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Abstract: This paper deals with the determination of thermal stresses in a thin clamped hollow disk under 

unsteady temperature field due to point heat source situated at centre along radial and axial direction within it. 

A thin hollow disk is considered having arbitrary initial temperature and is subjected to arbitrary heat flux at 

the outer circular boundary; whereas inner boundary is at zero heat flux. Also, the upper and lower surfaces of 

the disk are at zero temperature. The inner and outer edges of the disk are clamped. The governing heat 

conduction equation has been solved by the method of integral transform technique. The results are obtained in 

a series form in terms of Bessel’s functions. The results have been computed numerically and illustrated 

graphically. 
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I. Introduction 
During the last century the theory of elasticity has found of considerable applications in the solution of 

engineering problems. There are many cases in which the elementary methods of strength of materials are 

inadequate to furnish satisfactory information regarding stress distribution in engineering structures and 

recourse must be made to the more powerful methods of the theory of elasticity. The elementary theory is 

insufficient to give information regarding local stresses near the loads and the supports of beams. It fails also in 

the cases when the stress distribution in bodies, all the dimensions of which are of the same order, has to be 

investigated. The stresses in rollers and in balls of bearing can be found only by using the theory of elasticity. 

During recent years consideration progress has been made in solving such practically important problems. In 

cases where a rigorous solution cannot be readily obtained, approximate methods have been developed. In some 

cases solutions have been obtained by using experimental methods. These important quantities were 

conventionally obtained by experimental methods which normally involve delicate and sophisticated 
equipments. The method of direct determination of stresses and the use of the compatibility equations in terms 

of stress components have been applied for solving various problems and in many cases the energy method of 

solution of elasticity problems has been used. Roy Choudhuri [1], determined the quasi-static thermal stresses in 

thin circular disk subjected to transient temperature along the circumference of a circle over the upper face with 

lower face at zero temperature and fixed circular edge thermally insulated. Gogulwar and Deshmukh [2] thermal 

stresses in a thin circular plate with heat sources.  

Recently Kulkarni et al. [3], dealt with the determination of displacement and thermal stresses in a thin 

hollow circular disk defined by 𝑎 ≤ 𝑟 ≤ 𝑏 due to instantaneous line heat source situated at the centre of the 

circular disk along the radial direction and most recently, Deshmukh et al. [4], studied non-homogeneous steady 

state heat conduction problem in a thin circular plate and discussed its thermal stresses due to its internal heat 
generation at a constant rate.  

This paper deals with the determination of thermal stresses in a thin clamped hollow disk under 

unsteady temperature field due to point heat source situated at centre along radial and axial direction within it. A 

thin hollow disk is considered having arbitrary initial temperature and is subjected to arbitrary heat flux at the 

outer circular boundary; whereas inner boundary is at zero heat flux. Also, the upper surface 𝑧 = ℎ and the 

lower surface 𝑧 = 0 of the disk are at zero temperature. The inner and outer edges of the disk are clamped. The 

governing heat conduction equation has been solved by the method of integral transform technique. The results 

are obtained in a series form in terms of Bessel’s functions. The results have been computed numerically and 

illustrated graphically. 

 

II. Formulation Of The Problem 
Consider a thin hollow disk of thickness ℎ occupying space  𝐷:𝑎 ≤ 𝑟 ≤ 𝑏, 0 ≤ 𝑧 ≤ ℎ as shown in Fig 

1. Initially, the disk is kept at arbitrary temperature  𝐹 𝑟, 𝑧 . The inner circular boundary 𝑟 = 𝑎  is at zero 
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temperature whereas the heat flux  
𝑄 𝑧,𝑡 

𝑘
 is applied on the outer circular boundary  𝑟 = 𝑏 . Also the upper 

surface 𝑧 = ℎ and the lower surface 𝑧 = 0 of the disk are at zero temperature. For time 𝑡 > 0, heat is generated 

within the thin hollow disk at the rate 𝑔 𝑟, 𝑧, 𝑡 . Under these conditions, the thermal stresses in a thin hollow 

disk due to heat generation are required to be determined. 

