Prime Radicals in Ternary Semigroups

Y. Sarala¹, A.Anjaneyulu² D.Madhusudhana Rao³

¹Dept. of Mathematics, Nagarjuna University, Guntur, A.P. India.

^{2,3}Dept. of Mathematics, VSR & NVR College, Tenali, A.P. India.

Abstract: In this paper the terms completely prime ideal, prime ideal, m-system. globally idempotent, semi simple elements of a ternary semigroup are Introduced. It is proved that an ideal A of a ternary semigroup T is completely prime if and only if T\A is either sub semigroup of T or empty. It is proved that if T is a globally idempotent ternary semigroup then every maximal ideal of T is a prime ideal of T. In this paper the terms completely semiprime ideal, semiprime ideal, n-system, d-system and i-system are introduced. It is proved that the non-empty intersection of any family of a completely prime ideal and prime ideal of a ternary semigroup T is a completely semiprime ideal of T. It is also proved that an ideal A of a ternary semigroup T is completely semiprime if and only if T\A is a d-system of T or empty. It is proved that if N is an n-system in a ternary semigroup T and $a \in N$, then there exist an m-system M in T such that $a \in M$ and $M \subseteq N$. The terms radical, complete radical of a ternary semigroup are introduced. It is proved that if A and B are any two ideals of a

ternary semigroup T, then i) $A \subseteq B \Rightarrow \sqrt{A} \subseteq \sqrt{B}$ ii) $\sqrt{ABC} = \sqrt{A \cap B \cap C} = \sqrt{A} \cap \sqrt{B} \cap \sqrt{C}$

iii) $\sqrt{\sqrt{A}} = \sqrt{A}$. It is also proved that if A is an ideal of ternary semigroup T then $\sqrt{A} = \{x \in T : M(x) \cap A \neq \emptyset\}$.

Mathematics Subject Classification (2010): 20N12, 20N05, 20N10, 20N12

Keywords: Ideal completely prime ideal, prime ideal, m-system, n-system, d-system, i-system, globally idempotent, semisimple elements, completely semiprime ideal, semi prime ideal, irreducible ideal, strongly irreducible ideal, radical, complete radical of ternary semigroup.

I. Introduction

The theory of ternary algebraic system was introduced by Lehmer [13] in 1932, but earlier such structures were studied by Kasner [10] who gave the idea of n-ary algebras. Ternary semigroups are universal algebras with one associative ternary operation. Anjaneyulu.A [1],[2] initiated the study of ideals in semigroups. S.Kar and B.K.Maity [9] initiated the study of some ideals of ternary semigroups. Sioson. F. M [18] studied about Ideal theory in ternary semigroups. Iampan . A.[7] gave the idea of Lateral ideals of ternary semigroups.

II. Preliminaries

DEFINITION 2.1 : Let T be a non-empty set. Then T is said to be a *ternary semigroup* if there exist a mapping

from T×T×T to T which maps $(x_1, x_2, x_3) \rightarrow [x_1 x_2 x_3]$ satisfying : $[x_1 x_2 x_3] x_4 x_5 = [x_1 [x_2 x_3 x_4] x_5] = [x_1 x_2 [x_3 x_4 x_5]] \forall x_i \in T, 1 \le i \le 5.$

DEFINITION 2.2 : A ternary semigroup T is said to be *commutative* provided for all $a, b, c \in T$, we have abc = bca = cab = bac = cba = acb.

DEFINITION 2.3 : An element *a* of ternary semigroup T is said to be *left identity* of T provided aat = t for all $t \in T$.

NOTE 2.4 : Left identity element *a* of a ternary semigroup T is also called as *left unital element*.

DEFINITION 2.5 : An element *a* of a ternary semigroup T is said to be a *lateral identity* of T provided ata = t for all $t \in T$.

NOTE 2.6 : Lateral identity element *a* of a ternary semigroup T is also called as *lateral unital element*.

DEFINITION 2.7: An element *a* of a ternary semigroup T is said to be a *right identity* of T provided $taa = t \forall t \in T$.

NOTE 2.8 : Right identity element *a* of a ternary semigroup T is also called as *right unital element*.

DEFINITION 2.9 : An element *a* of a ternary semigroup T is said to be a *two sided identity* of T provided *aat* $= taa = t \forall t \in T$.

NOTE 2.10 : Two-sided identity element of a ternary semigroup T is also called as *bi-unital element*.

the

condition

DEFINITION 2.11 : An element *a* of a ternary semigroup T is said to be an *identity* provided $aat = taa = ata = t \forall t \in T$.

NOTE 2.12: An identity element of a ternary semigroup T is also called as *unital element*.

NOTE 2.13 : An element a of a ternary semigroup T is said to be an *identity* of T then a is left identity, lateral identity and right identity of T.

NOTATION 2.14: Let T be a ternary semigroup. If T has an identity, let $T^1 = T$ and if T does not have an identity, let T^1 be the ternary semigroup T with an identity adjoined usually denoted by the symbol 1.

DEFINITION 2.15 : Let T be ternary semigroup. A non empty subset S of T is said to be a *ternary* subsemigroup of T if $abc \in S$ for all $a, b, c \in S$.

NOTE 2.16 : A non empty subset S of a ternary semigroup T is a ternary subsemigroup if and only if SSS \subseteq S. **DEFINITION 2.17** : Let T be a nonempty set. A nonempty finite sequence $a_1, a_2, \dots, a_{2n-1}$ usually written by juxtaposition a_1a_2, \dots, a_{2n-1} of elements of T is called *word* over the alphabet T. The set T of all words with

the operation of juxtaposition $(a_1a_2....a_{2p-1})(b_1b_2....b_{2q-1})(c_1c_2....c_{2p-1}) = a_1a_2....a_{2p-1}$

 $b_1b_2....b_{2a-1} c_1c_2....c_{2r-1}$ is a ternary semigroup called the *free ternary semigroup* over the alphabet T.

DEFINITION 2.18 : A nonempty subset A of a ternary semigroup T is said to be *left ideal* of T if $b, c \in T, a \in A$ implies $bca \in A$.

NOTE $\overline{2.19}$: A nonempty subset A of a ternary semigroup T is said to be a left ideal of T if and only if TTA \subseteq A.

DEFINITION 2.20 : A nonempty subset of a ternary semigroup T is said to be a *lateral ideal* of T if $b, c \in T, a \in A$ implies $bac \in A$.

NOTE 2.21 : A nonempty subset of A of a ternary semigroup T is a lateral ideal of T if and only if $TAT \subseteq A$.

DEFINITION 2.22 : A nonempty subset A of a ternary semigroup T is a *right ideal* of T if $b, c \in T$, $a \in A$ implies $abc \in A$

NOTE 2.23 : A nonempty subset A of a ternary semigroup T is a right ideal of T if and only if ATT \subseteq A.

DEFINITION 2.24 : A non-empty subset A of a ternary semigroup T is said to be *ternary ideal* or simply an *ideal* of T if $b, c \in T$, $a \in A$ implies bca $\in A$, $bac \in A$, $abc \in A$.

NOTE 2.25 : A nonempty subset A of a ternary semigroup T is an ideal of T if and only if it is left ideal, lateral ideal and right ideal of T.

DEFINITION 2.26 : An ideal A of a ternary semigroup T is said to be a *proper ideal* of T if A is different from T.

DEFINITION 2.27: An ideal A of a ternary semigroup T is said to be *a principal ideal* provided A is an ideal generated by $\{a\}$ for some $a \in T$. It is denoted by J (a) (or) < a >.

