Common Random Fixed Point theorem for compatible random multivalued operators

Dr. Neetu Vishwakarma

Abstract

The aim of this paper is to prove some common random fixed point theorem for two pairs of compatible random multivalued operators satisfying rational inequality. Keywords: Random fixed point, Compatible maps, Polish space. AMS Mathematics Subject Classification (2000): 47H10, 54H25.

I. Introduction

The systematic study of random equations employing the methods of functional analysis was first initiated by Prague School of Probabilistic in 1950's by Spacek [12] and Hans [7,8]. In separable metric space, random fixed point theorems for contraction mappings was proved by Spacek [12] and Hans [7,8]. BharuchaReid [6] generalized Mukherjee's [10] result on general probability measure space. For multivalued mappings Itoh [9] obtained random analogues of corresponding deterministic result for different classes of mappings. Papageoriou [11], Beg [2,3], Beg and Shahzad [5] and Beg and Abbas [4] proved some common random fixed point and random coincidence point of a pair of compatible random operators.

Preliminaries: Let (X,d) be a Polish space, that is a separable complete metric space and (Ω, a) be a measurable space. Let 2^{X} be the family of all subsets of X and $\mathrm{CB}(\mathrm{X})$ denote the family of all nonempty bounded closed subsets of X.

A mapping T: $\Omega \rightarrow 2^{\mathrm{X}}$, is called measurable, if for any open subset C of X ,

$$
\mathrm{T}^{-1}(\mathrm{C})=\{\omega \in \Omega: \mathrm{T}(\omega) \cap \mathrm{C} \neq \phi\} \in a .
$$

A mapping $\xi: \Omega \rightarrow \mathrm{X}$ is called measurable selector of a measurable mapping

$$
\mathrm{T}: \Omega \rightarrow 2^{\mathrm{X}} \text {, if }
$$ ξ is measurable and for any $\omega \in \Omega, \xi(\omega) \in T(\omega)$.

A mapping $\mathrm{T}: \Omega \times \mathrm{X} \rightarrow \mathrm{CB}(\mathrm{X})$ is called random multivalued operator, if for every $\mathrm{x} \in \mathrm{X}, \mathrm{T}(., \mathrm{x})$ is measurable

A mapping f: $\Omega \times \mathrm{X} \rightarrow \mathrm{X}$ is called random operator, if for every $\mathrm{x} \in \mathrm{X}, \mathrm{f}(., \mathrm{x})$ is measurable.
A measurable mapping $\xi: \Omega \rightarrow \mathrm{X}$, is called the random fixed point of a random multivalued operator $\mathrm{T}: \Omega \times \mathrm{X} \rightarrow \mathrm{CB}(\mathrm{X})$ (f: $\Omega \times \mathrm{X} \rightarrow \mathrm{X}$), if for every $\omega \in \Omega$,

$$
\xi(\omega) \in \mathrm{T}(\omega, \xi(\omega))(\mathrm{f}(\omega, \xi(\omega))=\xi(\omega)) .
$$

A measurable mapping $\xi: \Omega \rightarrow \mathrm{X}$ is a random coincident point of
$\mathrm{T}: \Omega \times \mathrm{X} \rightarrow \mathrm{CB}(\mathrm{X})$ and $\mathrm{f}: \Omega \times \mathrm{X} \rightarrow \mathrm{CB}(\mathrm{X})$ if for any $\omega \in \Omega$,

$$
f(\omega, \xi(\omega))=T(\omega, \xi(\omega)) .
$$

Mappings f, $g: X \rightarrow X$ are compatible if $\lim _{n \rightarrow \infty} d\left(f g\left(x_{n}\right), \operatorname{gf}\left(x_{n}\right)\right)=0$, provided that $\lim _{n \rightarrow \infty} f\left(x_{n}\right)$ and $\lim _{n \rightarrow \infty} g\left(x_{n}\right)$ exists in X and $\lim _{n \rightarrow \infty} f\left(x_{n}\right)=\lim _{n \rightarrow \infty} g\left(x_{n}\right)$.

Random operators $\mathrm{S}, \mathrm{T}: \Omega \times \mathrm{X} \rightarrow \mathrm{X}$ are compatible if $\mathrm{S}(\omega,$.$) and \mathrm{T}(\omega,$.$) are compatible for each$ $\omega \in \Omega$. (See Beg and Shahzad [5])

Main Result.

Theorem. Let X be a Polish space and let (S, T) and (Q, T) be two pairs of compatible random multivalued operators from $\Omega \times \mathrm{X} \rightarrow \mathrm{CB}(\mathrm{X})$ with $\mathrm{S}(\omega, \mathrm{X}) \subset \mathrm{T}(\omega, \mathrm{X})$ and $\mathrm{Q}(\omega, \mathrm{X}) \subset \mathrm{T}(\omega, \mathrm{X})$ for each $\omega \in \Omega$ and

$$
\begin{aligned}
H(S(\omega, x), Q(\omega, y)) & \leq \alpha(\omega) \frac{[d(T(\omega, x), S(\omega, x))]^{3}+[d(T(\omega, y), Q(\omega, y))]^{3}}{[d(T(\omega, x), S(\omega, x))]^{2}+[d(T(\omega, y), Q(\omega, y))]^{2}} \\
& +\beta(\omega) \frac{[\mathrm{d}(\mathrm{~T}(\omega, \mathrm{x}), \mathrm{S}(\omega, \mathrm{x}))]^{2}+[\mathrm{d}(\mathrm{~T}(\omega, \mathrm{y}), \mathrm{Q}(\omega, \mathrm{y}))]^{2}}{[\mathrm{~d}(\mathrm{~T}(\omega, \mathrm{x}), \mathrm{S}(\omega, \mathrm{x}))]+[\mathrm{d}(\mathrm{~T}(\omega, \mathrm{y}), \mathrm{Q}(\omega, \mathrm{y}))]^{2}} \\
& +\gamma(\omega) \mathrm{d}(\mathrm{~T}(\omega, \mathrm{x}), \mathrm{T}(\omega, \mathrm{y}))
\end{aligned}
$$

for each $\mathrm{x}, \mathrm{y} \in \mathrm{X}$ and $\omega \in \Omega$ where $\alpha, \beta, \gamma: \Omega \rightarrow(0,1)$ are measurable mapping such that $\alpha(\omega)+\beta(\omega)+$ $\gamma(\omega)<1$.

