Contraction Type Mapping on 2-Metric Spaces

Dhruba Das ${ }^{1}$, Kanak Das ${ }^{2}$
${ }^{1}$ (Department of Statistics, Gauhati University, India)
${ }^{2}$ (Department of Botany, Bajali College, India)

Abstract: The superimposition of infinite number of intervals $\left[a_{1}, b_{1}\right],\left[a_{2}, b_{2}\right],\left[a_{3}, b_{3}\right], \ldots \ldots .,\left[a_{n}, b_{n}\right]$ follows two laws of randomness if
(a) $a_{i} \neq a_{j} ; i, j=1,2, \ldots \ldots, n$,
(b) $b_{i} \neq b_{j} ; i, j=1,2, \ldots \ldots, n$,
(c) $\max \left(a_{i}\right) \leq \min \left(b_{i}\right) ; i=1,2, \ldots, n$, where $n \rightarrow \infty$

Keywords: Superimposition of sets, Probability distribution function, Glivenko - Cantelli Lemma.

I. Introduction

Construction of normal fuzzy number has been discussed in ([1], [2]) based on the randomness fuzziness consistency principle deduced by Baruah ([3], [4], [5]). Based on this aforesaid principle by including two more conditions which are not mentioned by Baruah, we have shown that if we superimpose infinite number of intervals $\left[a_{1}, b_{1}\right],\left[a_{2}, b_{2}\right],\left[a_{3}, b_{3}\right], \ldots . . .,\left[a_{n}, b_{n}\right]$, then the values $a_{(1)}, a_{(2)}, \ldots, a_{(n)}$ follows an uniform probability distribution function and the values $b_{(1)}, b_{(2), \ldots}, b_{(n)}$ follows an another complementary uniform probability distribution function where $\mathrm{a}_{(1)}, \mathrm{a}_{(2)}, \ldots ., \mathrm{a}_{(\mathrm{n})}$ and $\mathrm{b}_{(1)}, \mathrm{b}_{(2)}, \ldots ., \mathrm{b}_{(\mathrm{n})}$ are arranged in increasing order of magnitude of $a_{1}, a_{2}, a_{3}, \ldots \ldots ., a_{n}$ and $b_{1}, b_{2}, b_{3}, \ldots \ldots ., b_{n}$ respectively. If $\alpha=\min \left(a_{i}\right), \beta=\max \left(a_{i}\right), \mu=\min \left(b_{i}\right), \gamma=$ $\max \left(b_{i}\right)$, by satisfying the condition $a_{i} \neq a_{j}, b_{i} \neq b_{j}$ and $\max \left(a_{i}\right)<\min \left(b_{i}\right) ; i, j=1,2, \ldots \ldots, n$, then we can define the function $\psi(x)$ as

$$
\begin{aligned}
\psi(x) & =\psi_{1}(x) & & \text { if } \alpha \leq x \leq \beta, \\
& =1-\psi_{2}(x) & & \text { if } \mu \leq x \leq \gamma, \\
& =1 & & \text { if } \beta \leq x \leq \mu, \\
& =0 & & \text { otherwise. }
\end{aligned}
$$

Where $\Psi_{1}(\mathrm{x})$ being a continuous distribution function in the interval $[\alpha, \beta]$, and $\left(1-\Psi_{2}(\mathrm{x})\right)$ being a continuous distribution function in the interval $[\mu, \gamma]$, with $\Psi_{1}(\alpha)=\Psi_{2}(\gamma)=0$ and $\Psi_{1}(\beta)=\Psi_{2}(\mu)=1$.

II. The Operation Of Set Superimposition

The operation of set superimposition of two real intervals $\left[a_{1}, b_{1}\right]$ and $\left[a_{2}, b_{2}\right]$ as

$$
\left[a_{1}, b_{1}\right](S)\left[a_{2}, b_{2}\right]=\left[a_{(1)}, a_{(2)}\right] \cup\left[a_{(2)}, b_{(1)}\right] \cup\left[b_{(1)}, b_{(2)}\right]
$$