 
Following Deshmukh et al [1], the differential equation governing the displacement function 𝜓 𝑟, 𝑧, 𝑡  is  

𝜕2𝜓

𝜕𝑟2
+

1

𝑟

𝜕𝜓

𝜕𝑟
=  1 + 𝜈  𝑎𝑡  𝑇 ((1) 

with, 
𝜕𝜓

𝜕𝑟
= 0  at 𝑟 = 𝑎, 𝑟 = 𝑏,   for 𝑡 ≥ 0, 0 ≤ 𝑧 ≤ ℎ. (2) 

where, 𝜈 is Poisson’s ratio and 𝑎𝑡  is the linear coefficient of thermal expansion of the material. 𝑇 = 𝑇 𝑟, 𝑧, 𝑡  is 
the temperature of the thin hollow disk at time  𝑡 satisfying the equation 

𝜕2𝑇

𝜕𝑟2
+

1

𝑟

𝜕𝑇

𝜕𝑟
+
𝜕2𝑇

𝜕𝑧2
+
𝑔 𝑟, 𝑧, 𝑡 

𝐾
=

1

𝛼

𝜕𝑇

𝜕𝑡
 ((3) 

with the boundary conditions  

 
𝜕𝑇

𝜕𝑟
= 0,   at 𝑟 = 𝑎, 𝑡 > 0, 0 ≤ 𝑧 ≤ ℎ (4) 

𝑘 
𝜕𝑇

𝜕𝑟
= 𝑄 𝑧, 𝑡 ,  at 𝑟 = 𝑏, 𝑡 > 0, 0 ≤ 𝑧 ≤ ℎ (5) 

𝑇 𝑟, 𝑧, 𝑡 = 0,  at 𝑧 = 0, 𝑡 > 0,𝑎 ≤ 𝑟 ≤ 𝑏. (6) 

𝑇 𝑟, 𝑧, 𝑡 = 0,  at 𝑧 = ℎ, 𝑡 > 0, 𝑎 ≤ 𝑟 ≤ 𝑏 (7) 

 Initially  

𝑇 𝑟, 𝑧, 𝑡 = 𝐹 𝑟, 𝑧 , at 𝑡 = 0,𝑎 ≤ 𝑟 ≤ 𝑏, 0 ≤ 𝑧 < ∞ (8) 

where,  𝛼,𝐾 and 𝑘 are the thermal diffusivity, thermal conductivity and heat transfer coefficient of the material 

of the hollow disk respectively. The stress function 𝜍𝑟𝑟  and 𝜍𝜃𝜃  are given by   

 𝜍𝑟𝑟 = −2 𝜇 
1

𝑟

𝜕𝜓

𝜕𝑟
 (9) 

 𝜍𝜃𝜃 = −2 𝜇 
𝜕2𝜓

𝜕𝑟2
 (10) 

where, 𝜇 is the Lamé constant.  
For traction free surfaces, 

 𝜍𝑟𝑟 = 0,      at  𝑟 = 𝑎 and 𝑟 = 𝑏 (11) 

Also, in the planer state of stress within thin disk 

 𝜍𝑟𝑧 =  𝜍𝑧𝑧 =  𝜍𝑧𝜃 = 0. (12) 

Equations (1) to (12) constitute the mathematical formulation of the problem. 

 

III. Solution 
3.1 Temperature Distribution Function 

The partial derivative with respect to the 𝑧 variable is removed by means of Fourier transform and the 

partial derivative with respect to the 𝑟 variable is removed by means of Hankel transform. Since the range of the 

𝑧-variable is 0 ≤ 𝑧 ≤ ℎ, one defines the Fourier transform and the inversion formula of the temperature function 

𝑇 𝑟, 𝑧, 𝑡  with respect to the 𝑧-variable as suggested by Ozisik [5] 
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𝑇  𝑟, 𝜂𝑝 , 𝑡 =   𝐾 𝜂𝑝 , 𝑧  𝑇 𝑟, 𝑧, 𝑡  𝑑𝑧

ℎ

𝑧=0

 (13) 

𝑇 𝑟, 𝑧, 𝑡 =  𝐾 𝜂𝑝 , 𝑧  𝑇  𝑟, 𝜂𝑝 , 𝑡 

∞

𝑝=1

 (14) 

where, 𝐾 𝜂, 𝑧  is the kernel which is obtained from the eigenvalue problem. Using variable separation method 

and then solving eigen value problem one obtains the kernel 𝐾 𝜂, 𝑧 . Applying Fourier sine transform (13) to 

the system (3)-(8), reduces to a system which includes a differential operator with respect to the 𝑟 variable. The 