If one of the random multivalued operators S, Q and T is continuous, then S, Q and T have unique common random fixed point. (Here H represents the Hausdorff metric on $\mathrm{CB}(\mathrm{X})$ induced by the metric d).

Proof. Let $\xi_{0}: \Omega \rightarrow \mathrm{X}$ be an arbitrary measurable mapping and choose a measurable mapping ξ_{1} : $\Omega \rightarrow \mathrm{X}$ such that $\mathrm{S}\left(\omega, \xi_{0}(\omega)\right)=\mathrm{T}\left(\omega, \xi_{1}(\omega)\right)$ for each $\omega \in \Omega$.
It further implies that there exists a measurable mapping $\xi_{2}: \Omega \rightarrow \mathrm{X}$ such that for any $\omega \in \Omega$
$\mathrm{Q}\left(\omega, \xi_{1}(\omega)\right)=\mathrm{T}\left(\omega, \xi_{2}(\omega)\right)$.
In general, we can choose measurable mappings $\xi_{2 n+1}$ and $\xi_{2 n+2}$ from $\Omega \rightarrow \mathrm{X}$ such that

$$
S\left(\omega, \xi_{2 n}(\omega)\right)=T\left(\omega, \xi_{2 n+1}(\omega)\right)
$$

and $\quad \mathrm{Q}\left(\omega, \xi_{2 \mathrm{n}+1}(\omega)\right)=\mathrm{T}\left(\omega, \xi_{2 \mathrm{n}+2}(\omega)\right)$
for each $\omega \in \Omega$ and $\mathrm{n}=0,1,2, \ldots$.
Then for each $\omega \in \Omega$,

