# Even Sum Labeling Of Subdivision, Super Subdivision And Arbitrary Super Subdivision Of Graphs 

M. M. Trivedi ${ }^{1}$, Venus Chaudhary ${ }^{1}$<br>${ }^{1}$ (Department of Mathematics, Maharaja Krishnakumarsinhji Bhavnagar University, Bhavnagar, Gujarat, India)


#### Abstract

: This Study Focuses On Even Sum Property Of Graphs In The Context Of Subdivision, Super Subdivision And Arbitrary Super Subdivision Of Graphs. We Have Established That A Subdivision Of A Star Graph $K_{1, n}$ And A Complete Bipartite Graph $K_{2, n}$ Are Even Sum Graphs. We Have Also Proved That A Super Subdivision Of A Cycle $C_{4 n}$ When Each Edge Is Replaced By $K_{2, t}$ And An Arbitrary Super Subdivision Of Path $P_{n}$ When Each Edge Of The Path Is Replaced By $K_{2, m_{i}}$ With Arbitrary $m_{i}$ Are Even Sum Graphs.


Key Word:Even Sum Labeling, Even Sum Graph, Subdivision, Super Subdivision, Arbitrary Super Subdivision.
Date of Submission: 19-06-2023
Date of Acceptance: 29-06-2023

## I. Introduction

A word 'graph'is used to mean a finite, simple and undirected graph, the number of vertices in a graph is denoted by $p$ or $|V(G)|$ and the number of edges in a graph is denoted by $q$ or $|E(G)|$ throughout this paper. Graph labeling was initiated by Rosa ${ }^{1}$ and a detailed survey on graph labeling is updated every year by Gallian ${ }^{2}$.

In 2013, the idea of odd sum labeling was set by Arockiaraj and Mahalakshmi ${ }^{3}$. Recently, Trivedi and Chaudhary ${ }^{4}$ presented odd sum labeling of a complete bipartite graph and its splitting and subdivision. Monika and Murugan ${ }^{5}$ have introduced odd-even sum labeling in 2017. Monika and Murugan ${ }^{6}$ further concluded that the subdivision of a star graph, subdivision of a bistar graph and an $H$ graph of a path $P_{n}$ are odd-even sum graphs. The notion of even sum labeling was first introduced by Andharia and Kaneria ${ }^{7}$, which was a motivation from odd sum labeling and odd-even sum labeling of graph. They concluded that a slanting ladder graph $S L_{n}$ is an even sum graph for $1<n<9$. Later, Kaneria and Andharia ${ }^{8}$ discussed even sum labeling of path, cycle, complete bipartite graph, grid graph and mirror graph. Kaneria and Andharia ${ }^{9}$ have also proved that Jelly fish graph, splitting graph of $K_{1, n}, K_{2, n}$ and $K_{1, n, n}$ and degree splitting graph of $K_{1, n}$ are even sum graphs. Recently, Andharia and Kaneria ${ }^{10}$ proved that the graphs $J_{n}, B(3, n), T B_{n}, P_{m}(+) \overline{K_{n}}$ and $\left.\overline{K_{n}} \cup P_{3}\right)+2 K_{1}$ are even sum graphs.

This paper deals with even sum labeling of subdivision of a star $K_{1, n}$ and a complete bipartite graph $K_{2, n}$, super subdivision of a cycle $C_{4 n}$ when each edge is replaced by $K_{2, t}$ and an arbitrary super subdivision of path $P_{n}$ when each edge of the path is replaced by $K_{2, m_{i}}$ with arbitrary $m_{i}$.