DEFINITION 2.28 : An ideal A of a ternary semigroup T is said to be a *maximal left ideal* provided A is a proper left ideal of T and is not properly contained in any proper left ideal of T.

DEFINITION 2.29 : An ideal A of a ternary semigroup T is said to be a *maximal lateral ideal* provided A is a proper lateral ideal of T and is not properly contained in any proper lateral ideal of T.

DEFINITION 2.30 : An ideal A of a ternary semigroup T is said to be a *maximal right ideal* provided A is a proper right ideal of T and is not properly contained in any proper right ideal of T.

DEFINITION 2.31: An ideal A of a ternary semigroup T is said to be a *maximal two sided ideal* provided A is a proper two sided ideal of T and is not properly contained in any proper two sided ideal of T.

DEFINITION 2.32 : An ideal A of a ternary semigroup T is said to be a *maximal ideal* provided A is a proper ideal of T and is not properly contained in any proper ideal of T.

DEFINITION 2.33: A left ideal A of a ternary semigroup T is said to be the *principal left ideal generated by a* if A is a left ideal generated by $\{a\}$ for some $a \in T$. It is denoted by L (a) or $\langle a \rangle_l$.

THEOREM 2.34 : If T is a ternary semigroup and $a \in T$ then L (*a*) = $a \bigcup TTa$.

NOTE 2.35 : if T is ternary semigroup and $a \in T$ then $L(a) = T^{T}T^{1}a$.

DEFINITION 2.36 : A lateral ideal A of a ternary semigroup T is said to be the *principal lateral ideal* generated by a if A is a lateral ideal generated by $\{a\}$ for some $a \in T$. It is denoted by M (a) (or) $\langle a \rangle_m$.

THEOREM 2.37 : If T is a ternary semigroup and $a \in T$ then M (*a*) = $a \bigcup TaT \bigcup TTaTT$.

DEFINITION 2.38: A right ideal A of a ternary semigroup T is said to be a *principal right ideal generated by* a if A is a right ideal generated by $\{a\}$ for some $a \in T$. It is denoted by R (a) (or) $\langle a \rangle_r$.

THEOREM 2.39 : If T is a ternary semigroup and $a \in T$ then R (a) = a $\bigcup aTT$.

NOTE 2.40 : If T is a ternary semigroup and $a \in T$ then R (a) = a $T^{1}T^{1}$

DEFINITION 2.41 : A two sided ideal A of a ternary semigroup T is said to be the *principal two sided ideal* provided A is a two sided ideal generated by $\{a\}$ for some

 $a \in T$. It is denoted by T (a) (or) $\langle a \rangle_{t}$.

THEOREM 2.42 : If T is a ternary semigroup and $a \in T$ then T (a) = $a \bigcup TTa \bigcup aTT \bigcup TTaTT$.

DEFINITION 2.43 : An ideal A of a ternary semigroup T is said to be *a principal ideal* provided A is an ideal generated by $\{a\}$ for some $a \in T$. It is denoted by J (a) (or) < a >.

generated by $\{a\}$ for some $a \in I$. It is denoted by J(a)(or) < a >.

THEOREM 2.44 : If T is a ternary semigroup and a \in T then

 $\mathbf{J}(a) = a \bigcup a \mathbf{TT} \bigcup \mathbf{TT}a \bigcup \mathbf{T}a \mathbf{T} \bigcup \mathbf{TT}a \mathbf{TT}.$

NOTE 2.45 : If T is a ternary semigroup and $a \in T$ then

 $J(a) = a \bigcup aTT \bigcup TTa \bigcup TaT \bigcup TTaTT = T^{1} T^{1} a T^{1} T^{1}.$

III. Completely Prime Ideals And Prime Ideals

DEFINITION 3.1 : An ideal A of a ternary semigroup T is said to be a *completely prime ideal* of T provided *x*, $y, z \in T$ and $xyz \in A$ implies either $x \in A$ or $y \in A$ or $z \in A$.

EXAMPLE 3.2: In the commutative ternary semigroup Z^- of all negative integers, the ideal $P = \{ 3k : k \in Z^- \}$ is a completely prime ideal. For *x*; *y*; $z \in Z^-$, $xyz \in P \Leftrightarrow xyz$ is divisible by $3 \Leftrightarrow x$ is divisible by 3 or *y* is divisible by 3 or *z* is divisible by $3 \Leftrightarrow x = 3k_1$ or $y = 3k_2$ or $z = 3k_3$ for k_1 ; k_2 ; $k_3 \in Z^- \Leftrightarrow x \in P$ or $y \in P$ or $z \in P$.

EXAMPLE 3.3 : In example 3.2., P is a completely prime ideal. But the ideal $Q = \{ 30k : k \in Z^- \}$ is not a prime ideal of Z^- , since (-2) (-3) (-5) = -30 \in Q but (-2) $\notin Q$, (-3) $\notin Q$ and (-5) $\notin Q$.

THEOREM 3.4 : An ideal A of a ternary semigroup T is completely prime if and only if $x_1, x_2, ..., x_n \in T$, *n* is odd natural number, $x_1 x_2 ..., x_n \in A \Rightarrow x_i \in A$ for some i = 1, 2, 3, ..., n.

Proof : Suppose that A is a completely prime ideal of T.

Let $x_1, x_2, \ldots, x_n \in T$ where *n* is odd natural number and $x_1 x_2 \ldots x_n \in A$.

If n = 1 then clearly $x_1 \in A$.

If n = 3 then $x_1 x_2 x_3 \in A \Rightarrow x_1 \in A$ or $x_2 \in A$ or $x_3 \in A$.

If n = 5 then $x_1x_2x_3x_4x_5 \in A \Rightarrow x_1x_2x_3 \in A$ or $x_4 \in A$ or $x_5 \in A$

 $\Rightarrow x_1 \in A \text{ or } x_2 \in A \text{ or } x_3 \in A \text{ or } x_4 \in A \text{ or } x_5 \in A.$

Therefore by induction of *n* is an odd natural number, then $x_1 x_2 \dots x_n \in A$

 $\Rightarrow x_i \in A$ for some $i = 1, 2, 3, \dots, n$.

The converse part is trivial.

THEOREM 3.5 : An ideal A of a ternary semigroup T is completely prime if and only if TA is either subsemigroup of T or empty.

Proof : Suppose that A is a completely prime ideal of T and $T \setminus A \neq \emptyset$.

Let $a, b, c \in T \setminus A$. Then $a \notin A, b \notin A, c \notin A$. Suppose if possible $abc \notin T \setminus A$.

Then $abc \in A$. Since A is completely prime, either $a \in A$ or $b \in A$ or $c \in A$.

It is a contradiction. Therefore $abc \in T \setminus A$. Hence $T \setminus A$ is a subsemigroup of T.

Conversely suppose that $T\setminus A$ is a subsemigroup of T or $T\setminus A$ is empty.

If T\A is empty then A = T and hence A is completely prime.

Assume that T\A is a subsemigroup of T. Let *a*, *b*, $c \in T$ and $abc \in A$.

Suppose if possible $a \notin A$, $b \notin A$, and $c \notin A$.

Then $a \in T \setminus A$, $b \in T \setminus A$ and $c \in T \setminus A$. Since $T \setminus A$ is a subsemigroup, $abc \in T \setminus A$ and hence $abc \notin A$. It is a contradiction. Hence either $a \in A$ or $b \in A$ or $c \in A$. Therefore A is a completely prime ideal of T.

DEFINITION 3.6 : An ideal A of a ternary semigroup T is said to be a *prime ideal* of T provided X,Y,Z are ideals of T and XYZ $\subseteq A \Rightarrow X \subseteq A$ or $Y \subseteq A$ or $Z \subseteq A$.