$$
\begin{aligned}
& \mathrm{d}\left(\mathrm{~T}\left(\omega, \xi_{2 \mathrm{n}+1}(\omega)\right), \mathrm{T}\left(\omega, \xi_{2 \mathrm{n}+2}(\omega)\right)=\mathrm{H}\left(\mathrm{~S}\left(\omega, \xi_{2 \mathrm{n}}(\omega)\right), \mathrm{Q}\left(\omega, \xi_{2 \mathrm{n}+1}(\omega)\right)\right.\right. \\
& \leq \alpha(\omega) \frac{\left[d\left(T\left(\omega, \xi_{2 n}(\omega)\right), S\left(\omega, \xi_{2 n}(\omega)\right)\right)\right]^{3}+\left[d\left(T\left(\omega, \xi_{2 \mathrm{n}+1}(\omega)\right), Q\left(\omega, \xi_{2 \mathrm{n}+1}(\omega)\right)\right)\right]^{3}}{\left[d\left(T\left(\omega, \xi_{2 \mathrm{n}}(\omega)\right), S\left(\omega, \xi_{2 \mathrm{n}}(\omega)\right)\right)\right]^{2}+\left[d\left(T\left(\omega, \xi_{2 \mathrm{n}+1}(\omega)\right), Q\left(\omega, \xi_{2 \mathrm{n}+1}(\omega)\right)\right)\right]^{2}} \\
& +\beta(\omega) \frac{\left[d\left(T\left(\omega, \xi_{2 n}(\omega)\right), S\left(\omega, \xi_{2 n}(\omega)\right)\right)\right]^{2}+\left[d\left(T\left(\omega, \xi_{2 \mathrm{n}+1}(\omega)\right), Q\left(\omega, \xi_{2 \mathrm{n}+1}(\omega)\right)\right)\right]^{2}}{\left[d\left(T\left(\omega, \xi_{2 \mathrm{n}}(\omega)\right), S\left(\omega, \xi_{2 \mathrm{n}}(\omega)\right)\right)\right]+\left[\mathrm{d}\left(\mathrm{~T}\left(\omega, \xi_{2 \mathrm{n}+1}(\omega)\right), \mathrm{Q}\left(\omega, \xi_{2 \mathrm{n}+1}(\omega)\right)\right)\right]} \\
& +\gamma(\omega) \mathrm{d}\left(\mathrm{~T}\left(\omega, \xi_{2 \mathrm{n}}(\omega)\right), \mathrm{T}\left(\omega, \xi_{2 \mathrm{n}+1}(\omega)\right)\right) \\
& \leq \alpha(\omega) \frac{\left[\mathrm{d}\left(\mathrm{~T}\left(\omega, \xi_{2 \mathrm{n}}(\omega)\right), \mathrm{T}\left(\omega, \xi_{2 \mathrm{n}+1}(\omega)\right)\right)\right]^{3}+\left[\mathrm{d}\left(\mathrm{~T}\left(\omega, \xi_{2 \mathrm{n}+1}(\omega)\right), \mathrm{T}\left(\omega, \xi_{2 \mathrm{n}+2}(\omega)\right)\right)\right]^{3}}{\left[\mathrm{~d}\left(\mathrm{~T}\left(\omega, \xi_{2 \mathrm{n}}(\omega)\right), \mathrm{T}\left(\omega, \xi_{2 \mathrm{n}+1}(\omega)\right)\right)\right]^{2}+\left[\mathrm{d}\left(\mathrm{~T}\left(\omega, \xi_{2 \mathrm{n}+1}(\omega)\right), \mathrm{T}\left(\omega, \xi_{2 \mathrm{n}+2}(\omega)\right)\right)\right]^{2}} \\
& +\beta(\omega) \frac{\left[\mathrm{d}\left(\mathrm{~T}\left(\omega, \xi_{2 \mathrm{n}}(\omega)\right), \mathrm{T}\left(\omega, \xi_{2 \mathrm{n}+1}(\omega)\right)\right)\right]^{2}+\left[\mathrm{d}\left(\mathrm{~T}\left(\omega, \xi_{2 \mathrm{n}+1}(\omega)\right), \mathrm{T}\left(\omega, \xi_{2 \mathrm{n}+2}(\omega)\right)\right)\right]^{2}}{\left[\mathrm{~d}\left(\mathrm{~T}\left(\omega, \xi_{2 \mathrm{n}}(\omega)\right), \mathrm{T}\left(\omega, \xi_{2 \mathrm{n}+1}(\omega)\right)\right)\right]+\left[\mathrm{d}\left(\mathrm{~T}\left(\omega, \xi_{2 \mathrm{n}+1}(\omega)\right), \mathrm{T}\left(\omega, \xi_{2 \mathrm{n}+2}(\omega)\right)\right)\right]} \\
& +\gamma(\omega) \mathrm{d}\left(\mathrm{~T}\left(\omega, \xi_{2 \mathrm{n}}(\omega)\right), \mathrm{T}\left(\omega, \xi_{2 \mathrm{n}+1}(\omega)\right)\right) \\
& \leq \alpha(\omega) \frac{\left[d\left(T\left(\omega, \xi_{2 n}(\omega)\right), T\left(\omega, \xi_{2 \mathrm{n}+1}(\omega)\right)\right)+\mathrm{d}\left(\mathrm{~T}\left(\omega, \xi_{2 \mathrm{n}+1}(\omega)\right), \mathrm{T}\left(\omega, \xi_{2 \mathrm{n}+2}(\omega)\right)\right)\right]^{3}}{\left[\mathrm{~d}\left(\mathrm{~T}\left(\omega, \xi_{2 \mathrm{n}}(\omega)\right), \mathrm{T}\left(\omega, \xi_{2 \mathrm{n}+1}(\omega)\right)\right)+\mathrm{d}\left(\mathrm{~T}\left(\omega, \xi_{2 \mathrm{n}+1}(\omega)\right), \mathrm{T}\left(\omega, \xi_{2 \mathrm{n}+2}(\omega)\right)\right)\right]^{2}} \\
& +\beta(\omega) \frac{\left[d\left(T\left(\omega, \xi_{2 n}(\omega)\right), T\left(\omega, \xi_{2 n+1}(\omega)\right)\right)+d\left(T\left(\omega, \xi_{2 n+1}(\omega)\right), T\left(\omega, \xi_{2 \mathrm{n}+2}(\omega)\right)\right)\right]^{2}}{\left[d\left(T\left(\omega, \xi_{2 \mathrm{n}}(\omega)\right), T\left(\omega, \xi_{2 \mathrm{n}+1}(\omega)\right)\right)+d\left(\mathrm{~T}\left(\omega, \xi_{2 \mathrm{n}+1}(\omega)\right), T\left(\omega, \xi_{2 \mathrm{n}+2}(\omega)\right)\right)\right]} \\
& +\gamma(\omega) \mathrm{d}\left(\mathrm{~T}\left(\omega, \xi_{2 \mathrm{n}}(\omega)\right), \mathrm{T}\left(\omega, \xi_{2 \mathrm{n}+1}(\omega)\right)\right) \\
& \leq \alpha(\omega)\left[\mathrm{d}\left(\mathrm{~T}\left(\omega, \xi_{2 \mathrm{n}}(\omega)\right), \mathrm{T}\left(\omega, \xi_{2 \mathrm{n}+1}(\omega)\right)+\mathrm{d}\left(\mathrm{~T}\left(\omega, \xi_{2 \mathrm{n}+1}(\omega)\right), \mathrm{T}\left(\omega, \xi_{2 \mathrm{n}+2}(\omega)\right)\right)\right]\right. \\
& +\beta(\omega)\left[\mathrm{d}\left(\mathrm{~T}\left(\omega, \xi_{2 \mathrm{n}}(\omega)\right), \mathrm{T}\left(\omega, \xi_{2 \mathrm{n}+1}(\omega)\right)\right)+\mathrm{d}\left(\mathrm{~T}\left(\omega, \xi_{2 \mathrm{n}+1}(\omega)\right), \mathrm{T}\left(\omega, \xi_{2 \mathrm{n}+2}(\omega)\right)\right)\right] \\
& +\gamma(\omega) \mathrm{d}\left(\mathrm{~T}\left(\omega, \xi_{2 \mathrm{n}}(\omega)\right), \mathrm{T}\left(\omega, \xi_{2 \mathrm{n}+1}(\omega)\right)\right) \\
& \leq(\alpha(\omega)+\beta(\omega)+\gamma(\omega)) \mathrm{d}\left(\mathrm{~T}\left(\omega, \xi_{2 \mathrm{n}}(\omega)\right), \mathrm{T}\left(\omega, \xi_{2 \mathrm{n}+1}(\omega)\right)\right) \\
& +(\alpha(\omega)+\beta(\omega)) \mathrm{d}\left(\mathrm{~T}\left(\omega, \xi_{2 \mathrm{n}+1}(\omega)\right), \mathrm{T}\left(\omega, \xi_{2 \mathrm{n}+2}(\omega)\right)\right) \\
& \text { i.e. } \quad(1-\alpha(\omega)-\beta(\omega)) d\left(T\left(\omega, \xi_{2 n+1}(\omega)\right), T\left(\omega, \xi_{2 n+2}(\omega)\right)\right) \\
& \leq(\alpha(\omega)+\beta(\omega)+\gamma(\omega)) \mathrm{d}\left(\mathrm{~T}\left(\omega, \xi_{2 \mathrm{n}}(\omega)\right), \mathrm{T}\left(\omega, \xi_{2 \mathrm{n}+1}(\omega)\right)\right) \\
& \mathrm{d}\left(\mathrm{~T}\left(\omega, \xi_{2 \mathrm{n}+1}(\omega)\right), \mathrm{T}\left(\omega, \xi_{2 \mathrm{n}+2}(\omega)\right)\right) \leq \mathrm{kd}\left(\mathrm{~T}\left(\omega, \xi_{2 \mathrm{n}}(\omega)\right), \mathrm{T}\left(\omega, \xi_{2 \mathrm{n}+1}(\omega)\right)\right) \\
& \text { where }
\end{aligned}
$$