Definition 1: A $(p, q)$ graph $G=(V, E)$ is said to admit even sum labeling ${ }^{8}$ if there exists an injective function $f: V(G) \rightarrow\{0, \pm 2, \pm 4, \ldots, \pm 2 q\}$ such that the induced mapping $f^{*}: E(G) \rightarrow\{2,4, \ldots, 2 q\}$ defined by $f^{*}(u v)=$ $f(u)+f(v), \forall u v \in E(G)$ is bijective. The function f is called an even sum labeling of $G$. The graph which admits even sum labeling is called even sum graph.
Definition 2: If each edge of a graph $G$ is broken into two edges by exactly one vertex, then the resultant graph is said to be a subdivision of $G$ and it is denoted by $S(G)$.
Definition 3: A super subdivision of a graph $G^{11}$, denoted by $S S(G)$ is a graph obtained from $G$ by replacing every edge $x y$ of $G$ with a complete bipartite graph $K_{2, t}$, for some $t$ in such a way that the end vertices $x, y$ of each edge are merged with the two vertices of 2-vertices part of $K_{2, t}$ after removing the edge xy from G.
Definition 4: A super subdivision of a graph $G^{11}$ is said to be an arbitrary super subdivision of a graph $G$ if every edge of a graph $G$ is replaced by an arbitrary $K_{2, m}$ where $m$ varies arbitrarily. We shall denote it by $\operatorname{ASS}(G)$.

## II. Main Results

Theorem 1: Subdivision of a star graph $K_{1, n}$ is an even sum graph.

Proof: Consider a star graph $K_{1, n}$ with vertices $u, u_{1}, u_{2}, \ldots \ldots, u_{n}$ and edges $u u_{i} ; i=1,2, \ldots \ldots, n$. Suppose for each $i=1,2, \ldots \ldots, n$, the edge $u u_{i}$ is broken into two edges by a vertex $v_{i}$. It will divide each edge $u u_{i}$ of $K_{1, n}$ into two edges $u v_{i}$ and $v_{i} u_{i} ; \forall i=1,2, \ldots \ldots, n$. The resultant graph $G$ is a subdivision of a star graph i.e. $S\left(K_{1, n}\right)$. The ordinary labeling of $S\left(K_{1,5}\right)$ is shown in Figure 1.
Clearly, $V(G)=\left\{u, u_{i}, v_{i} \mid 1 \leq i \leq n\right\}, E(G)=\left\{u v_{i}, v_{i} u_{i} \mid 1 \leq i \leq n\right\}$ and hence $|V(G)|=p=2 n+1$ and $|E(G)|=q=2 n$.


Figure - 1: Ordinary labeling of $S\left(K_{1,5}\right)$
Now, define a function $f: V(G) \rightarrow\{0, \pm 2, \pm 4, \ldots \ldots, \pm 2 q\}$ as

$$
\begin{aligned}
& f(u)=-2 \\
& f\left(u_{1}\right)=0 \\
& f\left(u_{i}\right)=4(i-n-1) ; \forall i=2,3, \ldots \ldots, n \\
& f\left(v_{i}\right)=2(2 n+1-i) ; \forall i=1,2, \ldots \ldots, n .
\end{aligned}
$$

Then the induced edge labeling $f^{*}$ for the graph $G=S\left(K_{1, n}\right)$ is given by

$$
f^{*}(x y)=f(x)+f(y) ; \forall x y \in E(G)
$$

$$
\begin{aligned}
\therefore f^{*}\left(u v_{i}\right)=f(u) & +f\left(v_{i}\right) \\
& =4 n-2 i ; \forall i=1,2, \ldots \ldots, n \\
& =\{4 n-2,4 n-4, \ldots \ldots, 2 n+2,2 n\}, \\
f^{*}\left(v_{1} u_{1}\right)=f\left(v_{1}\right) & +f\left(u_{1}\right) \\
& =4 n, \\
f^{*}\left(v_{i} u_{i}\right) & =f\left(v_{i}\right)+f\left(u_{i}\right) \\
& =2 i-2 ; \forall i=2,3, \ldots \ldots, n \\
& =\{2,4,6, \ldots \ldots, 2 n-2\} .
\end{aligned}
$$

Thus, $f^{*}(x y) \in\{2,4,6, \ldots \ldots 2 n, \ldots \ldots, 4 n\}=\{2,4,6, \ldots \ldots, 2 q\} ; \forall x y \in E(G)$.
So, $f^{*}(E(G))=\{2,4,6, \ldots \ldots, 2 q\}$.
Therefore, $f$ is the even sum labeling of $G$, and hence, $S\left(K_{1, n}\right)$ is an even sum graph.

Illustration 1: Subdivision of $K_{1,5}$ with its even sum labeling is shown in Figure 2.


