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Abstract : We define the primal and dual linear programming problems involving interval numbers as the way 

of traditional linear programming problems. We discuss the solution concepts of primal and dual linear 

programming problems involving interval numbers without converting them to classical linear programming 

problems. By introducing new arithmetic operations between interval numbers, we prove the weak and strong 
duality theorems. Complementary slackness theorem is also proved. A numerical example is provided to 

illustrate the theory developed in this paper. 
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I.            INTRODUCTION 
Linear programming is a most widely and successfully used decision tool in the quantitative analysis of 

practical problems where rational decisions have to be made. In order to solve a Linear Programming Problem, 

the decision parameters of the model must be fixed at crisp values. But to model real-life problems and perform 
computations we must deal with uncertainty and inexactness. These uncertainty and inexactness are due to 

measurement inaccuracy, simplification of physical models, variations of the parameters of the system, 

computational errors etc. Interval analysis is an efficient and reliable tool that allows us to handle such problems 

effectively.  

Linear programming problems with interval coefficients have been studied by several authors, such as 

Atanu Sengupta et al. [2, 3], Bitran [5], Chanas and Kuchta [6], Nakahara et al. [20], Steuer [26] and Tong 

Shaocheng [31]. Numerous methods for comparison of interval numbers can be found as in Atanu Sengupta and 

Tapan Kumar Pal [2, 3], Ganesan and Veeramani [8, 9] etc.  

  By taking maximum value range and minimum value range inequalities as constraint conditions, Tong 

Shaocheng [31] reduced the interval linear programming problem in to two classical linear programming 

problems and obtained an optimal interval solution to it. Ramesh and  Ganesan [24] proposed a method for 

solving interval number linear programming problems without converting them to classical linear programming 
problems. 

The duality theory for inexact linear programming problems was proposed by Soyster [27–29] and 
Thuente [30]. Falk [7] provided some properties on this problem.  However, Pomerol [23] pointed out some 

drawbacks of Soyster‟s results and provided some mild conditions to improve them.  Masahiro Inuiguchia [14] 

et al has studied the duality of interval number linear programming problems through fuzzy linear programming 

problems.  Bector and Chandra [4] introduced a pair of linear primal-dual problems under fuzzy environment 

and established the duality relationship between them. Hsien-Chung Wu [12,13] introduced the concept of 

scalar product for closed intervals in the objective and inequality constraints of the primal and dual linear 

programming problems with interval numbers. He introduced a solution concept that is essentially similar to the 

notion of nondominated solution in multiobjective programming problems by imposing a partial ordering on the 

set of all closed intervals. He then proved the weak and strong duality theorems for linear programming 

problems with interval numbers.  Rohn [25] also discussed the duality in a interval linear programming problem 

with real-valued objective function. In this paper, we attempt to develop the duality theory for interval linear 

programming problems without converting them to classical linear programming problems.  
The rest of this paper is organised as follows: In section 2, we recall the definitions of interval number 

linear programming, interval numbers and some related results of interval arithmetic on them. In section 3, we 

define the interval number primal and dual linear programming problems as the way of traditional linear 

programming problems.  We then prove the weak and strong duality theorems. Complementary Slackness 

theorem is also proved. In section 4, a numerical example is provided to illustrate the theory developed in this 

paper. 

II.  PRELIMINARIES 
The aim of this section is to present some notations, notions and results which are of useful in our further 

consideration. 
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Let 1 2 1 2 1 2IR = {a = [a , a ] : a  a  and a , a R}   be the set of all proper intervals and 

1 2 1 2 1 2IR = {a = [a , a ] : a > a  and a , a R} be the set of all improper intervals on the real line R. If 1 2a = a = a = a,  

then a = [a, a] = a   is a real number (or a degenerate interval). We shall use the terms “interval” and “interval 

number” interchangeably. The mid-point and width (or half-width) of an interval number are defined as  

The mid-point and width (or half-width) of an interval number 1 2a [a , a ]  are defined as 1 2a + a
m(a) =

2

 
 
 

 and 

2 1a - a
w(a) = .

2

 
 
 

  The interval number a can also be expressed in terms of its midpoint and width as 

1 2a [a ,a ] m(a),w(a) .     