$\mathrm{k}=\frac{\alpha(\omega)+\beta(\omega)+\gamma(\omega)}{1-\alpha(\omega)-\beta(\omega)}<1$.
Similarly,
$\mathrm{d}\left(\mathrm{T}\left(\omega, \xi_{2 \mathrm{n}+2}(\omega)\right), \mathrm{T}\left(\omega, \xi_{2 \mathrm{n}+3}(\omega)\right)\right) \leq \mathrm{kd}\left(\mathrm{T}\left(\omega, \xi_{2 \mathrm{n}+1}(\omega)\right), \mathrm{T}\left(\omega, \xi_{2 \mathrm{n}+2}(\omega)\right)\right.$

$$
\leq \mathrm{k}^{2} \mathrm{~d}\left(\mathrm{~T}\left(\omega, \xi_{2 \mathrm{n}}(\omega)\right), \mathrm{T}\left(\omega, \xi_{2 \mathrm{n}+1}(\omega)\right)\right.
$$

In general,

$$
\mathrm{d}\left(\mathrm{~T}\left(\omega, \xi_{2 \mathrm{n}}(\omega)\right), \mathrm{T}\left(\omega, \xi_{2 \mathrm{n}+1}(\omega)\right)\right) \leq \mathrm{k}^{2 \mathrm{n}_{\mathrm{d}}\left(\mathrm{~T}\left(\omega, \xi_{0}(\omega)\right), \mathrm{T}\left(\omega, \xi_{1}(\omega)\right)\right) .}
$$

Furthermore $m>n$,
$\mathrm{d}\left(\mathrm{T}\left(\omega, \xi_{2 \mathrm{n}}(\omega)\right), \mathrm{T}\left(\omega, \xi_{2 \mathrm{~m}}(\omega)\right) \leq \mathrm{d}\left(\mathrm{T}\left(\omega, \xi_{2 \mathrm{n}}(\omega)\right), \mathrm{T}\left(\omega, \xi_{2 \mathrm{n}+1}(\omega)\right)\right)\right.$

$$
\begin{aligned}
&+\mathrm{d}\left(\mathrm{~T}\left(\omega, \xi_{2 \mathrm{n}+1}(\omega)\right), \mathrm{T}\left(\omega, \xi_{2 \mathrm{n}+2}(\omega)\right)\right)+\ldots \\
&+\mathrm{d}\left(\mathrm{~T}\left(\omega, \xi_{2 \mathrm{~m}-1}(\omega)\right), \mathrm{T}\left(\omega, \xi_{2 \mathrm{~m}}(\omega)\right)\right) \\
&\left.\leq \mathrm{k}^{2 \mathrm{n}_{\mathrm{d}}(\mathrm{~T}(\omega,}\left(\xi_{0}(\omega)\right), \mathrm{T}\left(\omega, \xi_{1}(\omega)\right)\right) \\
&+\mathrm{k}^{2 \mathrm{n}+1} \mathrm{~d}\left(\mathrm{~T}\left(\omega, \xi_{0}(\omega)\right), \mathrm{T}\left(\omega, \xi_{1}(\omega)\right)\right)+\ldots \\
&+\mathrm{k}^{2 \mathrm{~m}-1} \mathrm{~d}\left(\mathrm{~T}\left(\omega, \xi_{0}(\omega)\right), \mathrm{T}\left(\omega, \xi_{1}(\omega)\right)\right)
\end{aligned}
$$

i.e. $d\left(T\left(\omega, \xi_{2 n}(\omega)\right), T\left(\omega, \xi_{2 m}(\omega)\right)\right) \leq \frac{k^{2 n}}{(1-k)} d\left(T\left(\omega, \xi_{0}(\omega)\right), T\left(\omega, \xi_{1}(\omega)\right)\right) \rightarrow 0 \quad$ as $n, m \rightarrow \infty$.

Thus $\left\{\mathrm{T}\left(\omega, \xi_{2 \mathrm{n}}(\omega)\right)\right\}$ and $\left\{\mathrm{T}\left(\omega, \xi_{2 \mathrm{~m}}(\omega)\right)\right\}$ are Cauchy sequence in $\mathrm{CB}(\mathrm{X})$, therefore there exists $\mathrm{A}(\omega)$ $\in \mathrm{CB}(\mathrm{X})$ such that
$\left\{\mathrm{T}\left(\omega, \xi_{2 \mathrm{n}}(\omega)\right)\right\} \rightarrow \mathrm{A}(\omega)$ for some $\omega \in \Omega$.
It further implies that $\left\{T\left(\omega, \xi_{2 \mathrm{n}+1}(\omega)\right)\right\}$, $\left\{\mathrm{S}\left(\omega, \xi_{2 \mathrm{n}}(\omega)\right)\right\}$ and $\left\{\mathrm{Q}\left(\omega, \xi_{2 \mathrm{n}+1}(\omega)\right)\right\}$ converges to $\mathrm{A}(\omega)$ for each $\omega \in \Omega$.

Let $\xi: \Omega \rightarrow \mathrm{X}$ be a measurable mapping such that for each $\omega \in \Omega$, $\xi(\omega) \in \mathrm{A}(\omega)$.
Thus, we have

$$
\begin{aligned}
& \mathrm{T}\left(\omega, \xi_{2 \mathrm{n}+1}(\omega)\right) \rightarrow \mathrm{A}(\omega), \mathrm{S}\left(\omega, \xi_{2 \mathrm{n}}(\omega)\right) \rightarrow \mathrm{A}(\omega) \text { and } \\
& \mathrm{Q}\left(\omega, \xi_{2 \mathrm{n}+1}(\omega)\right) \rightarrow \mathrm{A}(\omega) \text { as } \mathrm{n} \rightarrow \infty .
\end{aligned}
$$