THEOREM 3.7 : In a ternary semigroup T, the following conditions are equivalent: (i) A is a prime ideal of T.

(ii) For $a, b, c \in T$; $\langle a \rangle \langle b \rangle \langle c \rangle \subseteq A$ implies $a \in A$ or $b \in A$ or $c \in A$.

(iii) For $a; b; c \in T; T^1T^1aT^1T^1b T^1T^1c T^1T^1 \subseteq A$ implies $a \in A$ or $b \in A$ or $c \in A$.

Proof: (i) \Rightarrow (ii) : Suppose that A is a prime ideal of T. Then (i) \Rightarrow (ii) is obvious.

(ii) \Rightarrow (iii): Let $a, b, c \in T$ such that $T^{1}T^{1}aT^{1}T^{1}bT^{1}T^{1}cT^{1}T^{1} \subseteq A$.

Now $\langle a \rangle \langle b \rangle \langle c \rangle = (T^{1}T^{1}aT^{1}T^{1})(T^{1}T^{1}bT^{1}T^{1})(T^{1}T^{1}cT^{1}T^{1}) \subseteq T^{1}T^{1}aT^{1}T^{1}bT^{1}T^{1}cT^{1}T^{1} \subseteq A$ $\Rightarrow a \in A \text{ or } b \in A \text{ or } c \in A.$ (iii) \Rightarrow (i): Suppose that $a, b, c \in T$; $T^{1}T^{1}aT^{1}T^{1}bT^{1}T^{1}cT^{1}T^{1} \subseteq A \Rightarrow a \in A \text{ or } b \in A \text{ or } c \in A$. Let X, Y, Z be the three ideals of T and $XYZ \subseteq A$. Suppose if possible $X \not\subseteq A$, $Y \not\subseteq A$, $Z \not\subseteq A$. $X \not\subseteq A, Y \not\subseteq A, Z \not\subseteq A$, there exists a, b, c such that $a \in X$ and $a \notin A$, $b \in Y$ and $b \notin A$ and $c \in Z$ and $c \notin A$. a $\in \mathbf{X}, b \in \mathbf{Y}, c \in \mathbf{Z} \Rightarrow abc \in \mathbf{X}\mathbf{Y}\mathbf{Z} \subseteq \mathbf{A}.$ Now $T^{1}T^{1}aT^{1}T^{1}bT^{1}T^{1}cT^{1}T^{1} \subseteq XYZ \subseteq A \Rightarrow a \in A$ or $b \in A$ or $c \in A$. It is a contradiction. Therefore $X \subseteq A$ or $Y \subseteq A$ or $Z \subseteq A$ and hence A is a prime ideal of T. THEOREM 3.8 : An ideal A of a ternary semigroup T is prime if and only if $X_1, X_2, \ldots, X_n \subseteq T, n$ is odd natural number, $X_1 X_2 \dots X_n \subseteq A \Rightarrow X_i \in A$ for some $i = 1, 2, 3, \dots, n$. *Proof* : Suppose that A is a prime ideal of T. Let $X_1, X_2, \ldots, X_n \subseteq T$, *n* is odd natural number and $X_1 X_2 \ldots X_n \subseteq A$ If n = 1 then clearly $X_1 \in A$. If n = 3 then $X_1 X_2 X_3 \subseteq A \Rightarrow X_1 \subseteq A$ or $X_2 \subseteq A$ or $X_3 \subseteq A$. If n = 5 then $X_1X_2X_3X_4X_5 \subseteq A \Rightarrow X_1X_2X_3 \in A$ or $X_4 \in A$ or $X_5 \in A$ \Rightarrow $X_1 \in A$ or $X_2 \in A$ or $X_3 \in A$ or $X_4 \in A$ or $X_5 \in A$. Therefore by induction of *n* is an odd natural number, then $X_1 X_2 \dots X_n \subseteq A$ \Rightarrow $X_i \subseteq$ A for some $i = 1, 2, 3, \dots n$. The converse part is trivial. THEOREM 3.9 : Every completely prime ideal of a ternary semigroup T is a prime ideal of T. *Proof* : Suppose that A is a completely prime ideal of a ternary semigroup T. Let $a, b, c \in T$ and $\langle a \rangle \langle b \rangle \langle c \rangle \subseteq A$. Then $abc \in A$. Since A is a completely prime, either $a \in A$ or $b \in A$ or $c \in A$. Therefore A is a prime ideal of T. The following theorem is duo to Kar.S and Maity.B.K. [9]. THEOREM 3.10 : Let T be a commutative ternary semigroup . An ideal P of T is a prime ideal if and only if P is a completely prime ideal. **DEFINITION 3.11** : A nonempty subset A of a ternary semigroup T is said to be an *m*-system provided for any *a*, *b*, *c* \in A implies that $T^{1}T^{1}aT^{1}T^{1}bT^{1}T^{1}c$ $T^{1}T^{1} \cap A \neq \emptyset$. THEOREM 3.12 : An ideal A of a ternary semigroup T is a prime ideal of T if and only if T\A is an msystem of T or empty. **Proof**: Suppose that A is a prime ideal of a ternary semigroup T and $T \setminus A \neq \emptyset$. Let $a, b, c \in T \setminus A$. Then $a \notin A$, $b \notin A$ and $c \notin A$. Suppose if possible $T^{1}T^{1}aT^{1}T^{1}bT^{1}T^{1}cT^{1}T^{1} \cap T \setminus A = \emptyset$. $T^{1}T^{1}aT^{1}T^{1}bT^{1}T^{1}c T^{1}T^{1} \cap T \setminus A = \emptyset \Rightarrow T^{1}T^{1}aT^{1}T^{1}bT^{1}T^{1}c T^{1}T^{1} \subseteq A.$ Since A is prime, either $a \in A$ or $b \in A$ or $c \in A$. It is a contradiction. Therefore $T^{1}T^{1}aT^{1}T^{1}bT^{1}T^{1}c$ $T^{1}T^{1} \cap T \setminus A \neq \emptyset$. Hence T\A is an *m*-system. Conversely suppose that T\A is either an *m*-system of T or T\A = \emptyset . If $T \setminus A = \emptyset$, then T = A and hence A is a prime ideal of T. Assume that T\A is an *m*-system of T. Let *a*, *b*, $c \in T$ and $\langle a \rangle \langle b \rangle \langle c \rangle \subseteq A$. Suppose if possible $a \notin A$, $b \notin A$ and $c \notin A$. Then $a, b, c \in T \setminus A$. Sine $T \setminus A$ is an *m*-system,

 $\Rightarrow T^{1}T^{1}aT^{1}T^{1}bT^{1}T^{1}c T^{1}T^{1} \cap T \setminus A \neq \emptyset \Longrightarrow T^{1}T^{1}aT^{1}T^{1}bT^{1}T^{1}c T^{1}T^{1} \not\subseteq A$

 $\Rightarrow \langle a \rangle \langle b \rangle \langle c \rangle \not\subseteq A$. It is a contradiction.

Therefore $a \in A$ or $b \in A$ or $c \in A$. Hence A is a prime ideal of T.

DEFINITION 3. 13 : An ideal A of a ternary semigroup T is called a *globally idempotent ideal* if $A^n = A$ for all odd natural number *n*.

DEFINITION 3.14 : A ternary semigroup T is said to be a *globally idempotent ternary semigroup* if $T^n = T$ for all odd natural number *n*.

THEOREM 3.15 : If T is a globally idempotent ternary semigroup then every maximal ideal of T is a prime ideal of T.

