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ABSTRACT 
In this paper the concept of perfect codes to Quadratic Residue Cayley graph modulo an odd prime p, is 

introduced. Let p be an odd prime & let S be the set of quadratic residue modulo p. Consider the set S*  ={ s, p-

s/𝑠 ∈ 𝑆}. Then S* is a symmetric subset of an additive abelian group of (ZP,⊕), of integers 0,1,2,…, P-1. The 

cayley graph of the group (ZP,⊕) is associated with the symmetric subset S* of   ZP is called quadratic residue 

Cayley graph. Associated with odd prime P and it is denoted by G(Zp,Q), where the vertex set V=Zp={ 

0,1,2,….p-1} and edge set 𝐸 = {(𝑥, 𝑦)/𝑥, 𝑦 ∈ V, x-y ∈ 𝑆∗ or y-x ∈ 𝑆∗}. To obtain perfect codes the between the 

vertices of the cayley residue of the graph G(Zp,Q) is determined, then the perfect codes are found by using 

quadratic residue  Cayley Graph, Also we show that these perfect codes are not unique for this graph. 
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I. Introduction 
Unitary Cayley graphs, generator Cayley graphs and their cycle structure were studied by Dejter [3], 

Berrizbeite, Giudici [1,2]. Significant contributions are made  to this class of graphs in recent times. For 

complete graphs also this problem has been studied. In this paper we have made  an attempt to study this aspect 

for the Cayley graphs associated with quadratic residue modulo an odd prime p.   Domination theory of graphs 

is an important branch of Graph Theory and has many applications in Engineering, Communication Networks 

and many others. Allan and Laskar (1978); Allan et al. (1984); Cockayne and Hedetniemi (1977); Haynes et al. 

(1998) have studied various domination parameters of graphs. Graphs associated with certain arithmetical 

functions which are usually called arithmetical graphs have been studied extensively by many researchers. Here 

we consider quadratic residue Cayley graph G(Zp, Q). 

Originally, perfect code was always associated with coding theory, specifically in error correcting 

codes [6]. This topic is then extended in other fields, including graph theory. In 1973, Biggs [7] started the idea 

by studying the perfect codes of distance-transitive graphs. Later in 1986, Kratochvil [8] introduced a variant of 

perfect codes in graphs, which is the t-perfect code. The study was done on complete bipartite graph and 

products of graphs, where the independent sets of the graphs are considered to determine the t-perfect codes. 

 

II.Preliminaries 
Definition 1.1 

Let p be an odd prime and n a positive integer such that n ≡ 0 (modp). If the quadratic congruence,x2 

´≡n(modp) has a solution, then n is called a quadratic residue mod p and it is written as nRp. 

Let p be an odd prime and let S be the set of quadratic residues modulo p. Consider the set S* = {s, p − 

s/s ∈ S}. Then S*  is a symmetric subset of the additive abelian group (Zp, ⊕) of integers 0, 1, 2, . . . , p − 1 

modulo p. 

 

Definition 1.2. 

The Cayley graph of the group (Zp,(+)) associated with the symmetric subset S* of Zp is called the 

quadratic residue Cayley graph associated with odd prime P and it is denoted by G (Zp,Q). Where the vertex set 

V=Zp={ 0,1,2,….p-1} and edge set E = {(x, y)/x, y ∈ V, x-y ∈ S∗ or y-x ∈ S∗}. 

 

Definition 1.3 

Let p be an odd prime, S, the set of quadratic residues modulo p and let S* = {s, p – s / s ∈S, s≠ p}. 

The quadratic residue Cayley graph G(Zp, Q) is defined as the graph whose vertex set is Zp = {0, 1, 2,…, (p – 

1)} and the edge set E = {(x, y) / x – y or y – x is in S*}. 
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Definition 1.4 

Distance between the two vertices of a graph 

The distance between two distinct vertices x & y of a connected simple graph is the length of the 

shortest path x & y. 

 

Definition 1.5 

e-error-correcting code: 

If Se(x) is the set of neighborhood elements of x with distance less than or equal to e, then a code C is 

an e-error-correcting code if for all x and y in C, Se(x) ∩ Se(y) = ∅. when x and y are distinct. 

 

Definition 1.6 

perfect code 

If for an e-error-correcting code C, the union, ⋃ 𝑆e𝑥∈𝐶 (x) = V, then the code is called a perfect code. 