Now, suppose that T is continuous random multivalued operator, then
$\mathrm{T}\left(\omega, \mathrm{T}\left(\omega, \xi_{2 \mathrm{n}+1}(\omega)\right)\right) \rightarrow \mathrm{T}(\omega, \mathrm{A}(\omega)), \mathrm{T}\left(\omega, \mathrm{S}\left(\omega, \xi_{2 \mathrm{n}}(\omega)\right)\right) \rightarrow \mathrm{T}(\omega, \mathrm{A}(\omega))$ for every $\omega \in \Omega$.
Since pair (S, T) and (Q, T) are compatible random operator,
Since pair (S, T) and (Q, T) are compatible random operator, then for each $\omega \in \Omega$, we have

$$
\mathrm{T}\left(\omega, \mathrm{~T}\left(\omega, \xi_{2 \mathrm{n}+1}(\omega)\right)\right) \rightarrow \mathrm{T}(\omega, \mathrm{~A}(\omega)), \mathrm{S}\left(\omega, \mathrm{~T}\left(\omega, \xi_{2 \mathrm{n}+1}(\omega)\right)\right) \rightarrow \mathrm{T}(\omega, \mathrm{~A}(\omega))
$$

and $\mathrm{Q}\left(\omega, \mathrm{T}\left(\omega, \xi_{2 \mathrm{n}+1}(\omega)\right)\right) \rightarrow \mathrm{T}(\omega, \mathrm{A}(\omega))$.
Consider for each $\omega \in \Omega$
$\mathrm{H}\left(\mathrm{S}\left(\omega, \mathrm{T}\left(\omega, \xi_{2 \mathrm{n}}(\omega)\right)\right), \mathrm{Q}\left(\omega, \xi_{2 \mathrm{n}+1}(\omega)\right)\right)$

$$
\begin{aligned}
& \leq \alpha(\omega) \frac{\left[\mathrm{d}\left(\mathrm{~T}\left(\omega, \mathrm{~T}\left(\omega, \xi_{2 \mathrm{n}}(\omega)\right)\right), \mathrm{S}\left(\omega, \mathrm{~T}\left(\omega, \xi_{2 \mathrm{n}}(\omega)\right)\right)\right]^{3}+\left[\mathrm{d}\left(\mathrm{~T}\left(\omega, \xi_{2 \mathrm{n}+1}(\omega)\right)\right), \mathrm{Q}\left(\omega, \xi_{2 \mathrm{n}+1}(\omega)\right)\right)\right]^{3}}{\left[\mathrm{~d}\left(\mathrm{~T}\left(\omega, \mathrm{~T}\left(\omega, \xi_{2 \mathrm{n}}(\omega)\right)\right), \mathrm{S}\left(\omega, \mathrm{~T}\left(\omega, \xi_{2 \mathrm{n}}(\omega)\right)\right)\right]^{2}+\left[\mathrm{d}\left(\mathrm{~T}\left(\omega, \xi_{2 \mathrm{n}+1}(\omega)\right)\right), \mathrm{Q}\left(\omega, \xi_{2 \mathrm{n}+1}(\omega)\right)\right)\right]^{2}} \\
& +\beta(\omega) \frac{\left[\mathrm{d}\left(\mathrm{~T}\left(\omega, \mathrm{~T}\left(\omega, \xi_{2 \mathrm{n}}(\omega)\right)\right), \mathrm{S}\left(\omega, \mathrm{~T}\left(\omega, \xi_{2 \mathrm{n}}(\omega)\right)\right)\right]^{2}+\left[\mathrm{d}\left(\mathrm{~T}\left(\omega, \xi_{2 \mathrm{n}+1}(\omega)\right)\right), \mathrm{Q}\left(\omega, \xi_{2 \mathrm{n}+1}(\omega)\right)\right)\right]^{2}}{\left[\mathrm{~d}\left(\mathrm{~T}\left(\omega, \mathrm{~T}\left(\omega, \xi_{2 \mathrm{n}}(\omega)\right)\right), \mathrm{S}\left(\omega, \mathrm{~T}\left(\omega, \xi_{2 \mathrm{n}}(\omega)\right)\right)\right]+\left[\mathrm{d}\left(\mathrm{~T}\left(\omega, \xi_{2 \mathrm{n}+1}(\omega)\right)\right), \mathrm{Q}\left(\omega, \xi_{2 \mathrm{n}+1}(\omega)\right)\right)\right]}
\end{aligned}
$$

$+\gamma(\omega) \mathrm{d}\left(\mathrm{T}\left(\omega, \mathrm{T}\left(\omega, \xi_{2 \mathrm{n}}(\omega)\right)\right), \mathrm{T}\left(\omega, \xi_{2 \mathrm{n}+1}(\omega)\right)\right)$.
On taking limit $\mathrm{n} \rightarrow \infty$ both sides, we get $\mathrm{d}(\mathrm{T}(\omega, \mathrm{A}(\omega)), \mathrm{A}(\omega))$

$$
\begin{aligned}
& \leq \alpha(\omega) \frac{[\mathrm{d}(\mathrm{~T}(\omega, \mathrm{~A}(\omega)), \mathrm{T}(\omega, \mathrm{~A}(\omega)))]^{3}+[\mathrm{d}(\mathrm{~T}(\omega, \mathrm{~A}(\omega)), \mathrm{T}(\omega, \mathrm{~A}(\omega)))]^{3}}{[\mathrm{~d}(\mathrm{~T}(\omega, \mathrm{~A}(\omega)), \mathrm{T}(\omega, \mathrm{~A}(\omega)))]^{2}+[\mathrm{d}(\mathrm{~T}(\omega, \mathrm{~A}(\omega)), \mathrm{T}(\omega, \mathrm{~A}(\omega)))]^{2}} \\
& +\beta(\omega) \frac{[\mathrm{d}(\mathrm{~T}(\omega, \mathrm{~A}(\omega)), \mathrm{T}(\omega, \mathrm{~A}(\omega)))]^{2}+[\mathrm{d}(\mathrm{~T}(\omega, \mathrm{~A}(\omega)), \mathrm{T}(\omega, \mathrm{~A}(\omega)))]^{2}}{[\mathrm{~d}(\mathrm{~T}(\omega, \mathrm{~A}(\omega)), \mathrm{T}(\omega, \mathrm{~A}(\omega)))]+[\mathrm{d}(\mathrm{~T}(\omega, \mathrm{~A}(\omega)), \mathrm{T}(\omega, \mathrm{~A}(\omega)))]}
\end{aligned}
$$

$+\gamma(\omega) \mathrm{d}(\mathrm{T}(\omega, \mathrm{A}(\omega)), \mathrm{A}(\omega))$
$(1-\gamma(\omega)) \mathrm{d}(\mathrm{T}(\omega, \mathrm{A}(\omega)), \mathrm{A}(\omega)) \leq 0$ $\mathrm{d}(\mathrm{T}(\omega, \mathrm{A}(\omega)), \mathrm{A}(\omega))=0$
i.e., $\quad T(\omega, A(\omega))=A(\omega)$ for each $\omega \in \Omega$.