Proof: Let M be a maximal ideal of T. Let A, B, C be three ideals of T such that

ABC \subseteq M. Suppose if possible A \nsubseteq M, B \nsubseteq M, C \nsubseteq M.

Now $A \not\subseteq M \Rightarrow M \bigcup A$ is an ideal of T and $M \subset M \bigcup A \subseteq T$.

Since M is a maximal, $M \bigcup A = T$.

Similarly $B \nsubseteq M \Longrightarrow M \bigcup B = T, C \nsubseteq M \Longrightarrow M \bigcup C = T.$

Now $T = TTT = (M \bigcup A) (M \bigcup B) (M \bigcup C) \subseteq M \Longrightarrow T \subseteq M$. Thus M = T.

It is a contradiction. Therefore either A \subseteq M or B \subseteq M or C \subseteq M. Hence M is a prime.

DEFINITION 3.16 : An element *a* of a ternary semigroup T is said to be *semisimple* if *n* is odd natural number then $a \in \langle a \rangle^n$ i.e. $\langle a \rangle^n = \langle a \rangle$.

DEFINITION 3.17 : A ternary semigroup T is called *semisimple ternary semigroup* provided every element in T is semisimple.

THEOREM 3.18 : If T is a globally idempotent ternary semigroup having maximal ideals then T contains semisimple elements.

Proof: Suppose that T is a globally idempotent ternary semigroup having maximal ideals.

Let M be a maximal ideal of T. Then by theorem 3.15., M is prime.

Now if $a \in T \setminus M$ then $\langle a \rangle \not\subseteq M$ and $\langle a \rangle^n \not\subseteq M$. Then $T = M \cup \langle a \rangle = M \cup \langle a \rangle^n$.

Therefore $a \in \langle a \rangle^n$ and hence $\langle a \rangle = \langle a \rangle^n$. Thus *a* is a semisimple element. Therefore T contains semisimple elements.

IV. Completely Semiprime Ideals And Semiprime Ideals

DEFINITION 4.1: An ideal A of a ternary semigroup T is said to be a *completely semiprime ideal* provided x $x = T - x^n \in A$ for some odd natural number $n \ge 1$ implies $n \in A$

 \in T, $x^n \in$ A for some odd natural number n > 1 implies $x \in$ A.

EXAMPLE 4.2: In commutative ternary semigroup Z⁻ of all negative integers, the ideal Q = { $6k : k \in Z^-$ } is a semiprime ideal. For $x \in Z^-$, $x^3 \in Q \Leftrightarrow x^3$ is divisible by $6 \Leftrightarrow x$ is divisible by $6 \Leftrightarrow x = 6k_1$ for $k_1 \in Z^- \Leftrightarrow x \in Q$.

THEOREM 4.3 : An ideal A of a ternary semigroup T is completely semiprime if and only if $x \in T$, $x^3 \in A$ implies $x \in A$.

Proof : Suppose that A is a completely semiprime ideal of T.

Then clearly $x \in T$, $x^3 \in A \Longrightarrow x \in A$.

Conversely suppose that $x \in T$, $x^3 \in A \implies x \in A$.

We prove that $x \in T$, $x^n \in A$, for some odd natural number $n > 1 \Longrightarrow x \in A \longrightarrow (1)$,

by induction on *n*. Clearly (1) is true for n = 3. Assume that (1) is true for n = k. i.e., $x^k \in A \implies x \in A$ for some odd natural number k > 3.

Suppose that $x^{k+2} \in A$. Then $x^{k+2} \in A \implies x^{k+2} \cdot x^{k+2} \cdot x^{k+2} \in A \implies x^{3k} \in A \implies x^k \in A \implies x \in A$. Therefore $x^k \in A \implies x \in A$.

By induction, $x^n \in A$ for some natural number n, n > 1 implies $x \in A$.

Therefore A is completely semiprime.

THEOREM 4.4 : If A is a completely semiprime ideal of a ternary semigroup T, then $x, y, z \in T$, $xyz \in A$ implies that $xyTTz \subseteq A$ and $xTTyz \subseteq A$.

Proof: Let A be a completely semiprime ideal of a semigroup T. Let $x, y, z \in T, xyz \in A$.

Now $xyz \in A \Longrightarrow (zxy)^3 = (zxy)(zxy)(zxy) = z(xyz)(xyz) xy \in A$.

 $(zxy)^3 \in A$, A is completely semiprime implies $zxy \in A$.

Let s, $t \in T$. Consider $(xystz)^3 = (xystz)(xystz) = xyst(zxy)st(zxy)sty \in A$.

 $(xystz)^3 \in A$, A is completely semiprime implies $xystz \in A$.

Therefore *x*, *y*, *z* \in T, *xyz* \in A \Rightarrow *xystz* \in A for all *s*, *t* \in T \Rightarrow *xy*TT*z* \subseteq A.

Now $xyz \in A \Longrightarrow (yzx)^3 = (yzx)(yzx)(yzx) = yz(xyz)(xyz)x \in A$.

 $(yzx)^3 \in A$, A is completely semiprime implies $\Rightarrow yzx \in A$.

Let s, $t \in T$. Consider $(xstyz)^3 = (xstyz)(xstyz)(xstyz) = xst(yzx)st(yzx)styz \in A$.

 $(xstyz)^3 \in A$, A is completely semiprime implies $xstyz \in A$.

Therefore x, y, $z \in T$, $xstyz \in A$ for all s, $t \in T \Rightarrow xTTyz \subseteq A$.

COROLLARY 4.5 : If an ideal A of a ternary semigroup T is completely semiprime then x, $y, z \in T, xyz \in A \implies \langle x \rangle \langle y \rangle \langle z \rangle \subseteq A$.

THEOREM 4.6 : Every completely prime ideal of a ternary semigroup T is a completely semiprime ideal of T.

Proof : Let A be a completely prime ideal of a ternary semigroup T. Suppose that

 $x \in T$ and $x^3 \in A$. Since A is a completely prime ideal of T, $x \in A$.

Therefore T is a completely semiprime ideal.

THEOREM 4.7 : Let A be a prime ideal of a ternary semigroup T. If A is completely semiprime ideal of T then A is completely prime.

Proof: Let $x, y, z \in T$ and $xyz \in A$. Since A is completely semiprime, by theorem 4.4., $xyz \in A \Rightarrow xyT^{1}T^{1}z \subseteq A, xT^{1}T^{1}yz \subseteq A \Rightarrow TxyTTzT \subseteq TAT \subseteq A \Rightarrow < x >< y >< z > \subseteq A$ $\Rightarrow x \in A \text{ or } y \in A \text{ or } z \in A \text{ and hence } A \text{ is completely prime.}$ THEOREM 4.8 : The nonempty intersection of any family of a completely prime ideal of a ternary semigroup T is a completely semiprime ideal of T.

Proof: Let $\{A_{\alpha}\}_{\alpha \in \Delta}$ be a family of a completely prime ideals of T such that $\bigcap_{\alpha \in \Delta} A_{\alpha} \neq \emptyset$.

It is clear that $\bigcap_{\alpha \in \Delta} A_{\alpha}$ is an ideal. Let $a \in T$ and $a^3 \in \bigcap_{\alpha \in \Delta} A_{\alpha}$. Then $a^3 \in A_{\alpha}$ for all $\alpha \in \Delta$.

Since A_{α} is completely prime, $a \in A_{\alpha}$ for all $\alpha \in \Delta$ and hence $a \in \bigcap A_{\alpha}$.

Therefore $\bigcap A_{\alpha}$ is a completely semiprime ideal of T.

DEFINITION 4.9: Let T be a ternary semigroup. A non-empty subset A of T is said to be a *d*-system of T if *a* $\in A \implies a^n \in A$ for all odd natural number *n*.