 

2.1. A New Interval Arithmetic 
Ming  Ma  et al.[18]  have  proposed  a  new  fuzzy  arithmetic based  upon  both  location  index  and  

fuzziness  index  function .  The  location  index  number  is taken  in the  ordinary  arithmetic, whereas  the 

fuzziness  index functions are  considered  to follow  the  lattice  rule which  are the least upper  bound and 

greatest lower bound in  the lattice L. That is for a,b L we define a b = max{a,b} and a b = min{a,b}.     

For any two intervals  1 2 1 2a = [a , a ], b = [b , b ] IR  and   for * +, -, ·, ÷ , 
 
the arithmetic operations on a and b  

are defined as:  

 1 2 1 2a * b = [a , a ]*[b , b ] =   m(a),w(a) m(b),w(b) m(a) m(b), max w(a),w(b) .          
 

 In particular 

 
 

(i). Addition : a + b =  m(a), w(a) m(b), w(b) m(a) m(b), max w(a), w(b) .

(ii). Subtraction : a - b =  m(a), w(a) m(b), w(b) m(a) m(b), max w(a), w(b) .

(iv). Multiplication : a b =  m(a), w(a) m(b), w(b)

  

  

  

        

        

      m(a) m(b), max w(a), w(b) .

(v). Division : a b m(a), w(a) m(b), w(b) m(a) m(b),max{w(a), w(b)} , provided m(b) 0.



     

  

          

 

 

III.          Main Results 

Now we are in a position to prove interval analogue of some important relationships between the 

primal and dual linear programming problems. We consider the primal and dual linear programming problems 

involving interval numbers as follows: 

Consider the following linear programming problem involving interval numbers 

       

n

j j
j=1

n

ij j i
j=1

j

ij j j i

i = 1, 2, 3… m

(P)               maxz c x

subject to a x b ,    

                       and x  0 for all j 1,2,3, ., n,   

where a ,  c , x , b IR, i = 1,2,3,…….m   and j = 1,2,3,…….,n.

 



 



 

  

 
  

            
 (3.1)

 We call the above problem (P) as the primal interval linear programming problem, and it can be 

rewritten as          

 (P) max z

A,

subject to A and , 

where  are (m n) ,  (m 1),  (1 n),(n 1)  matrices involving inter

  3.2

val numbers.



   

cx

b, c, x

x b x 0 
   

   
  Let 

1, 2, 3, , nX ={ = (x x x ...... x ) : A }x x b, x 0        
 
be the feasible region of problem (3.1).  We say that 


x is a 

feasible solution to the primal problem (3.1), if Xx . A feasible solution  Xx  is said to be  

an optimum solution to the primal problem (3.1), 
*

cx cx    for all Xx , where  

n

j j 1 1 2 2 3 3 n n
j 1

= c x = (c x + c x + c x +......+ c x )


cx            and
 1, 2, 3, , n= (c c c ....... c ).c      

 

Now we consider the following linear programming problem involving interval numbers: 
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m

i i
i=1

m

ij i j
i=1

i

ij j j i

j = 1, 2, 3… n

(D)               min w b y

subject to a y c ,    

                       and y  0 for all i 1,2,3, .,m,   

where a ,  c , x , b IR, i = 1,2,3,…….m   and j = 1,2,3,…….,n.

 



 



 

  

 
  

                              

(3.3) 
 

We call the above problem (D) or (3.3) as the dual interval linear programming problem of the primal 

problem (P), and it can be rewritten as 
 

 

 

Let   1 2 3 mY y ,  y ,  y ,  · · · ,  y :  A   ,   y y c y   0        be the feasible region of problem (3.3). We say that 
y is a 

feasible solution to the dual problem (3.3), if Y.y  A feasible solution Yy  is said to be an optimum 

solution to the dual (3.3) if  
by by    for all Yy , where 

m

i i 1 1 2 2 3 3 m m
i 1

= b y = b y b y + b y + · · · + b y


by          
  

and 

1, 2, 3, , n= (b b b ....... b ).b      

Standard Form: 

For the general study, we convert the given interval number linear programming problem into its standard form 

as max z subject to A and   cx x b x 0,        where A, b, c, x     are (m n) , (m1), (1n), (n1)  matrices 

consisting of interval numbers.  