But $\xi(\omega) \in \mathrm{A}(\omega)$.
Thus $\xi(\omega) \in \mathrm{T}(\omega, \xi(\omega))$.
Now, for any $\omega \in \Omega$
$\mathrm{H}\left(\mathrm{S}(\omega, \mathrm{A}(\omega)), \mathrm{Q}\left(\omega, \xi_{2 \mathrm{n}+1}(\omega)\right)\right)$
$\leq \alpha(\omega) \frac{[\mathrm{d}(\mathrm{T}(\omega, \mathrm{A}(\omega)), \mathrm{S}(\omega, \mathrm{A}(\omega)))]^{3}+\left[\mathrm{d}\left(\mathrm{T}\left(\omega, \xi_{2 \mathrm{n}+1}(\omega)\right), \mathrm{Q}\left(\omega, \xi_{2 \mathrm{n}+1}(\omega)\right)\right)\right]^{3}}{[\mathrm{~d}(\mathrm{~T}(\omega, \mathrm{~A}(\omega)), \mathrm{S}(\omega, \mathrm{A}(\omega)))]^{2}+\left[\mathrm{d}\left(\mathrm{T}\left(\omega, \xi_{2 \mathrm{n}+1}(\omega)\right), \mathrm{Q}\left(\omega, \xi_{2 \mathrm{n}+1}(\omega)\right)\right)\right]^{2}}$
$+\beta(\omega) \frac{[d(T(\omega, A(\omega)), S(\omega, A(\omega)))]^{2}+\left[d\left(T\left(\omega, \xi_{2 n+1}(\omega)\right), Q\left(\omega, \xi_{2 n+1}(\omega)\right)\right)\right]^{2}}{[d(T(\omega, A(\omega)), S(\omega, A(\omega)))]+\left[d\left(T\left(\omega, \xi_{2 n+1}(\omega)\right), Q\left(\omega, \xi_{2 n+1}(\omega)\right)\right)\right]}$
$+\gamma(\omega) \mathrm{d}\left(\mathrm{T}(\omega, \mathrm{A}(\omega)), \mathrm{T}\left(\omega, \xi_{2 \mathrm{n}+1}(\omega)\right)\right)$.
Taking limit $\rightarrow \infty$, we get
$\mathrm{d}(\mathrm{S}(\omega, \mathrm{A}(\omega)), \mathrm{A}(\omega))$

$$
\begin{aligned}
& \leq \alpha(\omega) \frac{[\mathrm{d}(\mathrm{~A}(\omega), \mathrm{S}(\omega, \mathrm{~A}(\omega)))]^{3}+[\mathrm{d}(\mathrm{~A}(\omega), \mathrm{A}(\omega))]^{3}}{[\mathrm{~d}(\mathrm{~A}(\omega), \mathrm{S}(\omega, \mathrm{~A}(\omega)))]^{2}+[\mathrm{d}(\mathrm{~A}(\omega), \mathrm{A}(\omega))]^{2}} \\
& +\beta(\omega) \frac{[\mathrm{d}(\mathrm{~A}(\omega), \mathrm{S}(\omega, \mathrm{~A}(\omega)))]^{2}+[\mathrm{d}(\mathrm{~A}(\omega), \mathrm{A}(\omega))]^{2}}{[\mathrm{~d}(\mathrm{~A}(\omega), \mathrm{S}(\omega, \mathrm{~A}(\omega)))]+[\mathrm{d}(\mathrm{~A}(\omega), \mathrm{A}(\omega))]}
\end{aligned}
$$

$+\gamma(\omega) \mathrm{d}(\mathrm{A}(\omega), \mathrm{A}(\omega))$
$d(S(\omega, A(\omega)), A(\omega)) \leq \alpha(\omega) d(A(\omega), S(\omega, A(\omega)))+\beta(\omega) d(A(\omega), S(\omega, A(\omega)))$
$(1-\alpha(\omega)-\beta(\omega)) d(S(\omega, A(\omega)), A(\omega)) \leq 0$
i.e.
$\mathrm{d}(\mathrm{S}(\omega, \mathrm{A}(\omega)), \mathrm{A}(\omega)) \leq 0$
$S(\omega, A(\omega))=A(\omega)$ for each $\omega \in \Omega$.
But $\xi(\omega) \in A(\omega)$.
Thus, $\xi(\omega) \in \mathrm{S}(\omega, \mathrm{A}(\omega))$.
Finally,
$\mathrm{H}(\mathrm{S}(\omega, \mathrm{T}(\omega, \mathrm{A}(\omega)), \mathrm{Q}(\omega, \mathrm{A}(\omega)))$