THEOREM 4.10 : An ideal A of a ternary semigroup T is completely semiprime if and only if T\A is a dsystem of T or empty.

Proof: Suppose that A is a completely semiprime ideal of T and T $A \neq \emptyset$.

Let $a \in T \setminus A$. Then $a \notin A$. Suppose if possible $a^n \notin T \setminus A$ for some odd natural number n.

Then $a^n \in A$. Since A is a completely semiprime ideal then $a \in A$.

It is a contradiction. Therefore $a^n \in T \setminus A$ and hence $T \setminus A$ is a *d*-system.

Conversely suppose that $T \setminus A$ is a *d*-system of T or $T \setminus A$ is empty.

If $T \setminus A$ is empty then T = A and hence A is completely semiprime.

Assume that T\A is a *d*-system of T. Let $a \in T$ and $a^n \in A$.

Suppose if possible $a \notin A$. Then $a \in T \setminus A$.

Since T\A is a *d*-system, $a^n \in T$ \A. It is a contradiction. Hence $a \in A$.

Thus A is a completely semiprime ideal of T.

DEFINITION 4.11 : An ideal A of a ternary semigroup T is said to be *semiprime ideal* provided X is an ideal of T and $X^n \subset A$ for some odd natural number *n* implies $X \subseteq A$.

THEOREM 4.12 : An ideal A of a ternary semigroup T is semiprime if and only if X is an ideal of T, $X^3 \subseteq$ A implies $X \subseteq A$.

Proof: Suppose that A is a semiprime ideal. Then clearly $X^3 \subseteq A \Rightarrow X \subseteq A$.

Conversely suppose that X is an ideal of T. $X^3 \subseteq A \Rightarrow X \subseteq A$.

We prove that $X^n \subseteq A$, for some odd natural number $n \Rightarrow X \subseteq A \rightarrow (1)$, by induction on n. Since $X^3 \subseteq A \Rightarrow X$ \subseteq A, (1) is true for n = 3.

Assume that $X^k \subseteq A$ for some odd natural number k, $1 \le k < n \Rightarrow X \subseteq A$. Now $X^{k+2} \subseteq A \Rightarrow X^{k+2} \cdot X^{k+2} \cdot X^{k-4} \subseteq A \Rightarrow X^{3k} \subseteq A \Rightarrow (X^k)^3 \subseteq A \Rightarrow X^k \subseteq A \Rightarrow X \subseteq A$ by assumption. By induction $X^n \subseteq A$ for some odd natural number $n \Rightarrow X \subseteq A$.

Therefore A is semiprime.

THEOREM 4.13 : Every prime ideal of a ternary semigroup is semiprime.

Proof: Suppose that A is a prime ideal of a ternary semigroup T. Let X be an ideal of T such that $X^3 \subseteq A$. Since A is prime, $X \subseteq A$. Hence A is semiprime.

THEOREM 4.14 : If A is an ideal of a ternary semigroup T then the following are equivalent. 1. A is a semiprime ideal.

2. For $a \in T$; $\langle a \rangle^3 \subseteq A$ implies $a \in A$. 3. For $a \in T$; $T^1T^1aT^1T^1aT^1T^1aT^1T^1 \subseteq A$ implies $a \in A$.

Proof: (i) \Rightarrow (ii) : Suppose that A is a semiprime ideal of T. Then (i) \Rightarrow (ii) is obvious.

(ii) \Rightarrow (iii): Let $a \in T$ such that $T^{1}T^{1}aT^{1}T^{1}aT^{1}T^{1}a$.

 $\operatorname{Now} < a >^3 = (\mathrm{T}^1 \mathrm{T}^1 a \mathrm{T}^1 \mathrm{T}^1) (\ \mathrm{T}^1 \mathrm{T}^1 a \mathrm{T}^1 \mathrm{T}^1) (\ \mathrm{T}^1 \mathrm{T}^1 a \mathrm{T}^1 \mathrm{T}^1) \subseteq \mathrm{T}^1 \mathrm{T}^1 a \mathrm{T}^1 \mathrm{T}^1 a \mathrm{T}^1 \mathrm{T}^1 a \mathrm{T}^1 \mathrm{T}^1 a \mathrm{T}^1 \mathrm{T}^1 = \mathrm{A} \Rightarrow a \in \mathrm{A}.$

(iii) \Rightarrow (i): Suppose that $a \in T$; $T^{1}T^{1}aT^{1}T^{1}aT^{1}T^{1}aT^{1}T^{1} \subseteq A \Rightarrow a \in A$.

Let X be the an ideals of T and $X^3 \subseteq A$.

Suppose if possible $X \not\subseteq A$.

 $X \not\subseteq A$ there exists a such that $a \in X$ and $a \notin A$. $a \in X \Rightarrow a^3 \in X^3 \subseteq A$.

Now $T^{1}T^{1}aT^{1}T^{1}aT^{1}T^{1}aT^{1}T^{1} \subseteq X^{3} \subseteq A \Rightarrow a \in A$. It is a contradiction.

Therefore $X \subseteq A$ and hence A is a semiprime ideal of T.

THEOREM 4.15 : Every completely semiprime ideal of a ternary semigroup T is a semiprime ideal of T. *Proof* : Suppose that A is a completely semiprime ideal of a ternary semigroup T.

Let $a \in T$ and $\langle a \rangle^n \subseteq A$ for some odd natural number *n*.

Now $aaa...a(n \text{ odd terms}) \in \langle a^n \rangle \subseteq \langle a \rangle^n \subseteq A \Rightarrow a^n \in A \Rightarrow a \in A \Rightarrow \langle a \rangle \subseteq A$.

Therefore A is a semiprime ideal of T.

THEOREM 4.16 : Let T be a commutative ternary semigroup. An ideal A of T is completely semiprime if and only if it is semiprime.

Proof : Suppose that A is a completely semiprime ideal of T. By theorem 4.14, A is a semiprime ideal of T. Conversely suppose that A is a semiprime ideal of T.

Let $x \in T$ and $x^n \in A$ for some odd natural number *n*.

Now $x^n \in A \implies \langle x \rangle^n \subseteq A \implies \langle x \rangle \subseteq A \Rightarrow x \in A$. Since A is semiprime.

Therefore A is a completely semiprime ideal of T.

THEOREM 4.17 : The nonempty intersection of any family of prime ideals of a ternary semigroup T is a semiprime ideal of T.

Proof: Let $\{A_{\alpha}\}_{\alpha \in \Delta}$ be a family of prime ideals of T such that $\bigcap_{\alpha \in \Delta} A_{\alpha} \neq \emptyset$. It is clear that $\bigcap_{\alpha \in \Delta} A_{\alpha}$ is an

ideal. Let $a \in T$, $\langle a \rangle^3 \subseteq \bigcap_{\alpha \in \Delta} A_{\alpha}$ then $\langle a \rangle^3 \subseteq A_{\alpha}$ for all $\alpha \in \Delta$.

Since A_{α} is a prime, $\langle a \rangle \subseteq A_{\alpha}$ for all $\alpha \in \Delta$ and hence $a \in A_{\alpha}$ for all $\alpha \in \Delta$.

So $a \in \bigcap_{\alpha \in \Delta} A_{\alpha}$. Therefore $\bigcap_{\alpha \in \Delta} A_{\alpha}$ is a semiprime ideal of T.

DEFINITION 4.18 : A non-empty subset A of a ternary semigroup T is said to be an *n*-system provided for any $a \in A$ implies that $T^{1}T^{1}aT^{1}T^{1}aT^{1}T^{1}aT^{1}T^{1} \cap A \neq \emptyset$.