Hankel transform is suitable to remove the 𝑟 variable in the reduced system. One defines the Hankel transform 

and inversion formula of the function 𝑇  𝑟,𝜂, 𝑡  in the range 𝑎 ≤ 𝑟 ≤ 𝑏 as 

𝑇   𝜆𝑚  , 𝜂𝑝 , 𝑡 =   𝑟 𝐾0   𝜆𝑚  , 𝑟  𝑇  𝑟,𝜂𝑝 , 𝑡  𝑑𝑟

𝑏

𝑟=𝑎

 (15) 

𝑇  𝑟, 𝜂𝑝 , 𝑡 =  𝐾0  𝜆𝑚  , 𝑟  𝑇  𝜆𝑚  ,𝜂𝑝 , 𝑡 

∞

𝑚=1

 (16) 

Now on applying Hankel transform defined as in (15) to the reduced system, the partial differential equation of 

heat conduction is reduced to an ordinary linear differential equation for double transform of the temperature 

𝑇 𝑟, 𝑧, 𝑡 . Solving the ordinary differential equation and the resulting double transform of temperature is 

inverted by means of the inversion formulas (16) and (14); one finds the solution of the present boundary value 
problem of heat conduction. The temperature distribution obtained as 

𝑇 𝑟, 𝑧, 𝑡 =    𝐾𝑜   𝜆𝑚 , 𝑟 𝐾 𝜂𝑝 , 𝑧 𝑒− 𝛼   𝜆𝑚
 2 +𝜂2  𝑡 

∞

𝑚=1

∞

𝑝=1

   𝑟 ′𝐾𝑜   𝜆𝑚 , 𝑟′ 𝐾 𝜂𝑝 , 𝑧′ 𝐹 𝑟 ′, 𝑧′ 𝑑𝑟 ′𝑑𝑧′

ℎ

0

𝑏

𝑎

  

                                  +
𝛼

𝐾
 𝑒𝛼   𝜆𝑚

 2 +𝜂2  𝑡 ′
   𝑟 ′𝐾𝑜   𝜆𝑚 ,𝑟′  𝐾 𝜂𝑝 , 𝑧′  𝑔 𝑟 ′, 𝑧′ , 𝑡′  𝑑𝑟 ′𝑑𝑧′

ℎ

0

𝑏

𝑎

 

𝑡

𝑡 ′=0

 

                                  +   𝑏 𝐾𝑜   𝜆𝑚 ,𝑏  𝐾 𝜂𝑝 , 𝑧′  𝑄 𝑧′, 𝑡′  𝑑𝑧′

ℎ

0

  𝑑𝑡′  ((17) 

where, the kernels are defined as 

𝐾 𝜂𝑝 , 𝑧 =  
2

ℎ
 sin𝜂𝑝𝑧 . (18) 

and 

𝐾𝑜   𝜆𝑚  , 𝑟 =
𝜋

 2

𝜆𝑚  𝑌1 𝜆𝑚  𝑏 𝐽1 𝜆𝑚  𝑏 

 1 −
𝐽1

2 𝜆𝑚  𝑏 

𝐽1
2 𝜆𝑚  𝑎 

  
𝐽0 𝜆𝑚  𝑟 

𝐽1 𝜆𝑚  𝑏 
  −  

𝑌0 𝜆𝑚  𝑟 

𝑌1 𝜆𝑚  𝑏 
   

(19) 

where,  𝜆𝑚
′𝑠  are the positive roots of the transcendental equation 

𝐽1 𝜆𝑚𝑎 

 𝐽1 𝜆𝑚𝑏 
−

𝑌1 𝜆𝑚𝑎 

 𝑌1 𝜆𝑚𝑏 
= 0 (20) 

 

3.2 Displacement Function and Thermal Stresses 

Substituting the temperature distribution obtained in equation (17) in the equation (1) one obtained 

displacement function as  

𝜓

 1 + 𝜈  𝑎𝑡
=     

𝐾𝑜   𝜆𝑚 ,𝑏 − 𝐾𝑜   𝜆𝑚 ,𝑟 

𝜆𝑚
2

 𝐾 𝜂𝑝 , 𝑧 𝑒− 𝛼   𝜆𝑚
 2 +𝜂2  𝑡

∞

𝑚=1

∞

𝑝=1

 

                                        ×    𝑟 ′𝐾𝑜   𝜆𝑚 ,𝑟′ 𝐾 𝜂𝑝 , 𝑧′ 𝐹 𝑟 ′, 𝑧′ 𝑑𝑟 ′𝑑𝑧′

ℎ

0

𝑏

𝑎

  