 

Definition 1.7 

e-perfect code 

If an e-error-correcting code C of a set of vertices V satisfies the union operation, i.e, ⋃ 𝑆e𝑥∈𝐶 (x) = V 

then C is called an e-perfect code, where e is the maximum distance between two vertices in the set V. 

 

III.Main Results : 
The graph G(Z13, Q) is given below (Fig 1). 

 
 

Proposition 1. 

Let  the graph G(Z13, Q)   be the quadratic residue Cayley Graph. Then G(Z13, Q)   has  the 1-perfect 

code . But it has no error correcting code. 

 

Proof: 

Suppose The graph G (Z13, Q) graph is shown figure 

. Based on definition e-error-correcting codes are determined. 

The set of all neighborhoods of elements of G (Z13, Q)   are determined. 

When e = 1, the set S1(x), which is the set of all neighborhood elements with distance less than or 

equal to one (namely 0 and 1) are determined for all x in G (Z13, Q)  . 

 

The sets are listed as follows. 

 S1(0)={0,1,3,4,9,10,12}  S1(7)={3,4,6,7,8,10,11} 

 S1(1)={ 0,1,2,4,5, 10,11}  S1(8)={4,5,7,8,9,11,12} 

 S1(2)={1,2,3,5,6,11,12}  S1(9)={0,5,6,8,9,10,12} 

 S1(3)={0,2,3,4,6,7,12}  S1(10)={0,1,6,7,9,10,11} 

 S1(4)={0,1,3,4,5,7,8}  S1(11)={1,2,7,8,10,11,12} 

 S1(5)={1,2,4,5,6,8,9}  S1(12) ={0,2,3,8,9,11,12} 

 S1(6)={2,3,5,6,7,9,10}  

 

Let C = {0, 1, 7} be a code. Since S1(0)∩S1(1) ≠ ∅, S1(0)∩S1(7) ≠ ∅ and  S1(1)∩S1(7) ≠ ∅, then the 

code C is not 1-error-correcting code of G (Z13, Q). However, from Definition  a, since S1(0) ∪S1(1) ∪ S1(7)  = 

{0,1,2,3,4,5,6,7,8,9,10,11,12} = G (Z13, Q)  , then the code C = {0,1,7} is a 1-perfect code of G (Z13, Q). 
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Proposition 2. 

Let the graph G(Z13, Q)   be the commuting the  quadratic residue Cayley Graph. Then G(Z13, 

Q) is  2-perfect code.  But it has no error correcting code. 

Proof: 

Suppose G(Z13, Q)  graph is shown figure 1. To obtain the 2-error-correcting code. The set of 

neighborhood of  elements of the vertices  G(Z13, Q) is firstly  determined for distance less than or equal to two 

are listed below. 

S2(0)={0,1,2,3,4,5,6,7,8,9,10,11,12} = )= S2(1)=S2(2)= S2(3)= S2(4)= S2(5)= S2(6)= S2(6)= S2(7)= 

S2(8)= S2(9)= S2(10)= S2(11) )= S2(12) 

Let C={0,1,2,3,4,5,6,7,8,9,10,11,12} be a code. From the above sets S2(0)∩S2(1) ≠ ∅, S2(0)∩S2(2) ≠ 

∅ ,… , S2(0)∩S2(12) ≠ ∅, S2(x1)∩S2(x2) ≠ ∅ for all x1, x2 in C. Therefore, C is not a 2-error-correcting code of 

G(Z13, Q). 

In addition, the union S2(0)US2(1) = C is also a 2-perfect code of G(Z13, Q).. 
From Figure 1, the maximum distance of the graph is two. Therefore, when e > 2, the results of the e-

perfect codes will be the same as e = 2. 

 

II. Conclusion 
The quadratic residue Cayley Graph G (Z13, Q) constructed, Based on the graph, the  e-perfect codes 

are determined. It has been found that the graph G (Z13, Q)  has  1-perfect code for all natural numbers 

i.e.n=1,2,3….. However, the graph has several 2-perfect codes for n≥ 4. Meanwhile for the graph G (Z13, Q), 

there is no 1-error correcting codes and 2-error correcting codes, but all singleton sets are perfect codes of the 

graph. From the results, it is concluded that if n is the maximum distance of a graph, then the e-perfect codes of 

the graph when e > n will be the same as e = n 
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