THEOREM 4.19 : Every *m*-system in a ternary semigroup T is an *n*-system.

Proof : Let A be *m*-system of a ternary semigroup T. Let $a \in A$. Since A is *m*-system, $a \in A$, $T^{1}T^{1}aT^{1}T^{1}aT^{1}T^{1} \cap A \neq \emptyset$. Therefore A is an n-system of T.

THEOREM 4.20 : An ideal Q of a ternary semigroup T is a semiprime ideal if and only if $T\setminus Q$ is an *n*-system of T (or) empty.

Proof: Suppose that A is a semiprime ideal of a ternary semigroup T and $T \mid A \neq \emptyset$.

Let $a \in T \setminus A$. Then $a \notin A$.

Suppose if possible $T^{1}T^{1}aT^{1}T^{1}aT^{1}T^{1}aT^{1}T^{1} \cap T \setminus A = \emptyset$.

 $\mathbf{T}^{\mathbf{1}}\mathbf{T}^{\mathbf{1}}a\mathbf{T}^{\mathbf{1}}\mathbf{T}^{\mathbf{1}}a\mathbf{T}^{\mathbf{1}}\mathbf{T}^{\mathbf{1}}a\mathbf{T}^{\mathbf{1}}\mathbf{T}^{\mathbf{1}}a\mathbf{T}^{\mathbf{1}}\mathbf{T}^{\mathbf{1}}\cap\mathbf{T}\setminus\mathbf{A}=\emptyset\Rightarrow\mathbf{T}^{\mathbf{1}}\mathbf{T}^{\mathbf{1}}a\mathbf{T}^{\mathbf{1}}\mathbf{T}^{\mathbf{1}}a\mathbf{T}^{\mathbf{1}}\mathbf{T}^{\mathbf{1}}a\mathbf{T}^{\mathbf{1}}\mathbf{T}^{\mathbf{1}}=\mathbf{A}.$

Since A is semiprime, either $a \in A$.

It is a contradiction. Therefore $T^{1}T^{1}aT^{1}T^{1}aT^{1}T^{1}aT^{1}T^{1} \cap T \setminus A \neq \emptyset$.

Hence T\A is an *n*-system.

Conversely suppose that T\A is either an *n*-system or T\A = \emptyset .

If $T \setminus A = \emptyset$ then T = A and hence A is a semiprime ideal.

Assume that T\A is an *n*-system of T. Let $a \in T$ and $\langle a \rangle \subseteq A$.

Let $a \in T \setminus A$, $T \setminus A$ is an *n*-system of $T \Rightarrow T^{1}T^{1}aT^{1}T^{1}aT^{1}T^{1}aT^{1}T^{1} \cap T \setminus A \neq \emptyset$.

Suppose if possible $a \notin A$. Then $a \in T \setminus A$. Since $T \setminus A$ is an *m*-system.

Then $T^{1}T^{1}aT^{1}T^{1}aT^{1}T^{1} \subseteq T A \Longrightarrow T^{1}T^{1}aT^{1}T^{1}aT^{1}T^{1}aT^{1}T^{1} \neq A \Longrightarrow \langle a \rangle \not\subseteq A.$

It is a contradiction. Therefore $a \in A$. Hence A is a semiprime ideal of T.

THEOREM 4.21 : If N is an *n*-system in a ternary semigroup T and $a \in N$, then there exist an *m*-system M in T such that $a \in M$ and $M \subseteq N$.

Proof : We construct a subset M of N as follows:

Define $a_1 = a$, Since $a_1 \in \mathbb{N}$ and N is an *n*-system, $(T^1T^1a_1T^1T^1a_1T^1T^1a_1T^1T^1) \cap \mathbb{N} \neq \emptyset$.

Let $a_2 \in (T^1T^1a_1T^1T^1a_1T^1T^1a_1T^1T^1) \cap N$. Since $a_2 \in N$ and N is an *n*-system, $(T^1T^1a_2T^1T^1a_2T^1T^1a_2T^1T^1) \cap N \neq \emptyset$ and so on.

In general, if a_i has been defined with $a_i \in \mathbb{N}$, choose a_{i+1} as an element of $(T^1T^1a_2T^1T^1a_2T^1T^1a_2T^1T^1) \cap \mathbb{N}$. Let $\mathbb{M} = \{a_1, a_2, \dots, a_i, a_{i+1}, \dots\}$. Now $a \in \mathbb{M}$ and $\mathbb{M} \subseteq \mathbb{N}$.

We now show that M is an *m*-system.

Let $a_{i,}a_{j}$, $a_{k} \in M$ (for $i \leq j \leq k$).

$$\subseteq \mathbf{T}^{\mathbf{1}}\mathbf{T}^{\mathbf{1}}a_{i}\mathbf{T}^{\mathbf{1}}\mathbf{T}^{\mathbf{1}}a_{i}\mathbf{T}^{\mathbf{1}}\mathbf{T}^{\mathbf{1}}a_{i}\mathbf{T}^{\mathbf{1}}\mathbf{T}^{\mathbf{1}} \subseteq \mathbf{T}^{\mathbf{1}}\mathbf{T}^{\mathbf{1}}a_{i}\mathbf{T}^{\mathbf{1}}\mathbf{T}^{\mathbf{1}}a_{i}\mathbf{T}^{\mathbf{1}}\mathbf{T}^{\mathbf{1}}a_{k}\mathbf{T}^{\mathbf{1}}\mathbf{T}^{\mathbf{1}}$$

 $\Rightarrow a_{k+1} = T^1 T^1 a_i T^1 T^1 a_j T^1 T^1 a_k T^1 T^1.$ But $a_{k+1} \in M$, so $a_{k+1} = T^1 T^1 a_i T^1 T^1 a_j T^1 T^1 a_k T^1 T^1 \cap M$, Therefore M is an *m*-system.

V. Prime Radical And Completely Prime Radical

NOTATION 5.1 : If A is an ideal of a ternary semigroup T, then we associate the following four types of sets.

 A_1 = The intersection of all completely prime ideals of T containing A.

 $A_2 = \{x \in T: x^n \in A \text{ for some odd natural numbers } n\}$

 A_3 = The intersection of all prime ideals of T containing A.

 $A_4 = \{x \in T : \langle x \rangle^n \subseteq A \text{ for some odd natural number } n\}$

THEOREM 5.2 : If A is an ideal of a ternary semigroup T, then $A \subseteq A_4 \subseteq A_3 \subseteq A_2 \subseteq A_1$.

Proof: i) A \subseteq A_4 : Let $x \in$ A . Then $<\!x\!>\!\subseteq$ A and hence $x \in A_4$

Therefore $A \subseteq A_4$

ii) $A_4 \subseteq A_3$: Let $x \in A_4$. Then $\langle x \rangle^n \subseteq A$ for some odd natural number *n*.

Let P be any prime ideal of T containing A.

Then $\langle x \rangle^n \subseteq A$ for some odd natural number $n \Longrightarrow \langle x \rangle^n \subseteq P$.

Since P is prime , $\langle x \rangle \subseteq$ P and hence $x \in$ P.

Since this is true for all prime ideals of P containing A, $x \in A_3$. Therefore $A_4 \subseteq A_3$

iii) $A_3 \subseteq A_2$: Let $x \in A_3$. Suppose if possible $x \notin A_2$.

Then $x^n \notin A$ for all odd natural number *n*.

Consider $Q = \bigcup x^n$ for all odd natural number *n*, and $x \in T$.

Let a, b, $c \in Q$. Then $a = (x)^r$, $b = (x)^s$, $c = (x)^t$ for some odd natural numbers r, s, t.