Figure - 2: Even sum labeling of $S\left(K_{1,5}\right)$
Theorem 2: Subdivision of a complete bipartite graph $K_{2, n}$ is an even sum graph.
Proof: Let $V\left(K_{2, n}\right)=\left\{u, v, w_{i} \mid 1 \leq i \leq n\right\}$ and $E\left(K_{2, n}\right)=\left\{u w_{i}, v w_{i} \mid 1 \leq i \leq n\right\}$.


Figure - 3: Ordinary labeling of $S\left(K_{2,5}\right)$
Let $G$ be a graph obtained by breaking edges $u w_{i}$ into two edges by a vertex $u_{i}$ and breaking edges $v w_{i}$ into two edges by a vertex $v_{i}$. Then $G$ is a subdivision of $K_{2, n}$ i.e. $G=S\left(K_{2, n}\right)$. Figure 3 show the subdivision of $K_{2,5}$ with its ordinary labeling.
Clearly, $V(G)=\left\{u, v, u_{i}, v_{i} w_{i} \mid 1 \leq i \leq n\right\}$ and $E(G)=\left\{u u_{i}, u_{i} w_{i}, v v_{i}, v_{i} w_{i} \mid 1 \leq i \leq n\right\}$.
Hence, $|V(G)|=p=3 n+2$ and $|E(G)|=q=4 n$.
Define vertex labeling function $f: V(G) \rightarrow\{0, \pm 2, \pm 4, \ldots \ldots, \pm 2 q\}$ as

$$
f(u)=0,
$$

$$
\begin{aligned}
& f(v)=-4 n, \\
& f\left(u_{i}\right)=2(3 n+i) ; \forall i=1,2, \ldots \ldots, n, \\
& f\left(w_{i}\right)=2(1-2 i) ; \forall i=1,2, \ldots \ldots, n, \\
& f\left(v_{i}\right)=2(2 n+i) ; \forall i=1,2, \ldots \ldots, n .
\end{aligned}
$$

The induced edge labeling $f^{*}$ for the graph $G$ is given by

$$
\begin{aligned}
& f^{*}(x y)=f(x)+f(y) ; \forall x y \in E(G) \text {. } \\
& \therefore f^{*}\left(u u_{i}\right)=f(u)+f\left(u_{i}\right)=6 n+2 i ; \forall i=1,2, \ldots \ldots, n \\
& =\{6 n+2,6 n+4, \ldots \ldots, 8 n\} \text {, } \\
& f^{*}\left(u_{i} w_{i}\right)=f\left(u_{i}\right)+f\left(w_{i}\right)=6 n+2-2 i ; \forall i=1,2, \ldots \ldots, n \\
& =\{6 n, 6 n-2, \ldots \ldots, 4 n+2\}, \\
& f^{*}\left(v v_{i}\right)=f(v)+f\left(v_{i}\right)=2 i ; \forall i=1,2, \ldots \ldots, n \\
& =\{2,4,6, \ldots \ldots, 2 n\} \text {, } \\
& f^{*}\left(v_{i} w_{i}\right)=f\left(v_{i}\right)+f\left(w_{i}\right)=4 n+2-2 i ; \forall i=1,2, \ldots \ldots, n \\
& =\{4 n, 4 n-2, \ldots \ldots, 2 n+2\} \text {. }
\end{aligned}
$$

Thus, $f^{*}(x y) \in\{2,4,6, \ldots \ldots, 8 n\}=\{2,4,6, \ldots \ldots, 2 q\} ; \forall x y \in E(G)$.
So, $f^{*}(E(G))=\{2,4,6, \ldots \ldots, 2 q\}$.
Therefore, $f$ is the even sum labeling of $G$, and hence, $S\left(K_{2, n}\right)$ is an even sum graph.
Illustration 2: Subdivision of $K_{2,5}$ and its even sum labeling is shown in Figure 4.