Where $a_{(1)}=\min \left(a_{1}, a_{2}\right), a_{(2)}=\max \left(a_{1}, a_{2}\right), b_{(1)}=\min \left(b_{1}, b_{2}\right)$ and $b_{(2)}=\max \left(b_{1}, b_{2}\right)$.Here we have assumed without any loss of generality that $a_{1} \neq a_{2}, b_{1} \neq b_{2}$ and $\left[a_{1}, b_{1}\right] \cap\left[a_{2}, b_{2}\right]$ is not void or in other words that $\max \left(a_{i}\right)<\min \left(b_{i}\right), i=1,2$

Figure1: Superimposition of $\left[x_{1}, y_{1}\right]^{\left(\frac{1}{3}\right)},\left[x_{2}, y_{2}\right]^{\left(\frac{1}{3}\right)}$ and $\left[x_{3}, y_{3}\right]^{\left(\frac{1}{3}\right)}$

Figure2: Cumulative and complementary cumulative distribution functions
For the three intervals $\left[x_{1}, y_{1}\right]^{(1 / 3)},\left[x_{2}, y_{2}\right]^{(1 / 3)}$ and $\left[x_{3}, y_{3}\right]^{(1 / 3)}$ all with elements with a constant probability equal to $1 / 3$ everywhere, we shall have

$$
\left[x_{1,} y_{1}\right]^{(1 / 3)}(S)\left[x_{2} y_{2}\right]^{(1 / 3)}(S)\left[x_{3}, y_{3}\right]^{(1 / 3)}=\left[x_{(1)}, x_{(2)}\right]^{(1 / 3)} \cup\left[x_{(2)}, x_{(3)}\right]^{(2 / 3)} \cup\left[x_{(3)}, y_{(1)}\right]^{(1)} \cup\left[y_{(1)}, y_{(2)}\right]^{(2 / 3)} \cup\left[y_{(2)}, y_{(3)}\right]^{(1 / 3)}
$$ where, for example $\left[y_{(1)}, y_{(2)}\right]^{(2 / 3)}$ represents the interval $\left\lfloor y_{(1)}, y_{(2)}\right\rfloor$ with probability $2 / 3$ for all elements in the entire interval, $x_{(1)}, x_{(2)}, x_{(3)}$ being values of x_{1}, x_{2}, x_{3} arranged in increasing order of magnitude, and similarly $y_{(1)}, y_{(2)}, y_{(3)}$ being values of y_{1}, y_{2}, y_{3} arranged in increasing order of magnitude again. We here presumed that $\left[x_{1}, y_{1}\right] \cap\left[x_{2}, y_{2}\right] \cap\left[x_{3}, y_{3}\right]$ is not void and $x_{1} \neq x_{2} \neq x_{3}$ and $y_{1} \neq y_{2} \neq y_{3}$.

It can be seen that for n intervals $\left[a_{1}, b_{1}\right]^{1 / n},\left[a_{2}, b_{2}\right]^{1 / n}, \ldots \ldots . . .,\left[a_{n}, b_{n}\right]^{1 / n}$ all with probability equal to $1 / n$ everywhere, we shall have

$$
\begin{aligned}
{\left[a_{1}, b_{1}\right]^{\frac{1}{n}}(S)\left[a_{2}, b_{2}\right]^{\frac{1}{n}}(S) \ldots \ldots . .\left[a_{n}, b_{n}\right]^{\frac{1}{n}}=} & {\left[a_{(1)}, a_{(2)}\right]^{\frac{1}{n}} \cup\left[a_{(2)}, a_{(3)}\right]^{\frac{2}{n}} \cup \ldots \ldots . \cup\left[a_{(n-1)}, a_{(n)}\right]^{\frac{n-1}{n}} } \\
& \cup\left[a_{(n)}, b_{(1)}\right]^{(1)} \cup\left[b_{(1)}, b_{(2)}\right]^{\frac{n-1}{n}} \cup \ldots \ldots \ldots . \cup\left[b_{(n-2)}, b_{(n-1)}\right]^{\frac{2}{n}} \cup\left[b_{(n-1)}, b_{(n)}\right]^{\frac{1}{n}},
\end{aligned}
$$