Therefore $abc = (x)^r (x)^s (x)^t = x^{r+s+t} \in Q$ and hence Q is a subsemigroup of T.

By theorem 3.5, $P = T \setminus Q$ is a completely prime ideal of T and $x \notin P$.

By theorem 3.9, P is a prime ideal of T and $x \notin P$. Therefore $x \notin A_3$. It is a contradiction.

Therefore $x \in A_2$ and hence $A_3 \subseteq A_2$.

iv) $A_2 \subseteq A_1$: Let $x \in A_2$. Now $x \in A_2 \implies x^n \in A$ for some odd natural number n.

Let P be any completely prime ideal of T containing A.

Then $x^n \in A \subseteq P \Rightarrow x^n \in P \Rightarrow x \in P$. Therefore $x \in A_1$. Therefore $A_2 \subseteq A_1$.

Hence $A \subseteq A_4 \subseteq A_3 \subseteq A_2 \subseteq A_1$.

THEOREM 5.3 : A is an ideal of a commutative ternary semigroup T, then $A_1 = A_2 = A_3 = A_4$

Proof: By theorem 5.2, $A \subseteq A_4 \subseteq A_3 \subseteq A_2 \subseteq A_1$. By theorem 3.10, in a commutative ternary semigroup T, an ideal A is a prime ideal if A is completely prime ideal.

So $A_1 = A_3$. By theorem 4.16, in a commutative ternary semigroup T an ideal A is semiprime if and only if A is completely semiprime ideal.

So $A_4 = A_2$ and hence $A_1 = A_2 = A_3 = A_4$.

NOTE 5.4 : In an arbitrary ternary semigroup $A_1 \neq A_2 \neq A_3 \neq A_4$.

EXAMPLE 5.5: Let T be the free ternary semigroup generated by *a*, *b*, *c*.

It is clear that $A = T a^3 T$ is an ideal of T. Since $a^5 \in T a^3 T$, we have $a \in A_2$.

Evidently $(abc)^n \notin T a^3 T$ for all odd natural numbers *n* and thus abc $\notin A_2$.

Thus A_2 is not an ideal of T. Therefore $A_1 \neq A_2$ and $A_2 \neq A_3$.

DEFINITION 5.6: If A is an ideal of a ternary semigroup T, then the intersection of all prime ideals of T containing A is called *prime radical* or simply *radical* of A and it is denoted by \sqrt{A} or *rad* A.

DEFINITION 5.7: If A is an ideal of a ternary semigroup T, then the intersection of all completely prime ideals of T containing A is called *completely prime radical* or simply *complete radical* of A and it is denoted by *c.rad* A.

NOTE 5.8: If A is an ideal of a ternary semigroup T, then rad $A = A_3$ and c.rad $A = A_1$.

THEOREM 5.9: If $a \in \sqrt{A}$, then there exist a positive integer *n* such that $a^n \in A$ for some odd natural number $n \in N$.

Proof: By theorem 5.2, $A_3 \subseteq A_2$ and hence $a \in \sqrt{A} = A_3 \subseteq A_2$.

Therefore $a^n \in \mathbf{A}$ for some odd natural number $n \in \mathbf{N}$.

THEOREM 5.10 : If A is an ideal of a commutative ternary semigroup T, then rad A = c.rad A.

proof : By theorem 5.3, rad A = c.rad A.

THEOREM 5.11 : If A is an ideal of a ternary semigroup T then *c.rad* A is a completely semiprime ideal of T.

proof : By theorem 4.6, c.rad A is a completely semiprime ideal of T.

THEOREM 5.12 : If A, B and C are any three ideals of a ternary semigroup T , then

i)
$$\mathbf{A} \subseteq \mathbf{B} \Rightarrow \sqrt{A} \subseteq \sqrt{B}$$

ii) if A \square B \square C \square of then $\sqrt{ABC} = \sqrt{A \cap B \cap C} = \sqrt{A} \cap \sqrt{B} \cap \sqrt{C}$

iii) $\sqrt{\sqrt{A}} = \sqrt{A}$.

proof: i) Suppose that A \subseteq B. If P is a prime ideal containing B then P is a prime ideal containing A. Therefore $\sqrt{A} \subset \sqrt{B}$.

ii) Let P be a prime ideal containing ABC. Then ABC \subseteq P \Rightarrow A \subseteq P or B \subseteq P or C \subseteq P

 $\Rightarrow A \cap B \cap C \subseteq P$. Therefore P is a prime ideal containing A $\cap B \cap C$.

Therefore $rad(A \cap B \cap C) \subseteq rad(ABC)$.

Now let P be a prime ideal containing $A \cap B \cap C$.

Then $A \cap B \cap C \subseteq P \Longrightarrow ABC \subseteq A \cap B \cap C \subseteq P \Longrightarrow ABC \subseteq P$.

Hence P is a prime ideal containing ABC. Therefore rad (ABC) $\subseteq rad(A \cap B \cap C)$.

Therefore $rad(ABC) = rad(A \cap B \cap C)$.

Since $A \cap B \cap C \neq \emptyset$, it is clear that $A \cap B$ is an ideal in T. Let $x \in \sqrt{A \cap B \cap C}$.

Then there exists a odd natural number $n \in \mathbb{N}$ such that $x^n \in A \cap B \cap C$.

Therefore $x^n \in A$, $x^n \in B$ and $x^n \in C$. It follows that $x \in \sqrt{A}$, $x \in \sqrt{B}$ and $x \in \sqrt{C}$. Therefore $x \in \sqrt{A} \cap \sqrt{B} \cap \sqrt{C}$.

Consequently, $x \in \sqrt{A} \cap \sqrt{B} \cap \sqrt{C}$ implies that there exists odd natural numbers $n, m, p \in \mathbb{N}$ such that $x^n \in A, x^m \in B$ and $x^p \in C$. Clearly, $x^{nmp} \in A \cap B \cap C$.

Thus $x \in \sqrt{A \cap B \cap C}$. Therefore if $A \cap B \cap C \neq \emptyset$ then $\sqrt{A \cap B \cap C} = \sqrt{A} \cap \sqrt{B} \cap \sqrt{C}$.

iii) \sqrt{A} = The intersection of all prime ideals of T containing A.

Now $\sqrt{\sqrt{A}}$ = The intersection of all prime ideals of T containing \sqrt{A} .

= The intersection of all prime ideals of T containing $A = \sqrt{A}$

Therefore $\sqrt{\sqrt{A}} = \sqrt{A}$.

THEOREM 5.13 : If A is an ideal of a ternary semigroup T then \sqrt{A} is a semiprime ideal of T.

proof : By theorem 4.17, \sqrt{A} is a semiprime ideal of T.

THEOREM 5.14 : An ideal Q of ternary semigroup T is a semiprime ideal of T if and only if \sqrt{Q} =Q.

Proof : Suppose that Q is a semiprime ideal. Clearly $Q \subseteq \sqrt{Q}$.

Suppose if possible $\sqrt{Q} \not\subseteq Q$.

Let $a \in \sqrt{Q}$ and $a \notin Q$. Now $a \notin Q \Rightarrow a \in S \setminus Q$ and Q is semiprime. By theorem 4.20,

S\Q is an *n*-system. By theorem 4.21, there exists an *m*-system M such that $a \in M \subseteq S \setminus Q$.

 $Q \subseteq S \setminus M$ and now $S \setminus M$ is a prime ideal of $S, a \notin S \setminus M$. It is a contradiction.

Therefore $\sqrt{Q} \subseteq Q$. Hence $\sqrt{Q} = Q$.

