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Abstract:  
This research work investigates the nonlinear dissemination of electrostatic ion acoustic solitary waves (IASWs) 

for weakly relativistic regime by considering the thermal ions speed is comparable with the speed of light and 

degenerates electrons, positrons. It is assumed that the densities of electrons and positrons follow the Fermi law. 

The Korteweg-de Varies (KdV) equation is derived to analyze the solation solution for both cases of ultra-

relativistic and non-relativistic degenerated electrons and positrons by using the well known reductive 

perturbation technique. It is the angsts method which is employed to carry out the integration of this equation. 

The amplitude, width and  phase velocity of solutions, and electrostatic IASWs together with the influence of 

unperturbed Fermi type positron to electron density ratio, Fermi type electron to positron temperature ratio, 

ion to electron temperature ratio and relativistic stream factor are described (graphically) to study the small 

amplitude localized in weakly relativistic of IASWs for an un-magnetized three component plasma system 

consisting of Fermi type electrons and positrons in space plasma as well as some astrophysical compact objects. 
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I. Introduction 
The three component un-magnetized or magnetized plasmas for relativistic regimes are one of the most 

enigmatic constructs in the present day of physics. They draw physicist’s attention as the paradigmatic objects 

to test possible plasma theories of relativistic regimes. Although still there is no convincing observational data 

in favor of conclusively proving the existence of electron-positron-ions plasmas in relativistic regimes, there 

exist certainly sufficient evidences that make the study of such objects and the effects on their environment a 

matter of great importance to space physics as well as some astrophysics compact objects. It is therefore of 

interest to formulate plasma physics problems in the context of relativity, when the particle velocities are 

compared with light speed. It can be applied in observing of many issues of space physics as well as 

astrophysical environments such as plasma sheet boundary layer of earth’s magnetosphere [1], in laser-plasma 

interaction [2, 3], the polar regions of neutron stars [4], in pulsar magnetospheres [5], active galactic nuclei [6], 

at the center of Milky Way galaxy [7], in primordial universe and in the process of expanding universe [5, 8, 9] 

etc. In many previous literatures [10-18], researchers have described many issues concerning the electron-

positron-ion plasmas. Most of these studies are used to analyze the basic properties of linear and nonlinear 

physical phenomena to the three or two component plasmas system for non-relativistic regime. Furthermore, the 

electrostatic effects of ion acoustic (IA), dust ion acoustic (DIA), electron acoustic (EI) waves, etc for 

relativistic regime can no longer be invisible. Thus, the basic properties of ion acoustic waves or electron 

acoustic waves for relativistic regime have appeared as one of the most interesting research areas for the 

scholars day by day. 

It is observable that a very few works has been carried out for investigating the basic properties of 

nonlinear waves for a fully ionized collision less e-p-i plasma system for relativistic regimes. For instance, Shah 
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et al. [19] have analyzed the electrostatic compressive and rare active shocks and solation relativistic plasmas 

occurring in polar regions of pulsar, Gill et al. [20] have described the influences of the plasma parameters on 

the propagation of ion acoustic solation in weakly relativistic magnetized electron-positron-ion plasma, 

Trebuchet and Debarring [21] have described the ion-acoustic solitary waves in fully relativistic ion-election-

positron plasma, Masood and Rizvi [22] have investigated two dimensional electrostatic shock waves in e-p-i 

plasmas and Saeed et al. [23] have investigated the solution propagation in relativistic three component plasma 

system which consists of Boltzmann electron, positron and relativistic thermal ions. Therefore, the theoretical 

and numerical study of nonlinear structures, namely solitary structure, shock structure, double layers associated 

with IA, DIA, EI waves for relativistic regimes have received a great interest in space, astrophysical and 

laboratory plasmas. 