Definition 3.1. Let 1 2 3 n(x x ,x ...,x )= , ,x      solves A . x b   If all j j jx [-α ,α ]  for some jα 0 , then x is said to be 

a basic solution. If j j jx [-α ,α ]  for some jα 0,  then x  has some non-zero components, 

say 1, 2, 3, , kx x x ...... x    ,1 k n.   Then A x b  can be written as:  

         1 2 3 k k+1 k+1 k+2 k+2 n nx + x + x +...+ x + [-β ,β ]+ [-β ,β ]+...+ [-β ,β ] 1 2 3 k k+1 k+2 n ba a a a a a a             

If the columns 1 2 3 ka ,a ,a ,...,a    corresponding to these non-zero components 1 2 3 kx , x , x ,....., x     are linearly 

independent, then x   is said to be a basic solution. 

 

Remark 3.1. Given a system of m simultaneous linear equations involving interval numbers in n unknowns    

(m  n)  
mA , IR x b b   , where A  is an (m n) interval matrix and rank of A  is m. Let B  be any (m m) 

interval matrix formed by m linearly independent columns of A . 

Let 
-1 T

1 2 3 m= B = (x ,x ,x ...,x )Bx b      or simply  
-1

1 2 3 m= B = (x ,x ,x ...,x )Bx b      and 1 2 3 m= (x ,x ,x ,...,x ,0,0,...,0)x         is 

a basic solution. In this case, we also say that Bx  is a basic solution. 

Theorem 3.1.  Consider A . x b   where ij m n ijA = (a ) , a IR.     Then 
-1= BBx b  is a solution of A . x b   

Theorem 3. 2 (Weak duality theorem)  If 
1 2 3 n= (x ,x ,x ,...,x )x     is any feasible solution to the primal interval 

linear programming problem (3.1) and  1 2 3 my ,  y ,  y ,  · · · ,  yy     is any feasible solution to the dual interval 

linear programming problem (3.3), then   
n m

j j i i
j 1 i 1

   or   c x   b y .
 

 cx by         

Proof.  Since x  is a feasible solution to the primal interval linear programming problem (3.1), we have 

           

n

ij j i j
j i
n

ij ij j j i i j
j i

a x b , x 0, i  1,  2,  3,  · · · ,  m.

m a , w a m x , w x m b , w b , x 0,i  1,  2,  3,  · · · ,  m.









   

      
 

Multiplying the ith (i  1,  2,  3,  · · · ,  m)  primal constraint by    i i iy m y ,w y   and adding we have 

                   

                   

n

ij ij j j i i i i i i
j i
m n m

ij ij j j i i i i i i
i 1 j i i 1

m a , w a m x , w x m y , w y m b , w b m y , w y , i  1,  2,  3,  · · · ,  m

m a , w a m x , w x m y , w y m b , w b m y , w y



  



  

        

        
 

           
m n m

ij ij j j i i i i
i 1 j i i 1

m a ,w a m x ,w x m y ,w y b y .
  

   by        
            

(3.5)  

 (D) min w

A,

subject to A and , 

where  are (m n),  (1 × m), (n × 1), (m × 1)  matrices involving interval numbe

3.4

rs.





by y c y

b, c, y

0    
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Multiplying the jth
(j =1, 2, 3,… ,n)  dual constraint by    j j jx m x ,w x   and adding we have 

                   

                   

           

m

ij i j j j
i=1
m

ij ij i i j j j j j j
i=1
n m n

ij ij i i j j j j j j
j 1 i=1 j=1

ij ij i i j j

j = 1, 2, 3,… , n

j = 1, 2, 3,… , n

a y x c x ,  

m a , w a m y , w y m x , w x m c , w c m x , w x ,  

m a , w a m y , w y m x , w x m c , w c m x , w x  

m a , w a m y , w y m x , w x







  

   

        

        

             
m n n

j j j j
i=1 j 1 j=1

m c , w c m x , w x      


      

            

           
m n n

ij ij i i j j j j
i=1 j 1 j=1

m a , w a m y , w y m x , w x c x   .


   cx        
                         

(3.6)  

From equations (3.5) and (3.6), we have  

                   

       

n m n

j j j j ij ij i i j j
j=1 i=1 j 1

m

i i i i
i 1

m c , w c m x , w x m a , w a m y , w y m x , w x

m b , w b m y , w y





  



        

   

  

(3.7)  

               
n m

j j j j i i i i
j=1 i 1

m c , w c m x , w x m b , w b m y , w y


         
 

n m

j j i i
j=1 i 1

  c b y    x


  cx by            .cx by  
 

Proposition 3.1.  Suppose that
1 2 3 n= (x ,x ,x ,...,x )

x     ) and  1 2 3 my ,  y ,  y ,  · · · ,  y y      are feasible solutions to 

the primal (3.1) and the dual (3.3) respectively, such that   , cx by    then   and 
x y  are optimal solutions to 

the primal and dual problems respectively. 