$$
\begin{aligned}
& \leq \alpha(\omega) \frac{[\mathrm{d}(\mathrm{~T}(\omega, \mathrm{~A}(\omega)), \mathrm{S}(\omega, \mathrm{~A}(\omega)))]^{3}+[\mathrm{d}(\mathrm{~T}(\omega, \mathrm{~A}(\omega)), \mathrm{Q}(\omega, \mathrm{~A}(\omega)))]^{3}}{[\mathrm{~d}(\mathrm{~T}(\omega, \mathrm{~A}(\omega)), \mathrm{S}(\omega, \mathrm{~A}(\omega)))]^{2}+[\mathrm{d}(\mathrm{~T}(\omega, \mathrm{~A}(\omega)), \mathrm{Q}(\omega, \mathrm{~A}(\omega)))]^{2}} \\
& +\beta(\omega) \frac{[\mathrm{d}(\mathrm{~T}(\omega, \mathrm{~A}(\omega)), \mathrm{S}(\omega, \mathrm{~A}(\omega)))]^{2}+[\mathrm{d}(\mathrm{~T}(\omega, \mathrm{~A}(\omega)), \mathrm{Q}(\omega, \mathrm{~A}(\omega)))]^{2}}{[\mathrm{~d}(\mathrm{~T}(\omega, \mathrm{~A}(\omega)), \mathrm{S}(\omega, \mathrm{~A}(\omega)))]+[\mathrm{d}(\mathrm{~T}(\omega, \mathrm{~A}(\omega)), \mathrm{Q}(\omega, \mathrm{~A}(\omega)))]} \\
& +\gamma(\omega) \mathrm{d}(\mathrm{~T}(\omega, \mathrm{~A}(\omega)), \mathrm{T}(\omega, \mathrm{~A}(\omega)))
\end{aligned}
$$

$\mathrm{d}(\mathrm{A}(\omega), \mathrm{Q}(\omega, \mathrm{A}(\omega)))$

$$
\leq \alpha(\omega) \frac{[\mathrm{d}(\mathrm{~A}(\omega), \mathrm{A}(\omega))]^{3}+[\mathrm{d}(\mathrm{~A}(\omega), \mathrm{Q}(\omega, \mathrm{~A}(\omega)))]^{3}}{[\mathrm{~d}(\mathrm{~A}(\omega), \mathrm{A}(\omega))]^{2}+[\mathrm{d}(\mathrm{~A}(\omega), \mathrm{Q}(\omega, \mathrm{~A}(\omega)))]^{2}}
$$

$$
\begin{aligned}
& +\beta(\omega) \frac{[\mathrm{d}(\mathrm{~A}(\omega), \mathrm{A}(\omega))]^{2}+[\mathrm{d}(\mathrm{~A}(\omega), \mathrm{Q}(\omega, \mathrm{~A}(\omega)))]^{2}}{[\mathrm{~d}(\mathrm{~A}(\omega), \mathrm{A}(\omega))]+[\mathrm{d}(\mathrm{~A}(\omega), \mathrm{Q}(\omega, \mathrm{~A}(\omega)))]} \\
& +\gamma(\omega) \mathrm{d}(\mathrm{~A}(\omega), \mathrm{A}(\omega)) \\
& \mathrm{d}(\mathrm{~A}(\omega), \mathrm{Q}(\omega, \mathrm{~A}(\omega))) \leq \alpha(\omega) \mathrm{d}(\mathrm{~A}(\omega), \mathrm{Q}(\omega, \mathrm{~A}(\omega)))+\beta(\omega) \mathrm{d}(\mathrm{~A}(\omega), \mathrm{Q}(\omega, \mathrm{~A}(\omega))) \\
& \mathrm{d}(\mathrm{~A}(\omega), \mathrm{Q}(\omega, \mathrm{~A}(\omega))) \leq 0 \\
& \mathrm{Q}(\omega, \mathrm{~A}(\omega))=\mathrm{A}(\omega) \text { for each } \omega \in \Omega .
\end{aligned}
$$

$(1-\alpha(\omega)-\beta(\omega)) \mathrm{d}(\mathrm{A}(\omega), \mathrm{Q}(\omega, \mathrm{A}(\omega))) \leq 0$
i.e.

But $\xi(\omega) \in \mathrm{A}(\omega)$.
Thus, $\xi(\omega) \in \mathrm{Q}(\omega, \mathrm{A}(\omega))$.
Hence, $\xi(\omega)$ is a random fixed point of random multivalued operator S, Q and T .

Uniqueness :

To prove uniqueness of common random fixed point of random multivalued operator.
Let $\xi_{1}, \xi_{2}: \Omega \rightarrow \mathrm{X}$ be two common random fixed point of random multivalued operators S, Q and T such that $\xi_{1}(\omega)=\xi_{2}(\omega)$ for each $\omega \in \Omega$.
Consider for each $\omega \in \Omega$
$\mathrm{d}\left(\xi_{1}(\omega), \xi_{2}(\omega)\right) \leq \mathrm{H}\left(\mathrm{S}\left(\omega, \xi_{1}(\omega)\right), \mathrm{Q}\left(\omega, \xi_{2}(\omega)\right)\right)$

$$
\begin{aligned}
& \leq \alpha(\omega) \frac{\left[\mathrm{d}\left(\mathrm{~T}\left(\omega, \xi_{1}(\omega)\right), \mathrm{S}\left(\omega, \xi_{1}(\omega)\right)\right)\right]^{3}+\left[\mathrm{d}\left(\mathrm{~T}\left(\omega, \xi_{2}(\omega)\right), \mathrm{Q}\left(\omega, \xi_{2}(\omega)\right)\right)\right]^{3}}{\left[\mathrm{~d}\left(\mathrm{~T}\left(\omega, \xi_{1}(\omega)\right), \mathrm{S}\left(\omega, \xi_{1}(\omega)\right)\right)\right]^{2}+\left[\mathrm{d}\left(\mathrm{~T}\left(\omega, \xi_{2}(\omega)\right), \mathrm{Q}\left(\omega, \xi_{2}(\omega)\right)\right)\right]^{2}} \\
& +\beta(\omega) \frac{\left[\mathrm{d}\left(\mathrm{~T}\left(\omega, \xi_{1}(\omega)\right), \mathrm{S}\left(\omega, \xi_{1}(\omega)\right)\right)\right]^{2}+\left[\mathrm{d}\left(\mathrm{~T}\left(\omega, \xi_{2}(\omega)\right), \mathrm{Q}\left(\omega, \xi_{2}(\omega)\right)\right)\right]^{2}}{\left[\mathrm{~d}\left(\mathrm{~T}\left(\omega, \xi_{1}(\omega)\right), \mathrm{S}\left(\omega, \xi_{1}(\omega)\right)\right)\right]+\left[\mathrm{d}\left(\mathrm{~T}\left(\omega, \xi_{2}(\omega)\right), \mathrm{Q}\left(\omega, \xi_{2}(\omega)\right)\right)\right]} \\
& +\gamma(\omega) \mathrm{d}\left(\mathrm{~T}\left(\omega, \xi_{1}(\omega)\right), \mathrm{T}\left(\omega, \xi_{2}(\omega)\right)\right)
\end{aligned}
$$

i.e.

