Common Random Fixed Point theorem for compatible random multivalued operators

Dr. Neetu Vishwakarma

Abstract: The aim of this paper is to prove some common random fixed point theorem for two pairs of compatible random multivalued operators satisfying rational inequality. Keywords: Random fixed point, Compatible maps, Polish space. AMS Mathematics Subject Classification (2000): 47H10, 54H25.

I. Introduction

The systematic study of random equations employing the methods of functional analysis was first initiated by Prague School of Probabilistic in 1950's by Spacek [12] and Hans [7,8]. In separable metric space, random fixed point theorems for contraction mappings was proved by Spacek [12] and Hans [7,8]. Bharucha-Reid [6] generalized Mukherjee's [10] result on general probability measure space. For multivalued mappings Itoh [9] obtained random analogues of corresponding deterministic result for different classes of mappings. Papageoriou [11], Beg [2,3], Beg and Shahzad [5] and Beg and Abbas [4] proved some common random fixed point and random coincidence point of a pair of compatible random operators.

Preliminaries: Let (X,d) be a Polish space, that is a separable complete metric space and (Ω, a) be a measurable space. Let 2^{X} be the family of all subsets of X and CB(X) denote the family of all nonempty bounded closed subsets of X.

A mapping T: $\Omega \rightarrow 2^{\mathbf{X}}$, is called measurable, if for any open subset C of X,

$$\mathbf{T}^{-1}(\mathbf{C}) = \{ \omega \in \Omega : \mathbf{T}(\omega) \cap \mathbf{C} \neq \phi \} \in a.$$

T: $\Omega \rightarrow 2^X$, if A mapping $\xi: \Omega \to X$ is called measurable selector of a measurable mapping ξ is measurable and for any $\omega \in \Omega$, $\xi(\omega) \in T(\omega)$.

A mapping T: $\Omega \times X \to CB(X)$ is called random multivalued operator, if for every $x \in X$, T(.,x) is measurable.

A mapping f: $\Omega \times X \to X$ is called random operator, if for every $x \in X$, f(.,x) is measurable.

A measurable mapping $\xi: \Omega \to X$, is called the random fixed point of a random multivalued operator T: $\Omega \times X \to CB(X)$ (f: $\Omega \times X \to X$), if for every $\omega \in \Omega$, $\xi(\omega) \in T(\omega,\xi(\omega)) \ (f(\omega,\xi(\omega)) = \xi(\omega)).$

A measurable mapping $\xi : \Omega \to X$ is a random coincident point of

T: $\Omega \times X \rightarrow CB(X)$ and f: $\Omega \times X \rightarrow CB(X)$ if for any $\omega \in \Omega$,

 $f(\omega, \xi(\omega)) = T(\omega, \xi(\omega)).$

Mappings f, g : X \rightarrow X are compatible if $\lim_{n \to \infty} d(fg(x_n), gf(x_n)) = 0$, provided that $\lim_{n \to \infty} f(x_n)$ and $\lim_{n \to \infty} g(x_n) \text{ exists in } X \text{ and } \lim_{n \to \infty} f(x_n) = \lim_{n \to \infty} g(x_n).$

Random operators S, T: $\Omega \times X \to X$ are compatible if S(ω , .) and T(ω , .) are compatible for each $\omega \in \Omega$. (See Beg and Shahzad [5])

Main Result.

Theorem. Let X be a Polish space and let (S, T) and (Q, T) be two pairs of compatible random multivalued operators from $\Omega \times X \to CB(X)$ with $S(\omega, X) \subset T(\omega, X)$ and $Q(\omega, X) \subset T(\omega, X)$ for each $\omega \in \Omega$ and

