On Complete lift and Nijenhuis tensor of (1,1) tensorfield of the Basespace in the Cotangent Bundle

Ram Nivas¹, Mobin Ahmad², Bhupendra Nath PathaK³, V.N. Pathak⁴ (*Ex.HeadDeptt.Mathematics and Astronomy,LucknUniversity,Lucknow,INDIA*,

⁶ Ex.HeadDeptt.Mathematics and Astronomy,LucknUniversity,Lucknow,INDI
 ² (Head Deptt Mathematics ,Integral University, Lucknow,INDIA ,
 ³ (Research Scholar, Integral University, Lucknow,INDIA ,
 ⁴ (Head Deptt. Mathematics, SRMCEM, Lucknow, INDIA

Abstract: If M is a differtiable manifold of dimension n, then its cotangent bundle $T^*(M)$ is a differtiable manifold of dimension 2n[1]. In the present paper, complete and horizontal lifts of (1,1) tensor fields of M, which are tensor fields of same type in $T^*(M)$, are studied. The Nijenhuis tensor of complete lift and Integrability of the Hsu-structure in $T^*(M)$ are also studied.

Keywords and Phrases: Cotangent Bundle, Hsu-structure, differentiable manifold, Complete and horizontal lifts, Integrability.

AMS Subject Classification: 57 R 55Y

I. Introduction

Let M be a differentiable manifold of class C^{∞} and dimension n. At each point P of M, there is associated an n-dimensional vector space of tangent vectors called tangent space, denoted by $T_P(M)$. If $T_P^*(M)$ be dual space of $T_P(M)$. We denote $U_{P\in M}T_P^*(M) = T^*(M)$, and call $T^*(M)$ the cotangent bundle of M. It can be shown that $T_P^*(M)$ is also a differentiable manifold of dimension 2n. Let π be projection map $T^*(M) \to M$. Let U be the coordinate neighborhood of P in M with coordinate functions $(x^1, x^2, ..., x^n)$ or (x^h) . Then $\pi^{-1}(U)$ is open subset in T*(M) with coordinate functions (x^h, p_i) , h, i = 1,2....n, and p_i are components of 1-form at P. Let U and U' be the two coordinate neighborhoods in M such that $U \cap U' \neq \emptyset$, then $\pi^{-1}(U)$ and $\pi^{-1}(U')$ are open subsets in T*(M) and intersect each other. The local coordinate systems (x^h) and $(x^{h'})$ in U, U' respectively induce local coordinate systems (x^h, p_i) and $(x^{h'}p'_i)$ in $\pi^{-1}(U)$ and $\pi^{-1}(U')$ respectively. In the intersecting region $\pi^{-1}(U) \cap \pi^{-1}(U')$, we have the law of transformation

(i)
$$x^{h'} = x^{h'}(x^h)$$
 (ii) $p_{i'} = \frac{\partial x^i}{\partial x^{i'}} p_i$ (1.1)

We call M as the base space. Suppose M admits a tensorfield F of type (1, 1). Then its Complete lift F^{C} is a (1,1) tensorfield in $T^{*}(M)$ with local components [1]

$$F^{c} = \begin{bmatrix} F_{i}^{h} & 0\\ p_{a} \left(\frac{\partial F_{h}^{a}}{\partial x^{i}} - \frac{\partial F_{i}^{a}}{\partial x^{h}}\right) & F_{h}^{i} \end{bmatrix}$$
(1.2)

Where $(x^1, x^2, ..., x^n)$ is local coordinate system in U and F_i^h are components of (1,1) tensorfield F in M. Suppose ∇ is a symmetric affine in M with local components $[f_{ji}^h]$ in U. If $[f_{ji} = p_a [f_{ji}^h]$, the horizontal lift F^H of F is a (1,1) tensorfield in T*(M) defined as [1]

$$\mathbf{F}^{c} = \begin{bmatrix} \mathbf{F}_{i}^{h} & \mathbf{0} \\ -\boldsymbol{\Gamma}_{ia}\mathbf{F}_{h}^{a} + \boldsymbol{\Gamma}_{ih}\mathbf{F}_{i}^{a} & \mathbf{F}_{h}^{i} \end{bmatrix}$$
(1.3)

The Nijenhuis tensor N(X,Y) of (1,1) tensorfield F in M is a (1,2) tensor given by $N(X,Y) = [FX, FY]-F [FX,Y]-F[X,FY]+F^{2}[X,Y]$ (1.4) The structure is called integrable if its Nijenhuis tensor vanishes.