               +
𝛼

𝐾
 𝑒𝛼   𝜆𝑚

 2 +𝜂2  𝑡 ′
   𝑟 ′𝐾𝑜   𝜆𝑚 , 𝑟′  𝐾 𝜂𝑝 , 𝑧′  𝑔 𝑟 ′, 𝑧′, 𝑡′  𝑑𝑟 ′𝑑𝑧′

ℎ

0

𝑏

𝑎

 

𝑡

𝑡 ′=0
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                                       +   𝑏 𝐾𝑜   𝜆𝑚 ,𝑏  𝐾 𝜂𝑝 , 𝑧′  𝑄 𝑧′, 𝑡′  𝑑𝑧′

ℎ

0

  𝑑𝑡′  (21) 

Using this expression in equations (9) and (10), one obtains radial stress function and angular stress function as 

𝜍𝑟𝑟 = −2𝜇 1 + 𝜈  𝑎𝑡    
𝐾1   𝜆𝑚 , 𝑟 

 𝜆𝑚  𝑟
 𝐾 𝜂𝑝 , 𝑧 𝑒− 𝛼   𝜆𝑚

 2 +𝜂2  𝑡

∞

𝑚=1

∞

𝑝=1

 

                                                    ×    𝑟 ′𝐾𝑜   𝜆𝑚 ,𝑟′ 𝐾 𝜂𝑝 , 𝑧′ 𝐹 𝑟 ′, 𝑧′ 𝑑𝑟 ′𝑑𝑧′

ℎ

0

𝑏

𝑎

  

                                                    +
𝛼

𝐾
 𝑒𝛼   𝜆𝑚

 2 +𝜂2  𝑡 ′
   𝑟 ′𝐾𝑜   𝜆𝑚 ,𝑟′  𝐾 𝜂𝑝 , 𝑧′  𝑔 𝑟 ′, 𝑧′, 𝑡′  𝑑𝑟 ′𝑑𝑧′

ℎ

0

𝑏

𝑎

 

𝑡

𝑡 ′=0

 

                                                    +   𝑏 𝐾𝑜   𝜆𝑚 ,𝑏  𝐾 𝜂𝑝 , 𝑧′  𝑄 𝑧′, 𝑡′  𝑑𝑧′

ℎ

0

  𝑑𝑡′  (22) 

𝜍𝜃𝜃 = −2𝜇 1 + 𝜈  𝑎𝑡    𝐾 𝜂𝑝 , 𝑧  𝐾0   𝜆𝑚 , 𝑟 −
𝐾1   𝜆𝑚 , 𝑟 

𝜆𝑚  𝑟
  

∞

𝑚=1

∞

𝑝=1

 

                                                     × 𝑒− 𝛼   𝜆𝑚
 2 +𝜂2  𝑡 ×    𝑟 ′𝐾𝑜   𝜆𝑚 ,𝑟′  𝐾 𝜂𝑝 , 𝑧′  𝐹 𝑟 ′, 𝑧′  𝑑𝑟 ′𝑑𝑧′

ℎ

0

𝑏

𝑎

  

                                                   +
𝛼

𝐾
 𝑒𝛼   𝜆𝑚

 2 +𝜂2  𝑡 ′
   𝑟 ′𝐾𝑜   𝜆𝑚 ,𝑟′  𝐾 𝜂𝑝 , 𝑧′  𝑔 𝑟 ′, 𝑧′ , 𝑡′  𝑑𝑟 ′𝑑𝑧′

ℎ

0

𝑏

𝑎

 

𝑡

𝑡 ′=0

 

                                                   +   𝑏 𝐾𝑜   𝜆𝑚 ,𝑏  𝐾 𝜂𝑝 , 𝑧′  𝑄 𝑧′, 𝑡′  𝑑𝑧′

ℎ

0

  𝑑𝑡′  (23) 

 

IV. Special Case And Numerical Calculations 
To construct the mathematical thermoelastic behavior of the thin hollow disk, one considers the 

following parameters:  

Set, 

𝐹 𝑟, 𝑧 =  𝑟2 − 𝑎2  × 𝑟2  ×  𝑧2 − ℎ2  × 𝑧2   
𝑄 𝑧, 𝑡 =   𝑧2 − ℎ2 2 × 𝑧2  × 𝑒−𝜔  𝑡   
𝑔 𝑟, 𝑧, 𝑡 = 𝑔𝑝𝑖 × 𝛿 𝑟 − 𝑟1  × 𝛿 𝑧 − 𝑧1 ×  𝛿 𝑡 − 𝜏  

With, 𝜔 = 10 , 𝑡 → 𝜏 = 5 𝑠  and 𝑔𝑝𝑖 = 50. Here,  𝑟 is the radius measured in meter and  𝛿  is the Dirac-delta 

function. 