$$\begin{split} H\big(S\big(\omega,x\big),Q\big(\omega,y\big)\big) &\leq \alpha(\omega) \frac{\left[d(T(\omega,x),S(\omega,x))\right]^3 + \left[d(T(\omega,y),Q(\omega,y))\right]^3}{\left[d(T(\omega,x),S(\omega,x))\right]^2 + \left[d(T(\omega,y),Q(\omega,y))\right]^2} \\ &+ \beta(\omega) \frac{\left[d(T(\omega,x),S(\omega,x))\right]^2 + \left[d(T(\omega,y),Q(\omega,y))\right]^2}{\left[d(T(\omega,x),S(\omega,x))\right] + \left[d(T(\omega,y),Q(\omega,y))\right]^2} \\ &+ \gamma(\omega)d(T(\omega,x),T(\omega,y)) \end{split}$$

for each x, $y \in X$ and $\omega \in \Omega$ where α , β , $\gamma : \Omega \to (0, 1)$ are measurable mapping such that $\alpha(\omega) + \beta(\omega) + \gamma(\omega) < 1$.

If one of the random multivalued operators S, Q and T is continuous, then S, Q and T have unique common random fixed point. (Here H represents the Hausdorff metric on CB(X) induced by the metric d).

Proof. Let $\xi_0: \Omega \to X$ be an arbitrary measurable mapping and choose a measurable mapping $\xi_1: \Omega \to X$ such that $S(\omega, \xi_0(\omega)) = T(\omega, \xi_1(\omega))$ for each $\omega \in \Omega$.

It further implies that there exists a measurable mapping $\xi_2: \Omega \to X$ such that for any $\omega \in \Omega$

 $Q(\omega,\,\xi_1(\omega))=T(\omega,\,\xi_2(\omega)).$

In general, we can choose measurable mappings
$$\xi_{2n+1}$$
 and ξ_{2n+2} from $\Omega \to X$ such that

$$S(\omega, \xi_{2n}(\omega)) = T(\omega, \xi_{2n+1}(\omega))$$

and

$$\mathrm{Q}(\omega,\,\xi_{2n+1}(\omega))=\mathrm{T}(\omega,\,\xi_{2n+2}(\omega))$$

for each $\omega\in\Omega$ and n = 0, 1, 2, … .

Then for each $\omega \in \Omega$,

 $\mathsf{d}(\mathsf{T}(\omega,\,\xi_{2n+1}(\omega)),\,\mathsf{T}(\omega,\,\xi_{2n+2}(\omega))=\mathsf{H}(\mathsf{S}(\omega,\,\xi_{2n}(\omega)),\,\mathsf{Q}(\omega,\,\xi_{2n+1}(\omega))$