II. Hsu Structure in T^{*}(M)

Suppose that the base space admits a (1,1) tensorfield F satisfying $F^{10} + \lambda^r F^6 + \mu^r F^2 = 0$

Where λ , μ are scalars. Let us call that M admits $F_{\lambda,\mu}(10, -4)$ Hsu Structure [5]

The Complete lift F^{C} is a (1,1)tensorfield in $T^{*}(M)$ with local components given by the equation (1.2). If we put [4] $p_{a}\left(\frac{\partial F_{h}^{a}}{\partial x^{i}} - \frac{\partial F_{i}^{a}}{\partial x^{h}}\right) = 2p_{a} \partial [iF_{h}^{a}]$

(2.1)

Then we have
$$(F^c) = \begin{bmatrix} F_i^h & 0\\ 2p_a \partial [iF_h^a] & F_h^i \end{bmatrix}$$

(2.3)

 $(F^c)^2 = \begin{bmatrix} F_i^h F_j^i & 0\\ 2p_a \partial [iF_h^a] F_j^i + 2p_t \partial [iF_i^t] F_h^i & F_i^j F_h^i \end{bmatrix}$

If we put

$$2p_a \partial [iF_h^a]F_j^i + 2p_t \partial [iF_i^t]F_h^i = L_{hj}$$

then

$$(F^{c})^{2} = \begin{bmatrix} F_{i}^{\ h}F_{j}^{\ i} & 0\\ L_{hj} & F_{i}^{\ j}F_{h}^{\ i} \end{bmatrix}$$
(2.4)

Similarly

$$(F^{c})^{4} = \begin{bmatrix} F_{i}^{\ h} F_{j}^{\ i} F_{k}^{\ j} F_{l}^{\ k} & 0 \\ F_{k}^{\ j} F_{l}^{\ k} L_{hj} + F_{i}^{\ j} F_{h}^{\ i} L_{jl} & F_{k}^{\ l} F_{j}^{\ k} F_{i}^{\ j} F_{h}^{\ i} \end{bmatrix}$$

$$Putting \quad F_{k}^{\ j} F_{l}^{\ k} L_{hj} + F_{i}^{\ j} F_{h}^{\ i} L_{jl} = L_{hl}$$

$$(F^{c})^{4} = \begin{bmatrix} F_{i}^{\ h} F_{j}^{\ i} F_{k}^{\ j} F_{l}^{\ k} & 0 \\ L_{hl} & F_{k}^{\ l} F_{j}^{\ k} F_{i}^{\ j} F_{h}^{\ i} \end{bmatrix}$$

$$(2.5)$$

Again putting $F_m^l F_m^m L_{hl} + F_k^{\ l} F_j^{\ s} F_i^{\ j} F_h^{\ i} L_{ln} = L_{hn}$ and proceeding in the similar way, we have

$$(F^{c})^{6} = \begin{bmatrix} F_{i}^{\ h}F_{j}^{\ i}F_{k}^{\ j}F_{l}^{\ k}F_{m}^{l}F_{m}^{m} & 0\\ L_{hn} & F_{m}^{n}F_{l}^{m}F_{k}^{l}F_{j}^{\ k}F_{i}^{\ j}F_{h}^{i} \end{bmatrix}$$
(2.6)

In the same way, we have

$$(F^{c})^{10} = \begin{bmatrix} F_{i}^{h}F_{j}^{i}F_{k}^{j}F_{l}^{k}F_{m}^{l}F_{m}^{m}F_{p}^{n}F_{q}^{p}F_{r}^{q}F_{s}^{r} & 0\\ L_{hs} & F_{r}^{s}F_{q}^{r}F_{p}^{q}F_{n}^{p}F_{m}^{n}F_{l}^{m}F_{k}^{l}F_{j}^{k}F_{i}^{j}F_{h}^{i} \end{bmatrix}$$
(2.7)
where $F_{p}^{n}F_{q}^{p}F_{r}^{q}F_{s}^{r}L_{hn} + F_{m}^{n}F_{l}^{m}F_{k}^{l}F_{j}^{k}F_{i}^{j}F_{h}^{i}L_{hl} = L_{hs}$.

Thus in T*(M)

$$\begin{split} (F^c)^{10} + \lambda^r (F^c)^6 + \mu^r (F^c)^2 &= 0 \quad \text{holds if and only if} \\ L_{hs} + \lambda^r L_{hn} + \mu^r L_{hj} &= 0 \end{split}$$

Hence, we have the following theorem:

III. The Nijenhuis Tensor

Since the base space M admits $F_{\lambda,\mu}(10,-4)$ Hsu-structure, the Nijenhuis Tensor of complete lift of F¹⁰ in T^{*}(M) is given by

$$\begin{split} N_{(F^{10})^{C}, (F^{10})^{C}}(X^{C}, Y^{C}) &= [(\lambda^{r}F^{6}_{+}\mu^{r}F^{2})^{C}X^{C}, (\lambda^{r}F^{6}_{+}, \mu^{r}F^{2})^{C}Y^{C}] \\ &- (\lambda^{r}F^{6}_{+}, \mu^{r}F^{2})^{C}[(\lambda^{r}F^{6}_{+}, \mu^{r}F^{2})^{C}X^{C}, Y^{C}] \\ &- (\lambda^{r}F^{6}_{+}, \mu^{r}F^{2})^{C}[X^{C}, (\lambda^{r}F^{6}_{+}, \mu^{r}F^{2})^{C}Y^{C}] \\ &+ (\lambda^{r}F^{6}_{+}, \mu^{r}F^{2})^{C}(\lambda^{r}F^{6}_{+}, \mu^{r}F^{2})^{C}[X^{C}, Y^{C}] \end{split}$$