Where, for example, $\left[b_{(1)}, b_{(2)}\right]^{\frac{n-1}{n}}$ represents the interval $\left[\mathrm{b}_{(1)}, \mathrm{b}_{(2)}\right]$ with probability $\frac{n-1}{n}$ in the entire interval, $a_{(1)}, a_{(2)}, \ldots \ldots ., a_{(n)}$ being values of $a_{1}, a_{2}, \ldots . \ldots a_{n}$ arranged in increasing order of magnitude, and $b_{(1)}$, $b_{(2)}, \ldots \ldots ., b_{(n)}$ being values of $b_{1}, b_{2, \ldots \ldots}, b_{n}$ arranged in increasing order of magnitude. Thus for the intervals $\left[a_{1}, b_{1}\right]^{\frac{1}{n}},\left[a_{2}, b_{2}\right]^{\frac{1}{n}}, \ldots \ldots .\left[a_{n}, b_{n}\right]^{\frac{1}{n}}$, all with uniform probability $\frac{1}{n}$, the probabilities of the superimposed intervals are $\frac{1}{n}, \frac{2}{n}, \ldots \ldots, \frac{n-1}{n}, 1, \frac{n-1}{n}, \ldots ., \frac{2}{n}$ and $\frac{1}{n}$. These probabilities considered in two halves as

$$
\left(0, \frac{1}{n}, \frac{2}{n}, \ldots \ldots, \frac{n-1}{n}, 1\right)
$$

and

$$
\left(1, \frac{n-1}{n}, \ldots \ldots ., \frac{2}{n}, \frac{1}{n}, 0\right)
$$

would suggest that they can define an empirical distribution and a complementary empirical distribution on $a_{1}, a_{2}, \ldots \ldots \ldots, a_{n}$ and $b_{1}, b_{2}, \ldots \ldots \ldots, b_{n}$ respectively. In other words, for realizations of the values of $\mathrm{a}_{(1)}$, $\mathrm{a}_{(2)}, \ldots \ldots ., \mathrm{a}_{(\mathrm{n})}$ in increasing order and of $\mathrm{b}_{(1)}, \mathrm{b}_{(2)}, \ldots \ldots . ., \mathrm{b}_{(\mathrm{n})}$ again in increasing order, we can see that if we define

$$
\psi_{1}(x)= \begin{cases}0 & \text { if } x<a_{(1)} \\ \frac{r-1}{n} & \text { if } a_{(r-1)} \leq x \leq a_{(r)}, r=2,3, \ldots, n \\ 1 & \text { if } x \geq a_{(n)},\end{cases}
$$

$$
\psi_{2}(x)= \begin{cases}1 & \text { if } x<b_{(1)} \\ 1-\frac{r-1}{n} & \text { if } b_{(r-1)} \leq x \leq b_{(r)}, r=2,3, \ldots, n \\ 0 & \text { if } x \geq b_{(n)}\end{cases}
$$

Then the Glivenko - Cantelli Lemma on Order Statistics assures that

$$
\begin{array}{ll}
\psi_{1}(x) \rightarrow \prod_{1}[\alpha, x], & \alpha \leq x \leq \beta \\
\psi_{2}(x) \rightarrow 1-\prod_{2}[\mu, x], & \mu \leq x \leq \gamma
\end{array}
$$

where $\prod_{1}[\alpha, x], \alpha \leq x \leq \beta$ and $\psi_{2}(x), \mu \leq x \leq \gamma$ are two probability distributions. Here in this case we have considered that $\max \left(a_{i}\right) \square \min \left(b_{i}\right)$, but for large number of observation when $\max \left(a_{i}\right)=\min \left(b_{i}\right)$ that is $\beta=\mu$ then $\mathrm{a}_{(\mathrm{n})}=\mathrm{b}_{(\mathrm{l})}$ and we can write

$$
\begin{array}{ll}
\psi_{1}(x) \rightarrow \prod_{1}[\alpha, x], & \alpha \leq x \leq \beta \\
\psi_{2}(x) \rightarrow 1-\prod_{2}[\beta, x], & \beta \leq x \leq \gamma
\end{array}
$$

where $\prod_{1}[\alpha, x], \alpha \leq x \leq \beta$ and $\psi_{2}(x), \beta \leq x \leq \gamma$ are two probability distributions.