Conversely suppose that Q is an ideal of S such that $\sqrt{Q} = Q$.

By corollary 5.13, \sqrt{Q} is a semiprime ideal of S. Therefore Q is semiprime.

COROLLARY 5.15 : An ideal Q of a ternary semigroup T is a semiprime ideal if and only if Q is the intersection of all prime ideal of S contains Q.

Proof: By theorem 5.14., Q is semiprime iff Q is the intersection of all prime ideals of T contains Q.

COROLLARY 5.16 : If A is an ideal of a ternary semi group T, then A is the smallest semiprime ideal of T containing A.

Proof : We have that \sqrt{A} is the intersection of all prime ideals containing A in T.

Since intersection of prime ideals is semiprime, we have \sqrt{A} is semiprime.

Further, let Q be any semiprime ideal containing A, i.e. $A \subseteq Q$. So $\sqrt{A} \subseteq \sqrt{Q}$.

Since Q is semiprime, By theorem 5.14, $\sqrt{Q} = Q$. Therefore $\sqrt{A} \subseteq Q$.

Hence \sqrt{A} is the smallest semiprime ideal of S containing A.

THEOREM 5.16 : If P is a prime ideal of a ternary semigroup T, then $\sqrt{(P)^n} = P$ for all odd natural numbers $n \in \mathbb{N}$.

Proof: We use induction on *n* to prove $\sqrt{P^n} = P$.

First we prove that $\sqrt{P} = P$. Since P is a prime ideal, $P \subseteq \sqrt{P} \subseteq P \Longrightarrow \sqrt{P} = P$.

Assume that $\sqrt{P^k} = P$ for odd natural number k such that $1 \le k < n$.

Now
$$\sqrt{P^{k+2}} = \sqrt{P^k \cdot P \cdot P} = \sqrt{P^k} \cap \sqrt{P} \cap \sqrt{P} = \sqrt{P} \cap \sqrt{P} = \sqrt{P} = P$$
.

Therefore $\sqrt{P^{k+2}} = P$. By induction $\sqrt{P^n} = P$ for all odd natural number $n \in \mathbb{N}$.

THEOREM 5.17: In a ternary semigroup T with identity there is a unique maximal ideal M such that

 $\sqrt{(M)^n}$ = M for all odd natural numbers $n \in \mathbb{N}$.

Proof: Since T contains identity, T is a globally idempotent ternary semigroup.

Since M is a maximal ideal of T, by theorem 3.15 M is prime.

By theorem 5.16, $\sqrt{(M)^n} = M$ for all odd natural numbers *n*.

Theorem 5.18: If A is an ideal of a ternary semigroup T then $\sqrt{A} = \{x \in T : every m$ -system of T containing x meets A $\}$ i.e., $\sqrt{A} = \{x \in T : M(x) \cap A \neq \emptyset\}$.

Proof: Suppose that $x \in \sqrt{A}$. Let M be an m-system containing x.

Then T\M is a prime ideal of T and $x \notin T$ \M. If M $\bigcap A = \emptyset$ then A $\subseteq T$ \M.

Since T\M is a prime ideal containing A, $\sqrt{A} \subseteq$ T\M and hence $x \in$ T\M.

It is a contradiction. Therefore $M(x) \cap A \neq \emptyset$. Hence $x \in \{x \in T : M(x) \cap A \neq \emptyset\}$.

Conversely suppose that $x \in \{x \in T : M(x) \cap A \neq \emptyset\}$.

Suppose if possible $x \notin \sqrt{A}$. Then there exists a prime ideal P containing A such that $x \notin P$.

Now T\P is an *m*-system and
$$x \in T$$
\P. $A \subseteq P \Rightarrow T$ \P $\bigcap A = \emptyset \Rightarrow x \notin \{x \in T : M(x) \cap A \neq \emptyset\}$.

It is a contradiction. Therefore $x \in \sqrt{A}$. Thus $\sqrt{A} = \{x \in T : M(x) \cap A \neq \emptyset\}$.

VI. Conclusion

Anjaneyulu. A initiated the study of pseudo symmetric ideals in semigroups, Madhusudhana Rao. D, Anjaneyulu. A. and Gangadhara Rao. A. initiated the study of theory of Γ -ideals in Γ -semigroups and V. B.

Subrahmanyeswara Rao Seetamraju, Anjaneyulu and Madhusudhana Rao initiated the study of theory of ideals in partially ordered Γ -semigroups and hence the study of ideals in semigroups, Γ -semigroups and partially ordered Γ -semigorups creates a platform for the ideals in ternary semigroups.

Acknowledgements

We thank the Department of Mathematics, VSR & NVR College, Tenlai, A.P. India for giving their valuable support in preparing this paper.

References

- [1] Anjaneyulu. A and Ramakotaiah. D., on a class of semigroups, Simon - Stivin, vol .34(1980), 241-249.
- [2] Anjaneyulu. A ., Structure and ideal theory of Duo semigroups, Semigroup forum, vol .22(1981), 237-276.
- [3] Clifford A.H and Preston G.B., The algebroic theory of semigroups, vol - I American Math. Society, Province (1961).
- Clifford A.H and Preston G.B., The algebroic theory of semigroups, vol II American Math. Society, Province (1967). [4]
- [5] Dutta.T.K., Kar,S abd Maity.B.K., On Ideals of regular ternary semigroups, Internal. J. Math. Math. Sci. 18 (1993), 301-308.
- Hewitt. E. and Zuckerman H.S., Ternary opertions and semigroups, semigroups, Proc. Sympos. Wayne State Univ., Detroit, 1968, [6] 33-83
- [7] Iampan . A., Lateral ideals of ternary semigroups, Ukrainian Math, Bull., 4 (2007), 323-334.
- [8] Kar.S., On ideals in ternary semigroups. Int. J. Math. Gen. Sci., 18 (2003) 3013-3023.
- Kar.S and Maity.B.K., Some ideals of ternary semigroups . Analele Stintifice Ale Universitath "ALI CUZA" DIN IASI(S.N) [9] Mathematica, Tumul LVII. 2011-12.
- [10] Kasner . E., An extension of the group concept, Bull. Amer. Math. Society, 10 (1904), 290-291.
- Kim Ki.H and Roush F.W., Ternary semigroup on each pair of factors, Simon Stevin 34(1980), No.2, 63-74. [11]
- [12] Kuroki. N., Rough ideals in semigroups, Information sciences, Vol.100 (1997), 139-163.
- Lehmer . D.H., A ternary analave of abelian groups, Amer. J. Math., 39 (1932), 329-338. [13]
- [14] Lyapin.E.S., Realisation of ternary semigroup, Russian Modern Algebra, Leningrad University, Leningrad, 1981, pp. 43-48.
- Petrch.M., Introduction to semigroups, Merril publishing company, Columbus, Ohio (1973). [15]
- [16]
- Santiago. M. L. and Bala S.S., "Ternary semigroups" Semigroups Forum, Vol. 81, no. 2, pp. 380-388, 2010. Sarala. Y, Anjaneyulu. A and Madhusudhana Rao. D., On ternary semigroups, International eJournal of Mathematics, [17] Engineering and Technology accepted for publication.
- [18] Sarala. Y, Anjaneyulu. A and Madhusudhana Rao. D., Ideals in ternary semigroups, submitted for publication in International eJournal of Mathematics, Engineering and Technology accepted for publication.
- Shabir.M and Basher.S., Prime Ideals in ternary semigroups Asian European J. Math. 2 (2009), 139-132. [19]
- [20] Sioson. F. M., Ideal theory in ternary semigroups, Math. Japan., 10 (1963), 63-84.