$$\begin{split} &\leq \alpha(\omega) \frac{\left[d(T(\omega,\xi_{2n}(\omega)),S(\omega,\xi_{2n}(\omega)))\right]^3 + \left[d(T(\omega,\xi_{2n+1}(\omega)),Q(\omega,\xi_{2n+1}(\omega)))\right]^3}{\left[d(T(\omega,\xi_{2n}(\omega)),S(\omega,\xi_{2n}(\omega)))\right]^2 + \left[d(T(\omega,\xi_{2n+1}(\omega)),Q(\omega,\xi_{2n+1}(\omega)))\right]^2} \\ &\quad + \beta(\omega) \frac{\left[d(T(\omega,\xi_{2n}(\omega)),S(\omega,\xi_{2n}(\omega)))\right]^2 + \left[d(T(\omega,\xi_{2n+1}(\omega)),Q(\omega,\xi_{2n+1}(\omega)))\right]^2}{\left[d(T(\omega,\xi_{2n}(\omega)),T(\omega,\xi_{2n+1}(\omega)))\right]^3 + \left[d(T(\omega,\xi_{2n+1}(\omega)),Q(\omega,\xi_{2n+1}(\omega)))\right]^3} \\ &\quad + \gamma(\omega) d(T(\omega,\xi_{2n}(\omega)),T(\omega,\xi_{2n+1}(\omega)))\right]^3 + \left[d(T(\omega,\xi_{2n+1}(\omega)),T(\omega,\xi_{2n+2}(\omega)))\right]^3} \\ &\quad + \beta(\omega) \frac{\left[d(T(\omega,\xi_{2n}(\omega)),T(\omega,\xi_{2n+1}(\omega)))\right]^2 + \left[d(T(\omega,\xi_{2n+1}(\omega)),T(\omega,\xi_{2n+2}(\omega)))\right]^2}{\left[d(T(\omega,\xi_{2n}(\omega)),T(\omega,\xi_{2n+1}(\omega)))\right]^2 + \left[d(T(\omega,\xi_{2n+1}(\omega)),T(\omega,\xi_{2n+2}(\omega)))\right]^2} \\ &\quad + \beta(\omega) \frac{\left[d(T(\omega,\xi_{2n}(\omega)),T(\omega,\xi_{2n+1}(\omega))\right)\right]^2 + \left[d(T(\omega,\xi_{2n+1}(\omega)),T(\omega,\xi_{2n+2}(\omega)))\right]^2}{\left[d(T(\omega,\xi_{2n}(\omega)),T(\omega,\xi_{2n+1}(\omega))\right]^2 + \left[d(T(\omega,\xi_{2n+1}(\omega)),T(\omega,\xi_{2n+2}(\omega)))\right]^2} \\ &\quad + \gamma(\omega) d(T(\omega,\xi_{2n}(\omega)),T(\omega,\xi_{2n+1}(\omega))) + d(T(\omega,\xi_{2n+1}(\omega)),T(\omega,\xi_{2n+2}(\omega)))\right]^2} \\ &\quad + \beta(\omega) \frac{\left[d(T(\omega,\xi_{2n}(\omega)),T(\omega,\xi_{2n+1}(\omega))\right) + d(T(\omega,\xi_{2n+1}(\omega)),T(\omega,\xi_{2n+2}(\omega)))\right]^2}{\left[d(T(\omega,\xi_{2n}(\omega)),T(\omega,\xi_{2n+1}(\omega))\right]^2 + d(T(\omega,\xi_{2n+2}(\omega)))\right]^2} \\ &\quad + \beta(\omega) \frac{\left[d(T(\omega,\xi_{2n}(\omega)),T(\omega,\xi_{2n+1}(\omega))\right] + d(T(\omega,\xi_{2n+1}(\omega)),T(\omega,\xi_{2n+2}(\omega))\right]^2}{\left[d(T(\omega,\xi_{2n}(\omega)),T(\omega,\xi_{2n+1}(\omega))\right]^2 + \eta(\omega)d(T(\omega,\xi_{2n}(\omega)),T(\omega,\xi_{2n+1}(\omega))\right] + d(T(\omega,\xi_{2n+1}(\omega)),T(\omega,\xi_{2n+2}(\omega)))\right]^2} \\ &\quad + \beta(\omega) \frac{\left[d(T(\omega,\xi_{2n}(\omega)),T(\omega,\xi_{2n+1}(\omega))\right] + d(T(\omega,\xi_{2n+1}(\omega)),T(\omega,\xi_{2n+2}(\omega))\right]^2}{\left[d(T(\omega,\xi_{2n}(\omega)),T(\omega,\xi_{2n+1}(\omega))\right] + d(T(\omega,\xi_{2n+2}(\omega)))\right]^2} \\ &\quad + \beta(\omega) d(T(\omega,\xi_{2n}(\omega)),T(\omega,\xi_{2n+1}(\omega))) + d(T(\omega,\xi_{2n+2}(\omega)))\right] \\ &\quad + \eta(\omega)d(T(\omega,\xi_{2n}(\omega)),T(\omega,\xi_{2n+1}(\omega))) + d(T(\omega,\xi_{2n+2}(\omega))) \\ &\quad + \eta(\omega)d(T(\omega,\xi_{2n}(\omega)),T(\omega,\xi_{2n+1}(\omega))) + d(T(\omega,\xi_{2n+2}(\omega)))\right] \\ &\quad = (1 - \alpha(\omega) - \beta(\omega)) d(T(\omega,\xi_{2n+1}(\omega)),T(\omega,\xi_{2n+2}(\omega))) \\ &\quad = (\alpha(\omega) + \beta(\omega) + \eta(\omega)) d(T(\omega,\xi_{2n+1}(\omega)),T(\omega,\xi_{2n+2}(\omega))) \\ &\quad = (\alpha(\omega) + \beta(\omega) + \eta(\omega)) d(T(\omega,\xi_{2n+1}(\omega)),T(\omega,\xi_{2n+2}(\omega))) \\ &\quad = (\alpha(\omega) + \beta(\omega) + \eta(\omega)) d(T(\omega,\xi_{2n+1}(\omega)),T(\omega,\xi_{2n+2}(\omega))) \\ &\quad = (\alpha(\omega) + \beta(\omega) + \eta(\omega)) d(T(\omega,\xi_{2n+1}(\omega)),T(\omega,\xi_{2n+2}(\omega))) \\ &\quad = (\alpha(\omega)$$