In view of [1] (pp 243) $(\lambda^{r}F^{6}_{+} \ \mu^{r}F^{2} \)^{C}X^{C} = ((\lambda^{r}F^{6}_{+} \ \mu^{r}F^{2} \) X \)^{C} + \gamma (L_{X} (\lambda^{r}F^{6}_{+} \ \mu^{r}F^{2} \))$ L_{X} denotes the Lie derivative via X and $\gamma(T)$ is a tensor field of type (r , s-1) in T^{*}(M) for a tensor field T of type (r , s) in M. If we further assume that $\gamma (L_{X} (\lambda^{r}F^{6}_{+} \ \mu^{r}F^{2} \)) = 0$ etc , we have $N_{(F^{10})^{C}, (F^{10})} c (X^{C}, Y^{C}) = [(\lambda^{r}F^{6}_{+} \ \mu^{r}F^{2} \)^{C} X)^{C} , (\lambda^{r}F^{6}_{+} \ \mu^{r}F^{2} \)^{C} Y)^{C}]$

- $(\lambda^{r}F^{6}_{+} \ \mu^{r}F^{2})^{C}$ [$((\lambda^{r}F^{6}_{+} \ \mu^{r}F^{2})^{C}X)^{C}, Y^{C}$] $-(\lambda^{r}F^{6}_{+} \mu^{r}F^{2})^{C}[X^{C}, (\lambda^{r}F^{6}_{+} \mu^{r}F^{2})^{C}Y]^{C}]$ +(\lambda^{r}F^{6}_{+} \mu^{r}F^{2})^{C} (\lambda^{r}F^{6}_{+} \mu^{r}F^{2})^{C}[X^{C}, Y^{C}]

Further, suppose that

N_{(F^m)^C, (Fⁿ)} $c(X^{C}, Y^{C}) = 0$ for $m \neq n$ and Since $(F^{6}X)^{C} = (F^{6})X^{C}$ as $\gamma(L_{X} F^{6}) = 0$ etc., we arrive after simplification at the result

$$N_{(F^{10})^{C}, (F^{10})}c(X^{C}, Y^{C}) = \lambda^{2r} N_{(F^{6})^{C}, (F^{6})}c(X^{C}, Y^{C}) + \mu^{2r} N_{(F^{2})^{C}, (F^{2})}c(X^{C}, Y^{C})$$
(3.1)

Thus, we have the following theorem.

Theorem (3.1) : For (1,1) tensorfield F on the base space M admitting $F_{\lambda,\mu}(10,-4)$ Hsu-structure, the Nijenhuistersors of $(F^{10})^C$, $(F^6)^C$ and $(F^2)^C$ in $T^*(M)$ are connected by the equation (3.1) provided the Lie derivatives X of various powers of F vanish and $N_{(F^m)^C, (F^n)} c(X^C, Y^C) = 0$ for $m \neq n$.

Consequently in the cotangent bundle $T^*(M)$, the Hsu-structure induced by $(F^{10})^C$ will be integrable iff the Hsustructures induced by $(F^6)^C$ and $(F^2)^C$ are integrable.

References

- [1] Yano, K and Inshihara S.(1973) : Tangent and Cotangent bundles: Differential Geometry. Marcel Dekker, Inc., New York.
- [2] Verma, Navneet Kumar and Nivas, Ram (2011); On horizontal and Complete lifts from a manifold with $f_{\lambda,\mu}$ cubic structure to its cotangent bundle.VSRD Technical and Non-Technical International Journal ,2(4) ,pp.213-218
- [3] Duggal, K.L. (1971): On different iable structures defined by Algebraic Equation 1, Nijenhuis Tensors, N.S., Vol 22 (2), pp. 238-242
- [4] L.J.S.K. Das, Nivas, Ram and Ali, S. (2003): Study of certain Structures defined on the cotangent Bundle of a differentiable manifold Math. Science Research Journal ,U.S.A.7(12) pp.477-488.
- Mishra R.S. (1984): Structures on a Differentiable Manifold and their Application. [5]
- [6] ChandramaPrakashan, 50-A, Balrampur house, Allahabad, India.
- [7] N.J. Hicks (1964), Notes on Differential Geometry., D.VanNostrand Company, Inc. Princeton New York.
- Nivas, Ram : On certain bundles in a differentiable manifold, Proceedings of the 45th Symposium in Finsler Geometry (held [8] jointly with 11th International Conference of Tensor Society), University of Tokyo, Japan Sept. 5-10, 2011, pp. 39 - 42.