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I. Introduction 
The systematic study of random equations employing the methods of functional analysis was first 

initiated by Prague School of Probabilistic in 1950's by Spacek [12] and Hans [7,8].  In separable metric space, 

random fixed point theorems for contraction mappings was proved by Spacek [12] and Hans [7,8]. Bharucha-

Reid [6] generalized Mukherjee's [10] result on general probability measure space. For multivalued mappings 

Itoh [9] obtained random analogues of corresponding deterministic result for different classes of mappings.  

Papageoriou [11], Beg [2,3], Beg and Shahzad [5] and Beg and Abbas [4] proved some common random fixed 

point and random coincidence point of a pair of compatible random operators.  

 Preliminaries: Let (X,d) be a Polish space, that is a separable complete metric space and (, a) be a 

measurable space. Let 2x be the family of all subsets of X and CB(X) denote the family of all nonempty 

bounded closed subsets of X.  

 A mapping T: 2x, is called measurable, if for any open subset C of X,  

  T-1(C) = {: T()C } a.  

 A mapping : X is called measurable selector of a measurable mapping           T: 2X, if 

is measurable and for any ,()  T().    

 A mapping T: × X CB(X) is called random multivalued operator, if for every x X, T(.,x) is 

measurable.  

 A mapping f: × X X is called random operator, if for every x X, f(.,x) is measurable.  

 A measurable mapping X, is called the random fixed point of a random multivalued operator 

T: × X CB(X) (f: × X X), if for every ,            () T(()) (f(()) = ()).  

 A measurable mapping :  X is a random coincident point of  

T: × X CB(X) and f: × X CB(X) if for any ,  

  f(, ()) = T(, ()). 

 Mappings f, g : X X are compatible if  n
lim
 d(fg(xn),  gf(xn)) = 0, provided that  n

lim
 f(xn) and  

n
lim
 g(xn) exists in X and n

lim
 f(xn) = n

lim
 g(xn). 

 Random operators S, T: × X X are compatible if S(, .) and T(, .) are compatible for each  

. (See Beg and Shahzad [5])   

 Main Result. 
  Theorem. Let X be a Polish space and let (S, T) and (Q, T) be two pairs of compatible random 

multivalued operators from × X CB(X) with S(, X) T(, X) and Q(, X) T(, X) for each  
and 
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d(T( ,x),S( ,x)) d(T( ,y),Q( ,y))
H S ,x ,Q ,y ( )

d(T( ,x),S( ,x)) d(T( ,y),Q( ,y))

    
    

    
 

     

   
   

2 2
d(T( ,x),S( ,x)) d(T( ,y),Q( ,y))

( )
d(T( ,x),S( ,x)) d(T( ,y),Q( ,y))

    
 

    
 

     + ()d(T(, x), T(, y)) 



Common Random Fixed Point theorem for compatible random multivalued operators 

www.iosrjournals.org                                                            40 | Page 

for each x, y X and  where , , : (0, 1) are measurable mapping such that () + () + 

() < 1. 
 If one of the random multivalued operators S, Q and T is continuous, then S, Q and T have unique 

common random fixed point.  (Here H represents the Hausdorff metric on CB(X) induced by the metric d). 

 Proof.  Let 0:  X be an arbitrary measurable mapping and choose a measurable mapping 1: 

X such that S(, 0()) = T(, 1()) for each . 

It further implies that there exists a measurable mapping 2: X such that for any  

 Q(, 1()) = T(, 2()). 

 In general, we can choose measurable mappings 2n+1 and 2n+2 from X such that 

  S(, 2n()) = T(, 2n+1()) 

and     Q(, 2n+1()) = T(, 2n+2())  

for each  and n = 0, 1, 2, ... . 