where

 $k = \frac{\alpha(\omega) + \beta(\omega) + \gamma(\omega)}{1 - \alpha(\omega) - \beta(\omega)} < 1.$ Similarly, $d(T(\omega, \xi_{2n+2}(\omega)), T(\omega, \xi_{2n+3}(\omega))) \le kd(T(\omega, \xi_{2n+1}(\omega)), T(\omega, \xi_{2n+2}(\omega)))$ $\leq k^2 d(T(\omega, \xi_{2n}(\omega)), T(\omega, \xi_{2n+1}(\omega)))$ In general, $d(T(\omega, \xi_{2n}(\omega)), T(\omega, \xi_{2n+1}(\omega))) \le k^{2n} d(T(\omega, \xi_0(\omega)), T(\omega, \xi_1(\omega))).$ Furthermore m > n, $d(T(\omega,\,\xi_{2n}(\omega)),\,T(\omega,\,\xi_{2m}(\omega)) \leq d(T(\omega,\,\xi_{2n}(\omega)),\,T(\omega,\,\xi_{2n+1}(\omega)))$ + $d(T(\omega, \xi_{2n+1}(\omega)), T(\omega, \xi_{2n+2}(\omega)))$ + ... + $d(T(\omega, \xi_{2m-1}(\omega)), T(\omega, \xi_{2m}(\omega)))$ $\leq k^{2n} d(T(\omega, \xi_0(\omega)), T(\omega, \xi_1(\omega)))$ + $k^{2n+1}d(T(\omega, \xi_{\Omega}(\omega)), T(\omega, \xi_{1}(\omega)))$ + ... + $k^{2m-1}d(T(\omega, \xi_0(\omega)), T(\omega, \xi_1(\omega)))$ \mathbf{k}^{2n} i.e. $d(T(\omega, \xi_{2n}(\omega)), T(\omega, \xi_{2m}(\omega))) \leq \overline{(1-k)} d(T(\omega, \xi_0(\omega)), T(\omega, \xi_1(\omega))) \rightarrow 0$ as n, m $\rightarrow \infty$. Thus $\{T(\omega, \xi_{2n}(\omega))\}\$ and $\{T(\omega, \xi_{2m}(\omega))\}\$ are Cauchy sequence in CB(X), therefore there exists A(ω) $\in CB(X)$ such that ${T(\omega, \xi_{2n}(\omega))} \rightarrow A(\omega) \text{ for some } \omega \in \Omega.$ It further implies that $\{T(\omega, \xi_{2n+1}(\omega))\}, \{S(\omega, \xi_{2n}(\omega))\}\$ and $\{Q(\omega, \xi_{2n+1}(\omega))\}\$ converges to $A(\omega)$ for each $\omega \in \Omega$. Let $\xi : \Omega \to X$ be a measurable mapping such that for each $\omega \in \Omega$, $\xi(\omega) \in A(\omega)$. Thus, we have $T(\omega, \xi_{2n+1}(\omega)) \rightarrow A(\omega), S(\omega, \xi_{2n}(\omega)) \rightarrow A(\omega)$ and $Q(\omega, \xi_{2n+1}(\omega)) \to A(\omega) \text{ as } n \to \infty.$ Now, suppose that T is continuous random multivalued operator, then $T(\omega, T(\omega, \xi_{2n+1}(\omega))) \to T(\omega, A(\omega)), T(\omega, S(\omega, \xi_{2n}(\omega))) \to T(\omega, A(\omega)) \text{ for every } \omega \in \Omega.$ Since pair (S, T) and (Q, T) are compatible random operator, Since pair (S, T) and (Q, T) are compatible random operator, then for each $\omega \in \Omega$, we have $T(\omega, T(\omega, \xi_{2n+1}(\omega))) \to T(\omega, A(\omega)), S(\omega, T(\omega, \xi_{2n+1}(\omega))) \to T(\omega, A(\omega))$ and Q(ω , T(ω , $\xi_{2n+1}(\omega)$)) \rightarrow T(ω , A(ω)). Consider for each $\omega \in \Omega$ $H(S(\omega, T(\omega, \xi_{2n}(\omega))), Q(\omega, \xi_{2n+1}(\omega)))$ $\leq \alpha(\omega) \frac{\left[d(T(\omega, T(\omega, \xi_{2n}(\omega))), S(\omega, T(\omega, \xi_{2n}(\omega)))\right]^3 + \left[d(T(\omega, \xi_{2n+1}(\omega))), Q(\omega, \xi_{2n+1}(\omega)))\right]^3}{\left[d(T(\omega, T(\omega, \xi_{2n}(\omega))), S(\omega, T(\omega, \xi_{2n}(\omega)))\right]^2 + \left[d(T(\omega, \xi_{2n+1}(\omega))), Q(\omega, \xi_{2n+1}(\omega)))\right]^2}$ $+\beta(\omega)\frac{\left[d(T(\omega,T(\omega,\xi_{2n}(\omega))),S(\omega,T(\omega,\xi_{2n}(\omega)))\right]^{2}+\left[d(T(\omega,\xi_{2n+1}(\omega))),Q(\omega,\xi_{2n+1}(\omega)))\right]^{2}}{\left[d(T(\omega,T(\omega,\xi_{2n}(\omega))),S(\omega,T(\omega,\xi_{2n}(\omega)))\right]+\left[d(T(\omega,\xi_{2n+1}(\omega))),Q(\omega,\xi_{2n+1}(\omega)))\right]}$ + $\gamma(\omega)d(T(\omega, T(\omega, \xi_{2n}(\omega))), T(\omega, \xi_{2n+1}(\omega))).$ On taking limit $n \rightarrow \infty$ both sides, we get