Figure - 4: Even sum labeling of $S\left(K_{2,5}\right)$
Theorem 3: A super subdivision of cycle $C_{4 n}$ when each edge is replaced by $K_{2, t}$ is an even sum graph.
Proof: Suppose $u_{1}, u_{2}, \ldots \ldots \ldots, u_{4 n-1}, u_{4 n}$ are the vertices of given cycle $C_{4 n}$.
Let $e_{i}=u_{i} u_{i+1} ; \forall i=1,2, \ldots \ldots, 4 n-1$ and $e_{4 n}=u_{4 n} u_{1}$ be the edges of the cycle $C_{4 n}$. Then it's super subdivision $S S\left(C_{4 n}\right)$ is obtained by replacing each edge $e_{i} ; i=1,2, \ldots \ldots, 4 n$ by a complete bipartite graph $K_{2, t}$ for some positive integer $t$ as shown in Figure 5. If we take $G=S S\left(C_{4 n}\right)$ then,
$V(G)=\left\{u_{i} \mid i=1,2, \ldots \ldots, 4 n\right\} \cup\left\{v_{i, j} \mid i=1,2, \ldots \ldots, 4 n ; j=1,2, \ldots \ldots, t\right\}$ and
$E(G)=\left\{u_{i} v_{i, j}, v_{i, j} u_{i+1} \mid i=1,2, \ldots \ldots, 4 n-1 ; j=1,2, \ldots \ldots, t\right\}$

$$
\cup\left\{u_{4 n} v_{4 n, j}, v_{4 n, j} u_{1} \mid j=1,2, \ldots \ldots, t\right\} .
$$



Figure - 5: Ordinary labeling of $\operatorname{SS}\left(C_{8}\right)$ when each edge is replaced by $K_{2,3}$
Clearly, $q=|E(G)|=8 n t$.
Now, we define a vertex labeling function $f: V(G) \rightarrow\{0,1,2, \ldots \ldots, q\}$ as follow:

$$
\begin{aligned}
& f\left(u_{i}\right)=2 t(1-i) ; \forall i=1,2, \ldots \ldots, 2 n, \\
& f\left(u_{i}\right)=-2 t i ; \forall i=2 n+1,2 n+2, \ldots \ldots, 4 n, \\
& f\left(v_{i, j}\right)=2 q-2(j-1)-2 t(i-1) ; \forall i=1,2, \ldots \ldots, 4 n ; \forall j=1,2, \ldots \ldots, t .
\end{aligned}
$$

The above vertex labeling pattern with the induced edge labeling function $f^{*}: E(G) \rightarrow\{2,4,6, \ldots \ldots, 2 q\}$ given by $f^{*}(x y)=f(x)+f(y) ; \forall x y \in E(G)$ implies the even sum labeling of $G$. Hence, a super subdivision of $C_{4 n}$ when each edge of the cycle is replaced by $K_{2, t}$ is an even sum graph.

Illustration 3: Figure 6 shows the even sum labeling of the super subdivision of cycle $C_{8}$ when each edge of $C_{8}$ is replaced by $K_{2,3}$.


Figure - 6:Even sum labeling of $\operatorname{SS}\left(C_{8}\right)$ when each edge is replaced by $K_{2,3}$

Theorem 4: An arbitrary super subdivision of path $P_{n}$ when each edge $e_{i}$ of the path is replaced by $K_{2, m_{i}}$ with arbitrary $m_{i}$ admits even sum labeling.
Proof: Suppose $u_{1}, u_{2}, \ldots \ldots, u_{n}$ are the vertices of given path $P_{n}$. Let $e_{i}=u_{i} u_{i+1} ; \forall i=1,2, \ldots \ldots, n-1$ be the edges of $P_{n}$. Let $G$ be an arbitrary super subdivision of $P_{n}$ which is obtained from $P_{n}$ by replacing each edge $e_{i}$ of $P_{n}$ by a complete bipartite graph $K_{2, m_{i}}$ with arbitrary positive integer $m_{i} ; \forall 1 \leq i \leq n-1$, in a way that the end vertices of $e_{i}$ are merged with the two vertices of the two vertices part of $K_{2, m_{i}}$, after excluding the edge $e_{i}$ from $P_{n}$.