Recently, quantum plasmas have drawn reasonable attention of researcher scholars, due to their 

significant applications in astrophysical environments [24], in high intense laser solid density experiments [25], 

in ultra cold plasmas [26], in micro-plasmas [27] and in micro electronics devices [28]. Chandrasekhar [29] has 

been developed the mathematical expression in the general form ]sinh31)32([
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for electron degeneracy pressure in a fully degenerate Fermi gas, where h , c and mcpr Fe /  are the Plank 

constant, speed of light and normalized relativity parameter respectively. Then the electron number densities 

can be defined as )3/8( 333 hcmn ee  . It is notated that 
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 as r . Therefore, the ratio of Fermi type electron and positron temperature for a three 

dimensional non-relativistic zero temperature with degenerate electrons can be defined as 
3/2  F , whereas 

3/1 F for ultra-relativistic Fermi-gas [30]. There is amount of literature [31-38], where the authors have 

described in concerning many issues for plasmas by considering degenerates electrons and positrons.  Zebra et 

al. [31] have investigated a collision less e-p-i quantum plasma with ultra-relativistic degenerate electrons and 

positrons and studied the existence regions for ion solitary pulses. Roy et al. [32] thought out an e-p-i plasma 

and meticulously examined the principal features of solitary waves and double layers. Noah [33] have studied 

the nonlinear propagation of PA waves in an e-p plasma with an electron beam and scrutinized that the 

maximum amplitude of the wave decreases as the positron temperature increases and the region of PA waves 

spreads as the positron temperature increases. Zohar et al. [34] have assumed dense plasma containing non-

relativistic degenerate cold ion and both non-relativistic and ultra-relativistic degenerate electron fluids and 

studied the fundamental features of electrostatic shock structures. In contrary to the classical plasma, it is 

illustrious that quantum plasma (containing electrons, positrons and ions) exhibits the properties of high-plasma 

particle number densities and low-temperatures [35]. Mehdipoor and Neirameh [36] have investigated the 

nonlinear propagation of IA waves in an ideal plasmas containing degenerate electrons. More recently, Hossen 

et al. [37, 38] have considered relativistic quantum plasma and investigated the profiles of solitary, shock and 

double layer structures. Since, the astrophysical quantum plasmas can be confined by stationary heavy ions. So, 

the effect of the heavy ions has to be taken into account, especially for astrophysical observations (such as white 

dwarfs, neutron stars, black holes, etc), where the degenerate plasma pressure and heavy ions play an important 

role in the formation and stability of the existing waves. All of the authors did not consider the effect of heavy 

ions, where the ions speed is comparable to speed of light and their different charging situations which can 

significantly modify the propagation of solitary structures. As far as we know, no theoretical and numerical 

investigation has been made on study the IAWs for weakly relativistic regimes in a three component plasma 

system by considering relativistic thermal ions and degenerate electrons and positrons. Therefore, the main 

motivation of our research work to study the basic features of IASWs by deriving the KdV equation in a dense 

plasma containing electrons, positions for both cases of non-relativistic as well as ultra-relativistic Fermi gas 

and relativistic thermal ions. 

This paper is organized as follows: In Section 2, we summarize the proposed governing fluids 

equations in a fully ionized un-magnetized collision less plasma system for weakly relativistic regime. The 

derivation and analytical solution to the KdV equation is given in Section 3. We investigate the nonlinear 

propagation of IASWs found in the influence of the related plasma parameters for both cases of non-relativistic 

degenerate electrons and ultra-relativistic Fermi gas in Section 4. Finally, we present our conclusion in section 

5. 

 

II. Governing Fluid Equations 
We consider the nonlinear propagation of a fully ionized un-magnetized collision less plasma system 

for weakly relativistic regime consisting of degenerate electrons, positrons and relativistic thermal ions. The 
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densities of degenerate electrons and positrons are assumed to be obeying form the Fermi laws. At equilibrium, 

the charge neutrality condition is 000 ipe nnn  , where 0in , 0en  and 0pn  are unperturbed ion , unperturbed 

Fermi type electron and unperturbed Fermi type positron densities respectively. According to the conservation 

law of mass and momentum, the basic normalized ion continuity and momentum equations can be written as 

follows: 
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where, in is the ion number density normalized by unperturbed ion density, iu is ion fluid velocity 

normalized by ion acoustic speed 
2/1)/( ies mTC  ( im is the mass of ions and eT  is the electron temperature), 

  is electrostatic potential normalized by )/( eTe  (e is the electron charge), ei TT / is the ion to electron 

temperature ratio, x is the space variable normalized by the Debye length 
2/12 )4/( enT eoeDe   and t is the 

time variable normalized by plasma frequency
2/121 )4/( enm eoipi  

. The Lorentz factor for relativistic 

thermal ions is defined as
2/122 )/1(  cui , where c is the speed of light. In the case of weakly relativistic 

regime, it can be defined as 
22 2/1 cui . 