 $d(T(\omega, A(\omega)), A(\omega))$

$$\begin{split} &\leq \alpha(\omega) \frac{\left[d(T(\omega,A(\omega)),T(\omega,A(\omega)))\right]^3 + \left[d(T(\omega,A(\omega)),T(\omega,A(\omega)))\right]^2}{\left[d(T(\omega,A(\omega)),T(\omega,A(\omega)))\right]^2 + \left[d(T(\omega,A(\omega)),T(\omega,A(\omega)))\right]^2} \\ &+ \beta(\omega) \frac{\left[d(T(\omega,A(\omega)),T(\omega,A(\omega)))\right]^2 + \left[d(T(\omega,A(\omega)),T(\omega,A(\omega)))\right]^2}{\left[d(T(\omega,A(\omega)),T(\omega,A(\omega)))\right] + \left[d(T(\omega,A(\omega)),T(\omega,A(\omega)))\right]^2} \\ &+ \gamma(\omega) d(T(\omega,A(\omega)),A(\omega)) \\ &= \alpha(\omega) \frac{(T(\omega,A(\omega)),A(\omega)) = 0}{(T(\omega,A(\omega)),A(\omega))} \\ &= \alpha(\omega) \frac{\left[d(T(\omega,A(\omega)),S(\omega,A(\omega))\right]^3 + \left[d(T(\omega,\xi_{2n+1}(\omega)),Q(\omega,\xi_{2n+1}(\omega)))\right]^3}{\left[d(T(\omega,A(\omega)),S(\omega,A(\omega)))\right]^2 + \left[d(T(\omega,\xi_{2n+1}(\omega)),Q(\omega,\xi_{2n+1}(\omega)))\right]^2} \\ &+ \beta(\omega) \frac{\left[d(T(\omega,A(\omega)),S(\omega,A(\omega))\right]^2 + \left[d(T(\omega,\xi_{2n+1}(\omega)),Q(\omega,\xi_{2n+1}(\omega)))\right]^2}{\left[d(T(\omega,A(\omega)),S(\omega,A(\omega)))\right]^2 + \left[d(T(\omega,\xi_{2n+1}(\omega)),Q(\omega,\xi_{2n+1}(\omega)))\right]^2} \\ &+ \beta(\omega) \frac{\left[d(A(\omega),S(\omega,A(\omega))\right]^2 + \left[d(T(\omega,\xi_{2n+1}(\omega)),Q(\omega,\xi_{2n+1}(\omega))\right)\right]^2}{\left[d(T(\omega,A(\omega)),S(\omega,A(\omega))\right]^2 + \left[d(A(\omega),A(\omega))\right]^2} \\ &+ \beta(\omega) \frac{\left[d(A(\omega),S(\omega,A(\omega))\right]^2 + \left[d(A(\omega),A(\omega)\right)\right]^2}{\left[d(A(\omega),S(\omega,A(\omega))\right]^2 + \left[d(A(\omega),A(\omega)\right)^2} \\ &+ \beta(\omega) \frac{\left[d(A(\omega),S(\omega,A(\omega))\right]^2 + \left[d(A(\omega),A(\omega)\right)\right]^2}{\left[d(A(\omega),S(\omega,A(\omega))\right]^2 + \left[d(A(\omega),A(\omega))\right]^2} \\ &+ \beta(\omega) \frac{\left[d(A(\omega),S(\omega,A(\omega))\right]^2 + \left[d(A(\omega),A(\omega)\right)^2}{\left[d(A(\omega),S(\omega,A(\omega))\right]^2 + \left[d(A(\omega),A(\omega)\right)^2} \\ &+ \beta(\omega) \frac{\left[d(A(\omega),S(\omega,A(\omega))\right]^2 + \left[d(A(\omega),A(\omega)\right)^2}{\left[d(A(\omega),S(\omega,A(\omega))\right]^2 + \left[d(A(\omega),S(\omega,A(\omega))\right]^2} \\ &+ \beta(\omega) \frac{\left[d(T(\omega,A(\omega)),S(\omega,A(\omega))\right]^2 + \left[d(T(\omega,A(\omega)),S(\omega,A(\omega))\right]^2}{\left[d(A(\omega),S(\omega,A(\omega))\right]^2 + \left[d(T(\omega,A(\omega)),Q(\omega,A(\omega))\right]^2} \\ &+ \beta(\omega) \frac{\left[d(T(\omega,A(\omega)),S(\omega,A(\omega))\right]^2 + \left[d(T(\omega,A(\omega)),Q(\omega,A(\omega))\right]^2}{\left[d(T(\omega,A(\omega)),S(\omega,A(\omega))\right]^2 + \left[d(T(\omega,A(\omega)),Q(\omega,A(\omega))\right]^2} \\ &+ \beta(\omega) \frac{\left[d(T(\omega,A(\omega)),S(\omega,A(\omega))\right]^2 + \left[d(T(\omega,A(\omega)),Q(\omega,A(\omega))\right]^2}{\left[d(T(\omega,A(\omega)),S(\omega,A(\omega))\right]^2 + \left[d(T(\omega,A(\omega)),Q(\omega,A(\omega))\right]^2} \\ &+ \beta(\omega) \frac{\left[d(T(\omega,A(\omega)),S(\omega,A(\omega))\right]^2 + \left[d(T(\omega,A(\omega)),Q(\omega,A(\omega))\right]^2}{\left[d(T(\omega,A(\omega)),S(\omega,A(\omega))\right)^2 + \left[d(T(\omega,A(\omega)),Q(\omega,A(\omega))\right]^2} \\ &+ \gamma(\omega) d(T(\omega,A(\omega)),S(\omega,A(\omega)))\right]^2 + \left[d(T(\omega,A(\omega)),Q(\omega,A(\omega))\right)^2} \\ &+ \gamma(\omega) d(T(\omega,A(\omega)),S(\omega,A(\omega)))\right]^2 + \left[d(T(\omega,A(\omega)),Q(\omega,A(\omega))\right)^2} \\ &+ \gamma(\omega) d(T(\omega,A(\omega)),S(\omega,A(\omega)))\right]^2 + \left[d(A(\omega),Q(\omega,A(\omega)))\right]^2 \\ &+ \gamma(\omega) d(T(\omega,A(\omega)),S(\omega,A(\omega)))\right]^2 + \left[d(A(\omega),Q(\omega,A(\omega)))\right]^2 \\ &+ \gamma(\omega) d(T(\omega,A(\omega)),S(\omega,A(\omega)))\right]^2 + \left[d(A(\omega),Q(\omega,A(\omega))$$