$$
\begin{aligned}
& \mathrm{d}\left(\xi_{1}(\omega), \xi_{2}(\omega)\right) \leq \gamma(\omega) \mathrm{d}\left(\mathrm{~T}\left(\omega, \xi_{1}(\omega)\right), \mathrm{T}\left(\omega, \xi_{2}(\omega)\right)\right) \\
& \quad(1-\gamma(\omega)) \mathrm{d}\left(\xi_{1}(\omega), \xi_{2}(\omega)\right) \leq 0 \\
& \mathrm{~d}\left(\xi_{1}(\omega), \xi_{2}(\omega)\right) \leq 0 .
\end{aligned}
$$

Thus, $\quad \xi_{1}(\omega)=\xi_{2}(\omega)$ for each $\omega \in \Omega$
which is a contradiction, so the result follows.
Corollary. Let X be a Polish space and let (S, P) and (T, Q) be two pairs of compatible random multivalued operators from $\Omega \times \mathrm{X} \rightarrow \mathrm{CB}(\mathrm{X})$ with $\mathrm{S}(\omega, \mathrm{X}) \subset \mathrm{Q}(\omega, \mathrm{X})$ and $\mathrm{T}(\omega, \mathrm{X}) \subset \mathrm{P}(\omega, \mathrm{X})$ for each $\omega \in \Omega$ and
$\omega \in \Omega$ and
$\mathrm{H}(\mathrm{S}(\omega, \mathrm{x}), \mathrm{T}(\omega, \mathrm{y}))$

$$
\begin{aligned}
& \leq \alpha(\omega) \frac{[\mathrm{d}(\mathrm{P}(\omega, \mathrm{x}), \mathrm{S}(\omega, \mathrm{x}))]^{3}+[\mathrm{d}(\mathrm{Q}(\omega, \mathrm{y}), \mathrm{T}(\omega, \mathrm{y}))]^{3}}{[\mathrm{~d}(\mathrm{P}(\omega, \mathrm{x}), \mathrm{S}(\omega, \mathrm{x}))]^{2}+[\mathrm{d}(\mathrm{Q}(\omega, \mathrm{y}), \mathrm{T}(\omega, \mathrm{y}))]^{2}} \\
& +\beta(\omega) \frac{[\mathrm{d}(\mathrm{P}(\omega, \mathrm{x}), \mathrm{S}(\omega, \mathrm{x}))]^{2}+[\mathrm{d}(\mathrm{Q}(\omega, \mathrm{y}), \mathrm{T}(\omega, \mathrm{y}))]^{2}}{[\mathrm{~d}(\mathrm{P}(\omega, \mathrm{x}), \mathrm{S}(\omega, \mathrm{x}))]+[\mathrm{d}(\mathrm{Q}(\omega, \mathrm{y}), \mathrm{T}(\omega, \mathrm{y}))]} \\
& +\gamma(\omega) \mathrm{d}(\mathrm{P}(\omega, \mathrm{x}), \mathrm{Q}(\omega, \mathrm{y}))
\end{aligned}
$$

for each $\mathrm{x}, \mathrm{y} \in \mathrm{X}$ and $\omega \in \Omega$, where $\alpha, \beta, \gamma: \Omega \rightarrow(0,1)$ are measurable mappings such that $\alpha(\omega)+\beta(\omega)+$ $\gamma(\omega)<1$. If one of the random multivalued operators $\mathrm{P}, \mathrm{Q}, \mathrm{T}$ or S is continuous then $\mathrm{P}, \mathrm{Q}, \mathrm{S}$ and T have unique common random fixed point (where H represents Hausdorff metric on $\mathrm{CB}(\mathrm{X})$ induced by metric d).

References

[1.] Badshah, V.H. and Sayyed, Farkhunda, Common random fixed point of random multivalued operator on Polish spaces, Indian J. Pure App. Math. 33(4), Apr. 2002, 573-582.
[2.] Beg, I. Random fixed point of random operators satisfying semi-contractivity conditions, Mathematica Japonica 46(1997), no. 1, 151-155.
[3.] Beg, I., Approximation of random fixed point in normed spaces, Nonlinear Analysis, 51 (2002), No. 8, 1363-1372.
[4.] Beg, I. and Abbas, Mujahid, Common random fixed point of compatible random operator, Int. J. Math. and Math. Sci. Vol. 2006 Article I.D. 23486, 1-15.
[5.] Beg, I, and Shahzad, N., Random fixed points of random multivalued operators on Polish spaces, Non-linear Analysis Theory Methods and Applications 20 (1993), 835-847.
[6.] Bharucha Reid, A.T.
[7.] Random integral equations, Academic Press, New York, 1972.
[8.] Hans, O., Reduzierende zufallige transformation. Czechoslovak Mathematics Journal 7 (1957), 154-158.
[9.] Hans, O., Random operator equations, Proceeding of the $4^{\text {th }}$ Berkeley Symposium in Mathematical Statistics and Probability, Vol. II, Part I, University of California Press, California (1961), 185-202.
[10.] Itoh, S., A random fixed point theorem for a multivalued contraction mapping, Pacific Journal Mathematics 68 (1977), 85-90.
[11.] Mukherjee, A., Random transformations of Banach spaces. Ph.D. Dissertation, Wayne State University Detroit, Michegall, USA (1968.).
[12.] Papageorgiou, N.S., Random fixed point theorems for measurable multifunctions in Banach spaces, Proceedings of the American Mathematical Society 97 (1986), No. 3, 507-514.
[13.] Spacek, A., Zufallige Gleichungen, Czechoslovak Mathematical Journal 5 (1995), 462-466.