Proof. Let   . cx by    From the weak duality theorem, we have    cx by cx    for all Xx ⇒   
cx cx    for 

all Xx .  Similarly,    by cx    for all  1 2 3 my ,  y ,  y ,  · · · ,  y Y  y     ⇒   
by by    for all Y.y  

Proposition 3.2. If   ,cx by    then there exist Xx and Yy such that   
cx cx   for all 

Xx and   
by by    for all Y.y  That is 


x is an optimum solution to the primal problem (3.1) and  


y  an 

optimum solution to the dual problem (3. 3). 

Proof.  Since   , cx by 0   there exist Xx and Yy such that   . cx by    Then the results follow 

immediately from proposition (3.1). 

 

Theorem 3. 3 (Strong duality theorem) 

If 1 2 3( , , ,... )x    
nx x x x is an optimal solution to the primal problem (3.1), then there exit a feasible 

solution 1 2 3( , , ,... )y    
my y y y  to the dual problem (3.3) such that   .cx by  

 
Proof:  We convert the primal problem (3.1) to its standard form by adding slack variables as follows: 

n

j j
j 1

max z c x


     subject to 
n

ij j n i i
j 1

a x x b , i 1,2,...,m


       and  jx  0 
                  

(3.8)
    

   

for all j 1,2,...,n,  n 1,...,n m,   where  n ix 


 
are slack variables.    

     (3.9) 

  A,where  are m  n  m , (m 1), (1 (n m)), ((n m) 1)       b, c, x   

 

matrices consisting of interval 

numbers.  Let 1

B B  x b  is an optimal basic feasible solution to (3.8), where B is the corresponding basis 

matrix, Bc  is the cost vector corresponding to B.x  We know that j B jz c y  
,
 so that 1

j jy B B   a . 

-1

B j

j j B j j -1

B j

c B a , for j = 1,2,3,..., n.
Also (z - c ) = (c y - c ) =

(c B e - 0), for j = n +1,n + 2,n + 3,..., n + m





 
   

 
 

 

Since 
1

B Bx b   is an optimal basic feasible solution to (3.8), we have j j(z c ) 0    for all j.  So that  

max zThat is subject to A and ,  cx x b x 0     



 

Duality theory for interval linear programming problems 

www.iosrjournals.org                                                             43 | Page 

1 1

j j B j j B j
-1 -1 -1 -1

B j j B B j B
-1 -1

B B

(z c ) 0 ( B c ) 0 and  ( B e 0) 0 .

( B - c ) 0 and B ( B A - c ) 0 and B .

B A and B .

    

 



c a c

c a c 0 c c 0

c c c 0

            
                

     

  

Suppose that 1

B
B , 
y c then y 0  and 1

BB A A A   c c y c y c y          is a feasible solution to the dual. 

Also 1

B BB B   by yb c b c cx         , when ever x  is an optimal solution to the primal (3.8). Hence cx by.    

Theorem 3.4. (Complementary Slackness theorem) 

If 
1 2 3 n= (x ,x ,x ,...,x )

x      is a feasible solution to the primal (3.1) and  1 2 3 my ,  y ,  y ,  · · · ,  y y      is a 

feasible solution to the dual (3.3), then they must satisfy the so-called complementary slackness conditions: 

 

n n

i ij j i ij j i i
j=1 j=1

m m

j ij i j ij i j j
i=1 i=1

(i).  If  y 0, then a x b . (ii). a x b , then y 0.

(iii). If x 0, then a y c . (iv). If a y c , then x 0.