III. CONCLUSION

The superimposition of an infinite number of intervals $\left[a_{1}, b_{1}\right],\left[a_{2}, b_{2}\right],\left[a_{3}, b_{3}\right], \ldots \ldots$. , $\left[a_{n}, b_{n}\right]$ by satisfying the conditions $a_{i} \neq a_{j}, b_{i} \neq b_{j}$ and $\max \left(a_{i}\right) \leq \min \left(b_{i}\right) ; i, j=1,2$, \qquad n , follows two laws of randomness, one of which is $\mathrm{a}_{(1)}, \mathrm{a}_{(2)}, \ldots, \mathrm{a}_{(\mathrm{n})}$ follows an uniform probability distribution function and the other one is $\mathrm{b}_{(1)}$, $\mathrm{b}_{(2), \ldots}, \mathrm{b}_{(\mathrm{n})}$ follows an another complementary uniform probability distribution function where $\mathrm{a}_{(1)}, \mathrm{a}_{(2)}, \ldots ., \mathrm{a}_{(\mathrm{n})}$ and $b_{(1)}, b_{(2)}, \ldots ., b_{(n)}$ are arranged in increasing order of magnitude of $a_{1}, a_{2}, a_{3}, \ldots \ldots ., a_{n}$ and $b_{1}, b_{2}, b_{3}, \ldots \ldots ., b_{n}$ respectively. If $\alpha=\min \left(a_{i}\right), \beta=\max \left(a_{i}\right), \mu=\min \left(b_{i}\right), \gamma=\max \left(b_{i}\right)$ and $\max \left(a_{i}\right) \square \min (b)$, then we can define the function $\psi(x)$ as

$$
\begin{aligned}
\psi(x) & =\psi_{1}(x) & & \text { if } \alpha \leq x \leq \beta \\
& =1-\psi_{2}(x) & & \text { if } \mu \leq x \leq \gamma \\
& =1 & & \text { if } \beta \leq x \leq \mu \\
& =0 & & \text { otherwise } .
\end{aligned}
$$

Where $\Psi_{1}(\mathrm{x})$ being a continuous distribution function in the interval $[\alpha, \beta]$, and $\left(1-\Psi_{2}(\mathrm{x})\right)$ being a continuous distribution function in the interval $[\mu, \gamma]$, with $\Psi_{1}(\alpha)=\Psi_{2}(\gamma)=0$ and $\Psi_{1}(\beta)=\Psi_{2}(\mu)=1$.

Again if $\max \left(\mathrm{a}_{\mathrm{i}}\right)=\min \left(\mathrm{b}_{\mathrm{i}}\right)$, then $\beta=\mu$ and we can define the function $\psi(x)$ as

$$
\begin{aligned}
\psi(x) & =\psi_{1}(x) & & \text { if } \alpha \leq x \leq \beta \\
& =1-\psi_{2}(x) & & \text { if } \beta \leq x \leq \gamma \\
& =0 & & \text { otherwise }
\end{aligned}
$$

Where $\Psi_{1}(\mathrm{x})$ being a continuous distribution function in the interval $[\alpha, \beta]$, and (1- $\Psi_{2}(\mathrm{x})$) being a continuous distribution function in the interval $[\beta, \gamma]$, with $\Psi_{1}(\alpha)=\Psi_{2}(\gamma)=0$ and $\Psi_{1}(\beta)=\Psi_{2}(\beta)=1$.

References

[1] Hemanta K. Baruah, Construction of Normal Fuzzy Numbers Using the Mathematics of Partial Presence, Journal of Modern Mathematics Frontier, Vol. 1, No. 1, 2012, 9 - 15
[2] Hemanta K. Baruah, The Randomness-Fuzziness Consistency Principle, International Journal of Energy, Information and Communications, Vol. 1, Issue 1, 2010, $37-48$
[3] Hemanta K. Baruah, The Theory of Fuzzy Sets: Beliefs and Realities, International Journal of Energy Information and Communications, Vol. 2, Issue 2, 2011, 1 - 22
[4] Hemanta K. Baruah, In Search of the Root of Fuzziness: The Measure Theoretic Meaning of Partial Presence, Annals of Fuzzy Mathematics and Informatics, Vol. 2, No. 1, 2011, $57-68$
[5] Hemanta K. Baruah, Set Superimposition and Its Applications to the Theory of Fuzzy Sets, Journal of the Assam Science Society, Vol. 40, No. $1 \& 2,1999,25-31$