The system is closed via the following Poisson’s equation: 
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where, en and pn  indicates the densities of degenerate positrons and electrons respectively. The 

degenerate densities of electron and positrons are considered as Fermi types, which are obtained from the 

Thomas Fermi laws. Thus, the normalized densities of Fermi type electron and positron can be written in the 

following term: 
2/3)1( en  and 

2/3)1(  pnp     (4) 

where, p  and   denotes the unperturbed positron to electron density ratio and the Fermi type 

electron to positron temperature ratio respectively. It is notable that the ratio of Fermi type electron and positron 

temperature have defined as 
3/2  for non-relativistic zero temperature with degenerate electrons and 

3/1 for ultra-relativistic Fermi-gas. The normalized densities of electron and positron for a proper 

fraction of  can be expanded in following form: 
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It is notable that the basic fluid equations can be reduced in analyzing the nonlinear propagation of a 

three component un-magnetized plasma system consisting of Fermi type electrons, positrons and thermal ions 

as in the limit 1 . 

 

III. Derivation and Analytical Solution to the Korteweg-de Vries (KdV) Equation 
In this section, we have derived the KdV equation from the proposed governing fluid equations that are 

presented in section 2 via the well known reductive perturbation approach [36] and evaluated the analytical 

solution to this equation via the ansatz method [39, 40]. 

Firstly, we can be combined x and t by the following starched variables: 
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where  is a very small positive quantity and 0  is the phase velocity to be determined later. By setting eq. (7), 

the equations (1) to (3) can be converted in the following form: 
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Secondly, we can be expanded the quantities in , iu  and   as follows: 
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By substituting eq. (11) into the equations (8) to (10), we can be devolved equations in different order of . The 

lowest order of   gives the following equations: 
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where cuii /,5.11 0
2

1   . By simplifying (12) equation to (14), the linear phase velocity can be 

obtained as follows: 
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The next order of   gives the following nonlinear evolution equations (NLEEs): 
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where 
2

2 5.1  i . Eliminating the second order perturbed quantities from the above NLEEs along with (12) 

to (15), we get 
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This is the well known K-dV equation and it is very useful for investigating the nonlinear propagation 

of IASWs for weakly relativistic regime in an un-magnetized three component plasma system. The nonlinear 

coefficient L  and dispersive coefficients M  are defined as follows: 
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To get the stationary solutions to the K-dV equation (19), we can be combined the starched variables 

by a compound variable   as ,),(),( )1()1(  V  where V is the constant speed of the moving 

frame. Then the eq. (19) can be converted to a nonlinear ordinary differential equation as follows: 
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Integrating (22) once with regards to  and choosing the integrated constant to be zero for time homogeneity, 

we have 
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To investigate the bright Soliton, the solution of the eq. (23) can be considered according to the ansatz method 

as 
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where A  and B  denotes the amplitude and inverse width of the soliton respectively. 

The first and second derivatives of )()1(   with respect to   are given below: 
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By substituting eq. (24) along with (25) into the equation (23), we obtain 

,0)(cosh)1()(cosh)1(

)(cosh)(cosh
2

)(cosh

222

222













BqqMABBqqMAB

BqMABBA
L

BVA

qq

qqq

 (26) 

By balancing the exponents of each pair of cosh that appeared in (26) yields 2q . Then we collect the 

coefficients of the same power in cosh and setting them to zeros, we get a system of algebraic equation, which 

are overlooked for simplicity. Solving the resulting system of equation, we get 
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So, the stationary solitary wave solution to the equation (19) can be written in the following term: 
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As 0V , equation (28) evidently shows that the small IASWs, that is, positive bright soliton exists if 

0L , negative bright soliton exists if 0L  and no soliton can exists around .0L  If we consider the 

stationary solution to the equation (19) according to the ansatz method as )(tanh)()1(  BA q , we observe 

that no dark solitons exists for the proposed model equations that are presented in section 2.  One can be easily 

verified the stability of the KdV equation by impose the appropriate boundary conditions for localized 

perturbations, namely ,0,0
)1(
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 at   to investigate the asymptotic behavior 

of (23) and linearized it with regards to 
)1( .  As 0V , it should be notable that there will be a stable soliton 

if 0M , else there will be an oscillatory soliton. 