   

   

  

  

       

            

Proof.  If 
x  is a feasible solution to the primal (3.1) and 

y  is a feasible solution to the dual (3.3), then from 

the strong duality theorem 
x  is an optimal solution to the primal (3.1) and 

y is an optimal solution to the dual 

(3.3) such that  from equation (3.7), we have  
n m n m

j j ij j ii ii ii
j 1 i 1 j i i 1

n m n

j j j j ij ij j j i i
j 1 i 1 j i

m

i i i i
i 1

c x   a x y b y .

i. e. m(c ), w(c )  m(x ), w(x )   m(a ), w(a ) m(x ), w(x ) m(y ), w(y )

m(b ), w(b ) m(y ), w(y ) . (3.10).

   

   

     

  

 



    

  

 

    

        

   

 

Now 

from equation (3.10), we have 
 m n m

ij ij j j i i i i i i
i 1 j i i 1
m n m

ij ij j j i i i i i i
i 1 j i i 1

ij ij

m(a ), w(a ) m(x ), w(x ) m(y ), w(y ) m(b ), w(b ) m(y ), w(y ) .

m(a ), w(a ) m(x ), w(x ) m(y ), w(y ) m(b ), w(b ) m(y ), w(y ) 0.

m(a ), w(a )

     

  

     

  

  

   



        

        

  

 

 

m n

j j i i i i
i 1 j i

n

ij ij j j i i i i
j i

n

ij ij j j i i i
j i

m(x ), w(x ) m(b ), w(b ) m(y ), w(y ) 0.

m(a ), w(a ) m(x ), w(x ) m(b ), w(b ) m(y ), w(y ) 0.

m(a ), w(a ) m(x ), w(x ) m(b ), w(b ) 0 (or) m(y )

   

 

   



  



 
   

 
 

   
 

  

    

      

     
i

n

ij ij j j i i i i
j i
n

ij j i i
j i

, w(y ) 0.

m(a ), w(a ) m(x ), w(x ) m(b ), w(b ) (or) m(y ), w(y ) 0.

a x b (or) y 0



   



 





  

  



      

   

 

So, (i) if 
n

i ij j i
j i

y 0, then a x b 



    and (ii) if 
n

ij j i i
j i

a x b , then y 0. 



       

Similarly from equation (3.10), we have  
m n n

ij j ii j j
i 1 j i j 1

a x y c x  

  

     
 

m n n

ij ij j j i i j j j j
i 1 j i j 1

That is   m(a ), w(a ) m(x ), w(x ) m(y ), w(y ) m(c ), w(c )  m(x ), w(x )     

  

          
 

m n n

ij ij j j i i j j j j
i 1 j i j 1

  m(a ), w(a ) m(x ), w(x ) m(y ), w(y ) m(c ), w(c )  m(x ), w(x ) 0     

  

             

 

n m m

ij ii j j ij ii j j
j i i 1 i 1

a y c x 0 a y c x 0   

  

                
         

  

m m
* * * *

ij ii j j ij ii j j
i=1 i=1

a y -c 0 (or) x 0 a y c (or) x 0              
 

So 
m

j ij i j
i=1

(iii). If x 0, then a y c     
   

and  
m

ij i j j
i=1

(iv). If a y c , then x 0.       
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IV.           Numerical Examples 
Example 4.1.  Consider the following interval number linear programming problem: 

 

              (4.1) 

                    

              We call 

the above problem as the 

primal problem. Then the corresponding dual problem is given by 
    

              

(4.2) 

 

 

 

 (i). Optimal solution to the primal interval number linear programming problem:  

Let us apply the interval version of simplex algorithm and the new interval arithmetic to solve the primal 

problem. The standard form of the given primal interval number linear programming problem based upon both 

location index (mid point) and fuzziness index function (width) as:  

 

 
 

 

 

Initial iteration: Initial basic feasible solution is given by 1 2s = 26,1 , s = 7,1 .   

 

j

B B B 1 2 3 1 2

1

2

j

j j

c 30,1 23,1 29,1 0 0

c y x x x x s s θ

0 s 26,1 6 5 3 1 0 4.33,1

1.75,1
0 s 7,1 4 2 5 0 1

z 0 0 0 0 0

(z - c ) -30,1 -23,1 -29,1 0 0



      









 

j jSince (z c ) 0, for some j, the current basic feasible solution is not Optimal.    