Figure - 7:Ordinary labeling of $\operatorname{ASS}\left(P_{7}\right)$
The ordinary vertex labeling of thus obtained graph $G$ is shown in Figure 7 which depicts that, $V(G)=\left\{u_{i} \mid i=1,2, \ldots \ldots, n\right\} \cup\left\{v_{i j} \mid i=1,2, \ldots \ldots, n-1 ; j=1,2, \ldots \ldots, m_{i}\right\}$ and $E(G)=\left\{u_{i} v_{i j}, u_{i+1} v_{i j} \mid i=1,2, \ldots \ldots, n-1 ; j=1,2, \ldots \ldots, m_{i}\right\}$.
Also, $|V(G)|=q=2 \sum_{i=1}^{n-1} m_{i}$.
Now, if we define a vertex labeling function $f: V(G) \rightarrow\{0,1,2, \ldots \ldots, q\}$ as

$$
f\left(u_{1}\right)=2 q,
$$

$$
\begin{gathered}
f\left(u_{i}\right)=2 q-2 \sum_{j=1}^{i-1} m_{j} ; \forall i=2,3, \ldots \ldots, n \\
f\left(v_{1 j}\right)=2-2 j ; \forall j=1,2, \ldots \ldots, m_{1}, \\
f\left(v_{i j}\right)=2-2 j-2 \sum_{k=1}^{i-1} m_{k} ; \forall i=2,3, \ldots \ldots, n-1 ; \forall j=1,2, \ldots \ldots, m_{i},
\end{gathered}
$$

then this labeling pattern with the induced edge labeling function $f^{*}: E(G) \rightarrow\{2,4,6, \ldots \ldots, 2 q\}$ given by $f^{*}(x y)=f(x)+f(y) ; \forall x y \in E(G)$ implies the even sum labeling of $G$. Hence, an arbitrary super subdivision of a path $P_{n}$ when each edge $e_{i}$ of the path is replaced by $K_{2, m_{i}}$ with arbitrary $m_{i}$ admits even sum labeling.

Illustration 4: Even sum labeling of the arbitrary super subdivision of a path $P_{7}$ is shown in Figure 8.


Figure - 8: Even sum labeling of $\operatorname{ASS}\left(P_{7}\right)$

## III. Conclusion

This chapter initiates even sum labeling of subdivision, super subdivision and arbitrary super subdivision of some graphs.

## References

[1]. Rosa A. On certain valuation of the vertices of a graph. Theory of Graphs (Rome, July 1966), Gordon and Beach. N.Y. and Paris. 1967; 349-355.
[2]. Gallian JA. A dynamic survey of graph labeling. The Electronic Journal of Combinatorics. 2021; 24: \# DS6.
[3]. Arockiaraj S, Mahalakshmi P. On odd sum graphs. International Journal of Mathematical Combinatorics. 2013; 4: 58-77.
[4]. Trivedi MM, Chaudhary Venus. Odd sum labeling for complete bipartite graph and its splitting and subdivision. International Journal of Theoretical \& Applied Sciences.2022; 14(2): 26-31.
[5]. Monika K, Murugan K. Odd-even sum labeling of some graphs. International Journal of Mathematics and Soft Computing.2017; 7(1): 57-63.
[6]. Monika K, Murugan K. Further odd-even sum labeling graphs. International Journal of Mathematics and its Applications.2017; 5(3A): 33-37.
[7]. Andharia P, Kaneria VJ. Even sum labeling of some graphs. International Journal of Computer \& Mathematical Sciences.2018; 7(5): 199-202.
[8]. Kaneria VJ, Andharia P. Some results on even sum labeling of graphs. Journal of Calcutta Mathematical Society.2019; 15(2): 129138.
[9]. Kaneria VJ, Andharia PP. Further results on even sum labeling of graphs. Global Journal of Pure and Applied Mathematics.2020; 16(2): 155-166.
[10]. Andharia PP, Kaneria VJ. Even sum property of $J_{n}, B(3, n), T B_{n}, P_{m}(+) \overline{K_{n}}$ and $\left(\overline{K_{n}} \cup P_{3}\right)+2 K_{1}$. IOSR Journal of Mathematics (IOSR-JM).2022; 18(1), Ser. II: 24-30.
[11]. Sethuraman G, Selvaraju P. Gracefulness of arbitrary super subdivision of graphs. Indian Journal of Pure and Applied Mathematics.2001; 32(7): 1059-1064.