Then for each , 

  d(T(, 2n+1()), T(, 2n+2()) = H(S(, 2n()), Q(, 2n+1()) 
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+ ()d(T(, 2n()), T(, 2n+1())) 
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+ ()d(T(, 2n()), T(, 2n+1())) 

()[d(T(, 2n()), T(, 2n+1())+d(T(, 2n+1()), T(, 2n+2()))] 

+ ()[d(T(, 2n()), T(, 2n+1())) + d(T(, 2n+1()), T(, 2n+2()))] 

+ ()d(T(, 2n()), T(, 2n+1())) 

(() + () + ()) d(T(, 2n()), T(, 2n+1()))  

 + (() + ()) d(T(, 2n+1()), T(, 2n+2())) 

i.e. (1 - () - ()) d(T(, 2n+1()), T(, 2n+2())) 

  (() + () + ())d(T(, 2n()), T(, 2n+1())) 

d(T(, 2n+1()), T(, 2n+2()))  kd(T(, 2n()), T(, 2n+1())) 

where  
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( ) ( ) ( )
k 1.

1 ( ) ( )

       
 

     
 

Similarly,  

d(T(, 2n+2()), T(, 2n+3()))  kd(T(, 2n+1()), T(, 2n+2()) 

      k2d(T(, 2n()), T(, 2n+1()) 

In general, 

 d(T(, 2n()), T(, 2n+1()))  k2nd(T(, 0()), T(, 1())). 

Furthermore m > n, 

d(T(, 2n()), T(, 2m())  d(T(, 2n()), T(, 2n+1()))  

      + d(T(, 2n+1()), T(, 2n+2())) + ...  

      + d(T(, 2m-1()), T(, 2m())) 

       k2nd(T(, 0()), T(, 1()))  

      + k2n+1d(T(, 0()), T(, 1())) + ...  

      + k2m-1d(T(, 0()), T(, 1())) 

i.e.   d(T(, 2n()), T(, 2m()))  

2nk

(1 k) d(T(, 0()), T(, 1())) 0          as n, m . 

 Thus {T(, 2n())} and {T(, 2m())} are Cauchy sequence in CB(X), therefore there exists A() 

CB(X) such that  

{T(, 2n())}  A() for some .   

It further implies that {T(, 2n+1())}, {S(, 2n())} and {Q(, 2n+1())} converges to A() for each 

. 

Let :  X be a measurable mapping such that for each , () A(). 
 Thus, we have 

  T(, 2n+1()) A(), S(, 2n())  A()   and  

  Q(, 2n+1()) A()  as n . 

 Now, suppose that T is continuous random multivalued operator, then  

 T(, T(, 2n+1())) T(, A()), T(, S(, 2n())) T(, A()) for every  

 Since pair (S, T) and (Q, T) are compatible random operator, 

Since pair (S, T) and (Q, T) are compatible random operator, then for each , we have 

 T(, T(, 2n+1())) T(, A()),  S(, T(, 2n+1())) T(, A()) 

and Q(, T(, 2n+1()))  T(, A()). 

Consider for each  

H(S(, T(, 2n())), Q(, 2n+1())) 
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+  ()d(T(, T(,2n())), T(, 2n+1())). 

On taking limit n  both sides, we get 

d(T(, A()), A()) 
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   S(, A()) = A() for each. 

But () A(). 

Thus,  () S(, A()). 
Finally,  

H(S(, T(, A()), Q(, A())) 
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           Q(, A()) = A() for each. 

But () A(). 

Thus,  () Q(, A()). 

Hence, () is a random fixed point of random multivalued operator S, Q and T. 

Uniqueness :  
To prove uniqueness of common random fixed point of random multivalued operator. 

Let  1, 2 : X be two common random fixed point of random multivalued operators S, Q and T such 

that  1() = 2() for each . 

Consider for each 

d(1(), 2()) H(S(, 1()), Q(, 2())) 
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i.e.      d(1(), 2())  ()d(T(, 1()), T(, 2())) 

(1- ())d(1(), 2()) 0 

   d(1(), 2()) 0. 

Thus,   1() = 2()  for each  

which is a contradiction, so the result follows.  

 Corollary. Let X be a Polish space and let (S, P) and (T, Q) be two pairs of compatible random 

multivalued operators from × X  CB(X) with S(, X) Q(, X) and T(, X) P(, X) for each  

 and 

and 

H(S(, x), T(, y)) 
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for each x, y X and , where , : (0, 1) are measurable mappings such that () + () + 

() < 1.  If one of the random multivalued operators P, Q, T or S is continuous then P, Q, S and T have unique 

common random fixed point (where H represents Hausdorff metric on CB(X) induced by metric d).  
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