) \to \{2, 4, 6, \dots, 2q\}$ given by $f^*(xy) = f(x) + f(y)$; $\forall xy \in E(G)$ implies the even sum labeling of *G*. Hence, a super subdivision of C_{4n} when each edge of the cycle is replaced by $K_{2,t}$ is an even sum graph.

Illustration 3: Figure 6 shows the even sum labeling of the super subdivision of cycle C_8 when each edge of C_8 is replaced by $K_{2,3}$.

Figure – 6:Even sum labeling of $SS(C_8)$ when each edge is replaced by $K_{2,3}$

Theorem 4: An arbitrary super subdivision of path P_n when each edge e_i of the path is replaced by K_{2,m_i} with arbitrary m_i admits even sum labeling.

Proof: Suppose $u_1, u_2, ..., u_n$ are the vertices of given path P_n . Let $e_i = u_i u_{i+1}$; $\forall i = 1, 2, ..., n-1$ be the edges of P_n . Let *G* be an arbitrary super subdivision of P_n which is obtained from P_n by replacing each edge e_i of P_n by a complete bipartite graph K_{2,m_i} with arbitrary positive integer m_i ; $\forall 1 \le i \le n-1$, in a way that the end vertices of e_i are merged with the two vertices of the two vertices part of K_{2,m_i} , after excluding the edge e_i from P_n .

Figure – 7:Ordinary labeling of *ASS*(*P*₇)

The ordinary vertex labeling of thus obtained graph *G* is shown in Figure 7 which depicts that, $V(G) = \{u_i \mid i = 1, 2, ..., n\} \cup \{v_{ij} \mid i = 1, 2, ..., n - 1; j = 1, 2, ..., m_i\}$ and $E(G) = \{u_i v_{ij}, u_{i+1} v_{ij} \mid i = 1, 2, ..., n - 1; j = 1, 2, ..., m_i\}$. Also, $|V(G)| = q = 2 \sum_{i=1}^{n-1} m_i$.

Now, if we define a vertex labeling function $f: V(G) \rightarrow \{0, 1, 2, \dots, q\}$ as $f(u_1) = 2q$.

$$f(u_i) = 2q - 2\sum_{j=1}^{i-1} m_j; \ \forall \ i = 2, 3, \dots, n,$$

$$f(v_{1j}) = 2 - 2j; \ \forall \ j = 1, 2, \dots, m_1,$$

$$f(v_{ij}) = 2 - 2j - 2\sum_{k=1}^{i-1} m_k; \ \forall \ i = 2, 3, \dots, n-1; \ \forall \ j = 1, 2, \dots, m_i,$$
then this labeling extrem with the indexed of a labeling function $f^*_{ij} F(C) \to C^2 A C$

then this labeling pattern with the induced edge labeling function $f^*: E(G) \to \{2, 4, 6, \dots, 2q\}$ given by $f^*(xy) = f(x) + f(y); \forall xy \in E(G)$ implies the even sum labeling of *G*. Hence, an arbitrary super subdivision of a path P_n when each edge e_i of the path is replaced by K_{2,m_i} with arbitrary m_i admits even sum labeling.

Illustration 4: Even sum labeling of the arbitrary super subdivision of a path P_7 is shown in Figure 8.

Figure – 8:Even sum labeling of *ASS*(*P*₇)

III. Conclusion

This chapter initiates even sum labeling of subdivision, super subdivision and arbitrary super subdivision of some graphs.

References

- [1]. Rosa A. On certain valuation of the vertices of a graph. Theory of Graphs (Rome, July 1966), Gordon and Beach. N.Y. and Paris. 1967; 349–355.
- [2]. Gallian JA. A dynamic survey of graph labeling. The Electronic Journal of Combinatorics. 2021; 24: # DS6.
- [3]. Arockiaraj S, Mahalakshmi P. On odd sum graphs. International Journal of Mathematical Combinatorics. 2013; 4: 58–77.
 [4]. Trivedi MM, Chaudhary Venus. Odd sum labeling for complete bipartite graph and its splitting and subdivision. International
- Journal of Theoretical & Applied Sciences.2022; 14(2): 26–31. [5]. Monika K, Murugan K. Odd-even sum labeling of some graphs. International Journal of Mathematics and Soft Computing.2017;
- 7(1): 57–63.
 [6]. Monika K, Murugan K. Further odd-even sum labeling graphs. International Journal of Mathematics and its Applications.2017; 5(3-
- A): 33–37.
 [7]. Andharia P, Kaneria VJ. Even sum labeling of some graphs. International Journal of Computer & Mathematical Sciences.2018; 7(5): 199–202.
- [8]. Kaneria VJ, Andharia P. Some results on even sum labeling of graphs. Journal of Calcutta Mathematical Society. 2019; 15(2): 129– 138.
- Kaneria VJ, Andharia PP. Further results on even sum labeling of graphs. Global Journal of Pure and Applied Mathematics.2020; 16(2): 155–166.
- [10]. Andharia PP, Kaneria VJ. Even sum property of J_n , B(3, n), TB_n , $P_m(+)\overline{K_n}$ and $(\overline{K_n} \cup P_3) + 2K_1$. IOSR Journal of Mathematics (IOSR-JM).2022; 18(1), Ser. II: 24–30.
- [11]. Sethuraman G, Selvaraju P. Gracefulness of arbitrary super subdivision of graphs. Indian Journal of Pure and Applied Mathematics.2001; 32(7): 1059–1064.