But $\xi(\omega) \in A(\omega)$.

Thus, $\xi(\omega) \in Q(\omega, A(\omega))$.

Hence, $\xi(\omega)$ is a random fixed point of random multivalued operator S, Q and T. Uniqueness :

To prove uniqueness of common random fixed point of random multivalued operator.

Let $\xi_1, \xi_2 : \Omega \to X$ be two common random fixed point of random multivalued operators S, Q and T such that $\xi_1(\omega) = \xi_2(\omega)$ for each $\omega \in \Omega$.

Consider for each $\omega \in \Omega$

 $d(\xi_1(\boldsymbol{\omega}), \ \xi_2(\boldsymbol{\omega})) \leq H(S(\boldsymbol{\omega}, \ \xi_1(\boldsymbol{\omega})), \ Q(\boldsymbol{\omega}, \ \xi_2(\boldsymbol{\omega})))$

$$\leq \alpha(\omega) \frac{\left[d(T(\omega,\xi_{1}(\omega)), S(\omega,\xi_{1}(\omega)))\right]^{3} + \left[d(T(\omega,\xi_{2}(\omega)), Q(\omega,\xi_{2}(\omega)))\right]^{3}}{\left[d(T(\omega,\xi_{1}(\omega)), S(\omega,\xi_{1}(\omega)))\right]^{2} + \left[d(T(\omega,\xi_{2}(\omega)), Q(\omega,\xi_{2}(\omega)))\right]^{2}} \\ + \beta(\omega) \frac{\left[d(T(\omega,\xi_{1}(\omega)), S(\omega,\xi_{1}(\omega)))\right]^{2} + \left[d(T(\omega,\xi_{2}(\omega)), Q(\omega,\xi_{2}(\omega)))\right]^{2}}{\left[d(T(\omega,\xi_{1}(\omega)), S(\omega,\xi_{1}(\omega)))\right] + \left[d(T(\omega,\xi_{2}(\omega)), Q(\omega,\xi_{2}(\omega)))\right]^{2}} \\ + \gamma(\omega)d(T(\omega,\xi_{1}(\omega)), T(\omega,\xi_{2}(\omega))) \\ d(\xi_{1}(\omega),\xi_{2}(\omega)) \leq \gamma(\omega)d(T(\omega,\xi_{1}(\omega)), T(\omega,\xi_{2}(\omega))) \\ (1 - \gamma(\omega))d(\xi_{1}(\omega),\xi_{2}(\omega)) \leq 0$$

i.e.

$$\begin{split} &(1\text{-}\gamma(\omega))d(\xi_1(\omega),\,\xi_2(\omega))\leq 0\\ &d(\xi_1(\omega),\,\xi_2(\omega))\leq 0. \end{split}$$

Thus, $\xi_1(\omega) = \xi_2(\omega)$ for each $\omega \in \Omega$

which is a contradiction, so the result follows.