 

IV. Results and Discussion 
In this section, we have described the basic features of ion acoustic solitary waves for weakly 

relativistic regime in a three component unmagnetized plasma system containing Fermi type positrons, electrons 

and relativistic thermal ions. 

The nonlinear oscillations of small amplitude IASWs in e-p-i plasmas have considered by analyzing 

the solution (28) to the KdV equation for weakly relativistic regime. We have investigated graphically the width, 

amplitude and phase velocity of solution, and electrostatic propagation of IASWs for both cases of ultra-

relativistic and non-relativistic Fermi type electrons and positrons found by the variation of unperturbed Fermi 

type positron to electron density ratio( p ), ion to electron temperature ratio ( ), Fermi type electron to 
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positron temperature ratio parameter( ) and relativistic streaming factor  . Fig 1 (a), 1(b) and 1(c) displays 

the effects of phase velocity )( 00 iuv  with relativistic streaming factor  at different values of ,   and 

p corresponds to the fixed values of the others parameters respectively for both cases of ultra-relativistic Fermi 

gas and non-relativistic degenerate electrons. From these Figures, we observe that the phase velocity increases 

in increasing of and  , but decreases in increasing of p . Fig. 2 and 3 displays the variation of amplitude 

and width of soliton with  at different values of ,   and p  corresponds to the fixed values of the other 

related plasma parameters for both cases respectively. 

Fig 4 displays the 3D plot of increasing IASWs for both cases of ultra-relativistic and non-relativistic 

Fermi type electrons/positrons with fixed values of 3.0 ,  9.00 iu , 1.0 ,  1.0  and 3.0p , 

whereas Fig 5 presents the variations of electrostatic IASWs for both cases at different values    with  same 

values of the other parameters. It has been shown that the electrostatic potential have a remarkable effect on 

solitary waves and represents the solitary wave of bell type or positive bright soliton. The Fig. 5 shows that the 

peak amplitude as well as width of the soliton increases with increases of . Fig. 6 exhibits the electrostatic 

effects of IASWs at different values of   for both cases with fixed values of 3.0 , 9.00 iu , 1.0  

and 5.0p . The Fig. 6 shows that the peak amplitude of the soliton decreases with increases of   and 

represent the narrow type solitary wave. Fig. 7 represents the electrostatic effects of IASWs at different values 

of p  for both cases with fixed values of 3.0 , 9.00 iu , 1.0  and 1.0 . The Fig. 7 shows that the 

peak amplitude as well as width of the solitary wave decreases with increases of p  and represent the bell type 

solitary wave for both cases of Fermi type electrons and positrons. Finally, Fig. 8 exhibits the variation of 

electrostatic IASWs potential in an increasing streaming velocity 0iu , that is 04.0 (red curve), 

1.0 (green curve), 4.0 (golden curve), and 7.0  (blue curve) with fixed values of 5.0 , 

5.0p  and 3.0  for both cases of ultra-relativistic Fermi gas and non-relativistic degenerate electrons. 

Form the Fig. 8, we observe that the peak amplitude of solitary wave increases but the width of the solitary 

wave decreases with increases of streaming velocity 0iu  for both cases of Fermi type electrons and positrons. 

Thus we should point out the effects of Fermi type positrons and electrons on thermal ions that have been 

considered in this investigation would be very useful in perception to study the propagation of plasmas, where 

the particle velocity is comparable with the speed of light in interstellar, astrophysical and space plasmas, 

particularly in plasma sheet boundary layer of earth’s magnetosphere, in laser-plasma interaction, quark-gluon 

plasma, relatively massive white dwarfs, dark-matter halos etc. 

 

V. Concluding Remarks 
In this research work, we have considered a three component un-magnetized plasma systems by 

composing of Fermi type electrons, positrons and the ions speed is comparable with the speed of lights. The 

reductive perturbation technique has implemented to derive the KdV equation from the proposed model 

equations in investigating the small but finite amplitude propagation of ion-acoustic solitary waves in electron-

positron-ion plasma with ultra-relativistic or non-relativistic degenerate electrons and positrons. The solutions 

of this equation have evaluated by using the anstaz method. The basic properties (phase velocity, amplitude and 

width, electrostatic potential) of ion acoustic soliton for weakly relativistic regime have demonstrated 

graphically by analyzing the solution to this equation for both cases. We have found the only positive bright 

soliton for both cases of degenerate electrons and positrons due to the influences of the related plasma 

parameters. The results that are predicted graphically reveals that both supersonic and subsonic IASWs can 

propagate in ultra-relativistic case, whereas, only subsonic propagations can occur for non-relativistic case. 