First iteration: Here 2s  leaves the basis and 1x  enters in to the basis 

j

B B B 1 2 3 1 2

1

1

j

j j

c 30,1 23,1 29,1 0 0

c y x x x x s s θ

0 s 15.5,1 0 2 -4.5 1 -1.5 7.75,1

30,1 x 1.75,1 1 0.5 1.25 0 0.25 3.5,1

z 30,1 15,1 37.5,1 0,0 7.5,1

(z - c ) 0,0 -8,1 8.5,1 0,0 7.5,1



      









 

j jSince (z c ) 0, for some j, the current basic feasible solution is not Optimal.    

The improved basic feasible solution is given by  1 1s = 15.5,1 , x = 1.75,1 .   

Second iteration:  Here 1x  leaves the basis and 2x  enters in to the basis 

 

j

B B B 1 2 3 1 2

1

2

j

j j

c 30,1 23,1 29,1 0 0

c y x x x x s s θ

0 s 8.5,1 -4 0 -9.5 1 -2.5

23,1 x 3.5,1 2 1 2.5 0 0.5

z 46,1 23,1 57,1 0,0 11.5,1

(z - c ) 16,1 0,0 28.5,1 0,0 11.5,1



      









 

 

1 2 3

1 2 3

1 2 3

1 2 3

(P) Max z = [29,31]x +[22,24]x +[28,30]x
subject to constraints  6x + 5x + 3x [25,27]

4x + 2x + 5x [6,8]

and x , x , x 0.

   
   

   
   

1 2

1 2

1 2

1 2

(D) Min w [25,27]y +[6,8]y
subject to constraints 6y + 4y [29,31]

                                   5y + 2y [22,24]
                                   3y + 5y [28,30]

                               

  
  

  
  

1 2   and y , y 0.  

1 2 3 1 2

1 2 3 1 2

1 2 4 1 2

1 2 3 1 2

Max z 30,1 x + 23,1 x + 29,1 x + 0s + 0s

subject toconstraints  6x + 5x + 3x + s + 0s 26,1

4x + 2x + 5x + 0s + s 7,1

and x , x , x ,s ,s 0.
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Since j j(z - c ) 0   for all j, the current basic feasible solution is optimal. The optimal solution 

is
1 2s = 8.5,1 , x = 3.5,1   and  max z = 80.5,1 .

 
Hence the optimal solution for the given primal interval number linear programming problem is 

1 2x = [0,0], x = [2.5,4.5] 
 
and maxz = [79.5,81.5].  

 

(ii). Optimal solution to the dual interval number linear programming problem:  
The standard form of the given dual interval number linear programming problem based upon both location 

index (mid point) and fuzziness index function (width) as:  

 

 

         

1 2 1 2 3 1 2 3

1 2 1 2 3 1 2 3

1 2 1 2 3 1 2 3

1 2 1 2 3 1 2 3

1 2 1 2 3

min w 26,1 y + 7,1 y + 0s + 0s + 0s + MR + MR + MR

subject to 6y + 4y - s + 0s + 0s + R + 0R + 0R 30,1

5y + 2y + 0s - s + 0s + 0R + R + 0R 23,1

3y + 5y + 0s + 0s - s + 0R + 0R + R 29,1

and y , y ,s ,s s 0









      

   

   

   

    

 

Initial iteration: Initial basic feasible solution is given by 1 2 3R = 30,1 , R = 23,1 and R = 29,1 .  
 

j

B B B 1 2 1 2 3 1 2 3

1

2

3

j

j j

b 26,1 7,1 0 0 0 M M M

C Y X y y s s s R R R θ

M R 30,1 6 4 -1 0 0 1 0 0 5,1

M R 23,1 (5) 2 0 -1 0 0 1 0 4.6,1

M R 29,1 3 5 0 0 -1 0 0 1 9.6,1

w 14M 11M -M -M -M M M M

(w b ) 14M - 26,1 11M - 7,1 -M -M -M 0 0 0



        










 

j jSince (w b ) 0, for some j, the current basic feasible solution is not Optimal.   