Corollary. Let X be a Polish space and let (S, P) and (T, Q) be two pairs of compatible random multivalued operators from $\Omega \times X \rightarrow CB(X)$ with $S(\omega, X) \subset Q(\omega, X)$ and $T(\omega, X) \subset P(\omega, X)$ for each $\omega \in \Omega$ and

 $\omega \in \Omega$ and

 $H(S(\omega, x), T(\omega, y))$

$$\leq \alpha(\omega) \frac{\left[d(P(\omega, x), S(\omega, x))\right]^{3} + \left[d(Q(\omega, y), T(\omega, y))\right]^{3}}{\left[d(P(\omega, x), S(\omega, x))\right]^{2} + \left[d(Q(\omega, y), T(\omega, y))\right]^{2}} \\ + \beta(\omega) \frac{\left[d(P(\omega, x), S(\omega, x))\right]^{2} + \left[d(Q(\omega, y), T(\omega, y))\right]^{2}}{\left[d(P(\omega, x), S(\omega, x))\right] + \left[d(Q(\omega, y), T(\omega, y))\right]} \\ + \gamma(\omega)d(P(\omega, x), Q(\omega, y))$$

for each x, $y \in X$ and $\omega \in \Omega$, where α , β , $\gamma : \Omega \to (0, 1)$ are measurable mappings such that $\alpha(\omega) + \beta(\omega) + \gamma(\omega) < 1$. If one of the random multivalued operators P, Q, T or S is continuous then P, Q, S and T have unique common random fixed point (where H represents Hausdorff metric on CB(X) induced by metric d).

References

- [1.] Badshah, V.H. and Sayyed, Farkhunda, Common random fixed point of random multivalued operator on Polish spaces, Indian J. Pure App. Math. 33(4), Apr. 2002, 573-582.
- [2.] Beg, I. Random fixed point of random operators satisfying semi-contractivity conditions, Mathematica Japonica 46(1997), no. 1, 151-155.
- [3.] Beg, I., Approximation of random fixed point in normed spaces, Nonlinear Analysis, 51 (2002), No. 8, 1363-1372.

- [4.] Beg, I. and Abbas, Mujahid, Common random fixed point of compatible random operator, Int. J. Math. and Math. Sci. Vol. 2006 Article I.D. 23486, 1-15.
- [5.] Beg, I, and Shahzad, N., Random fixed points of random multivalued operators on Polish spaces, Non-linear Analysis Theory Methods and Applications 20 (1993), 835-847.
- [6.] Bharucha Reid, A.T.
- [7.] Random integral equations, Academic Press, New York, 1972.
- [8.] Hans, O., Reduzierende zufallige transformation. Czechoslovak Mathematics Journal 7 (1957), 154-158.
- [9.] Hans, O., Random operator equations, Proceeding of the 4th Berkeley Symposium in Mathematical Statistics and Probability, Vol. II, Part I, University of California Press, California (1961), 185-202.
- [10.] Itoh, S., A random fixed point theorem for a multivalued contraction mapping, Pacific Journal Mathematics 68 (1977), 85-90.
- [11.] Mukherjee, A., Random transformations of Banach spaces. Ph.D. Dissertation, Wayne State University Detroit, Michegall, USA (1968.).
- [12.] Papageorgiou, N.S., Random fixed point theorems for measurable multifunctions in Banach spaces, Proceedings of the American Mathematical Society 97 (1986), No. 3, 507-514.
- [13.] Spacek, A., Zufallige Gleichungen, Czechoslovak Mathematical Journal 5 (1995), 462-466.