Although both of supersonic and subsonic IASWs can propagate in ultra-relativistic degeneracy case, however, 

the former exist only for very small range of α. It is noted that the characteristics of nonlinear IASW oscillation 

differ in the mentioned cases. Thus we conclude that it may be perform in a laboratory experiment which will 

be able to identify the special new features of IASWs propagating in a e-p-i plasma for the ions speed is 

comparable with the speed of light with ultra-relativistic or non-relativistic degenerate electrons and positrons. 

In future, we can be investigated the nonlinear propagation of ion acoustic waves by composing of relativistic 

thermal ions, and kappa distributed electrons and positions. 
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Fig.1 (a) Effects of phase velocity )( 00 iuv  corresponds to relativistic factor  at different 

values of 1.0 (red curve), 2.0 (green curve), 3.0 (golden curve), 4.0 (blue curve) 

and constant values of 1.0  and 1.0p .  

 

  
Fig. 1(b) Effects of phase velocity )( 00 iuv  corresponds to relativistic factor  at different 

values of 1.0  (red curve), 2.0  (green curve), 3.0  (golden curve), 4.0  (blue 

curve) and constant values of 3.0  and 1.0p . 
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Fig. 1 (c) Effects of phase velocity )( 00 iuv  corresponds to relativistic factor  at different 

values of 1.0p (red curve), 2.0p  (green curve), 3.0p  (golden curve), 4.0p  (blue 

curve) and constant values of 3.0  and 1.0 . 
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Fig. 2 Variation of amplitude of soliton for both cases of ultra relativistic and non relativistic 

with  at different values of (a)   for constant values of 1.0  and 5.0p ;  (b)   for 

constant values of 5.0  and 1.0p ; (c) p  and constant values of 1.0  and 4.0 .   
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Fig. 3 Variation of width of soliton for both cases of ultra relativistic and non relativistic with 

 at different values of (a)   for constant values of 1.0  and 5.0p ; (b)   for constant 

values of 5.0  and 1.0p ; (c) p  and constant values of 1.0  and 4.0 .   

 

  

 

 

 
 

Fig. 4 3D plot of electrostatic IASWs for weakly relativistic regime in the case of  (a) Ultra-

relativistic and (b) non-relativistic with fixed values of 3.0 ,  9.00 iu , 1.0 ,  1.0  

and 3.0p .  

 

 
Fig. 5 Variation of electrostatic IASWs for weakly relativistic regime in the case of (a) Ultra-

relativistic Fermi gas and (b) non-relativistic degenerate electrons at 3.0  (red curve),  

5.0  (green curve), 7.0  (golden curve) and 9.0  (blue curve) with fixed values of 

9.00 iu , 1.0 ,  1.0  and 3.0p .  
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Fig. 6 Variation of electrostatic IASWs for weakly relativistic regime in the case of (a) Ultra-

relativistic and (b) non-relativistic at 1.0  (red curve),  3.0  (green curve), 5.0  

(golden curve) and 7.0  (blue curve) with fixed values of 3.0 , 9.00 iu , 1.0  and 

5.0p .  

 

 
   

 

Fig. 7 Variation of electrostatic IASWs for weakly relativistic regime in the case of (a) Ultra-

relativistic and (b) non-relativistic at 1.0p  (red curve),  3.0p  (green curve), 5.0p  

(golden curve) and 7.0p  (blue curve) with fixed values of 3.0 , 9.00 iu , 1.0  and 

1.0 .  
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Fig. 8 Variation of electrostatic IASWs potential for weakly relativistic regime in an 

increasing streaming velocity 0iu , that is 04.0 (red curve), 1.0 (green curve), 

4.0 (golden curve), and 7.0  (blue curve) with fixed values of 5.0 , 5.0p  and 

3.0  for both cases of Fermi type electrons and positrons. 
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