 

First iteration: Here 2R  leaves the basis and 1y  enters in to the basis 

j

B B B 1 2 1 2 3 1 2

1

1

3

j

j j

b 26,1 7,1 0 0 0 M M

c y x y y s s s R R θ

M R 2.4,1 0 1.0 -1 1.2 0 1 0 1.5,1

26,1 y 4.6,1 1 0.4 0 0 0 0 0 11.5,1

M R 15.2,1 0 3.8 0 0 -1 0 1 4,1

w 26,1 5.4M +10.4,1 -M 1.8M -5.2,1 -M M M

(w b ) 0,0 5.4 + 3.4,1 -M 1.8M -5.2,1 -M 0 0



       











 

j jSince (w b ) 0, for some j, the current basic feasible solution is not Optimal.     

The improved basic feasible solution is given by 1 1 3R 2.4,1 , y 4.6,1 , R 15.2,1 .   
 

Second iteration: Here 1R  leaves the basis and 2y  enters in to the basis 

       

j

B B B 1 2 1 2 3 3

2

1

3

j

j j

b 26,1 7,1 0 0 0 M

c y x y y s s s R θ

7,1 y 1.5,1 0 1 -0.62 0.75 0 0 .....

26,1 y 4,1 1 0 0.25 -0.5 0 0 16,1

M R 9.5,1 0 0 2.37 -2.25 -1 1 4,1

w 26,1 7,1 2.37M + 2.12,1 -2.25M - 7.75,1 -M M

(w b ) 0,0 0,0 2.37M + 2.12,1 -2.25M - 7.75,



      









 1 - M 0

 

j jSince (w b ) 0, for some j, the current basic feasible solution is not Optimal.     

(D)
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The improved basic feasible solution is given by 2 1 3y = 1.5,1 , y = 4,1 , R = 9.5,1 .   

Third iteration: Here 3R  leaves the basis and 1s  enters in to the basis   

j

B B B 1 2 1 2 3

2

1

1

j

j j

b 26,1 7,1 0 0 0

c y x y y s s s θ

7,1 y 4,1 0 1 0 0.16 -0.26 ...

26,1 y 3,1 1 0 0 -0.27 0.10 28.57,1

0,0 s 4,1 0 0 1 -0.94 -0.42 ...

w 26,1 7,1 0,0 -5.9,1 0.88,1

(w - b ) 0,0 0,0 0,0 -5.9,1 0.88,1



      











 

j jSince (w b ) 0, for some j, the current basic feasible solution is not Optimal.     

The improved basic feasible solution is given by 2 1 1y 4,1 ,y 3,1 ,s 4,1    . 

Fourth iteration: Here 1y  leaves the basis and 3s  enters in to the basis   

j

B B B 1 2 1 2 3

2

3

1

j

j j

b 26,1 7,1 0 0 0

c y x y y s s s θ

7,1 y 11.51,1 2.50 1 0 -0.5 0 ...

0,0 s 28.57,1 9.52 0 0 -2.57 1 ...

0,0 s 16.02,1 4 0 1 -2.02 0 ...

w 17.5,1 7,1 0,0 -3.5,1 0,0

(w b ) -8.5,1 0,0 0,0 -3.5,1 0,0



      











 

j jSince (w b ) 0, for all j, the current basic feasible solution is Optimal.    The optimal solution is 

2 3 1y = 11.51,1 , s = 28.57,1 , s = 16.02,1 and  min w = 80.5, 1 .  

Hence the optimal solution for the dual interval number linear programming problem is 
 

1 2 3y =[0 ,0], y = [10.5 ,12.5], y = [0 ,0] and min w =[79.5, 81.5].     

From the optimal solutions for the primal and dual interval number linear programming problem, we see that  

Primal : maxz = [79.5, 81.5] and Dual : min w = [79.5, 81.5].     

Hence Primal : maxz = [79.5, 81.5] = Dual: min w   

We see that both primal and dual problems have optimal solutions and the two optimal values are equal. Also 

both optimal solutions obey the strong duality theorem. 

 

III. CONCLUSION 
We introduced the notation of   primal and dual linear programming problems involving interval 

numbers as the way of traditional linear programming problems. We discuss the solution concepts of primal and 

dual linear programming problems involving interval numbers without converting them to classical linear 
programming problems.  Under new arithmetic operations between interval numbers, we have proved the weak 

and strong duality theorems. Complementary slackness theorem is also proved. These results will be useful for 

post optimality analysis. A numerical example is provided to show that both primal and dual problems have 

optimal solutions and the two optimal values are equal.  
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