The heat source 𝑔 𝑟, 𝑧, 𝑡  is an instantaneous point heat source 𝑔𝑝𝑖 = 50 Btu/hr.m situated at the centre of the 

disk along radial and axial direction and released its heat instantaneously at the time 𝑡 = 𝜏 = 5 𝑠. 

A disk with its thickness less than 1/5 of its smallest dimension is known as a thin disk. While if the thickness of 

disk exceed 1/5 of its smallest dimension it is termed as thick disk [6]. Here one considers a thin hollow disk, for 
which the dimensions are considered as follows. 

 

Dimensions of the hollow disk 

Outer radius of the disk  𝑏 = 2 𝑚  

Inner radius of the disk 𝑎 = 1 𝑚  

Thickness of cylinder disk ℎ = 0.4 𝑚 

Constants for special Case 𝑟1 = 1.5 𝑚, 𝑧1 = 0.2 𝑚 

 

Material properties 
The numerical calculation has been carried out for a Copper (pure) thin hollow disk with the material properties.  

Thermal conductivity 𝑘 = 386 𝑊 𝑚−1𝑘−1 

Thermal diffusivity               𝛼 = 112.34 × 10 −6  𝑚2  𝑠−1                                                 

Density                                                    𝜌 = 8954 𝑘𝑔 𝑚−3                                                                          
Specific heat        𝑐𝑝 = 383  𝐽 𝑘𝑔−1  𝐾−1                     
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Coefficient of linear thermal expansion, 𝑎𝑡 = 16.5 × 10 −6  𝐾−1                                               

Poisson ratio                𝜈 = 0.35                               

Lamé constant                        𝜇 = 26.67 

 

Roots of the transcendental equation 
The first five positive roots of the transcendental equation (16) are 

 𝜆1 = 3.1965, 𝜆2 = 6.3123, 𝜆3 = 9.4445, 𝜆4 = 12.5812, 𝜆5 = 15.7199 
Set for convenience,  

𝑋 =
𝜋

 ℎ
,                𝐴 = − 1 + 𝜈 𝑎𝑡

𝜋

 ℎ
,                𝐵 =

2 𝜇  1 + 𝜈  𝑎𝑡  𝜋

 ℎ
 

The numerical calculation has been carried out with the help of computational mathematical software Mathcad-

2000 professional and the graphs are plotted with the help of Excel (MS Office -2007). 

From Fig 2, it can be observed that due to point heat source situated at centre along radial and axial 

direction the temperature distribution function decreases along radial direction in the region 1 ≤ 𝑟 ≤ 1.5 𝑚 and 

then it increases towards outer curved surface of the disk. From   Fig 3, it can be observed that the displacement 

potential function decreases along radial direction in the region 1 ≤ 𝑟 ≤ 1.5 𝑚 and then it increases towards 

outer curved surface of the disk. It can be noticed that large displacement occurs at the inner boundary surface 

of the disk and it is proportional to the temperature distribution. 
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From Fig 4, it is observed that for traction free surface 𝑟 = 2 𝑚 as well as at centre radial stress is zero. Radial 

stress increases in the central part 1 ≤ 𝑟 ≤ 1.2 𝑚 and then decreases in the annular region 1.2 ≤ 𝑟 ≤ 1.8 𝑚. In 

Fig 5, it can be observed that the angular stress function increases from inner circular surface to outer circular 

face. Angular stress increases rapidly in the region 1.2 ≤ 𝑟 ≤ 1.6 𝑚. 

 

V. Conclusion 
This paper deals with the determination of thermal stresses in a thin clamped hollow disk under 

unsteady temperature field due to internal heat generation within it. A thin hollow disk is considered having 

arbitrary initial temperature and subjected to heat flux at the outer boundary, where as inner circular boundary is 

at zero heat flux. Also, the upper surface 𝑧 = ℎ and the lower surface 𝑧 = 0 of the disk are at zero temperature. 

As a special case mathematical model is constructed for Copper (pure) thin hollow disk with the material 

properties specified as above. The heat source is an instantaneous point heat source of strength 𝑔𝑝𝑖  situated 

at  𝑟 = 1.5, 𝑧 = 0.2 and released its heat spontaneously at the time 𝑡 = 𝜏 = 5 𝑠. 

One cans summaries that due to small thickness the stress components and displacement occurs near 

heated region. Due to heat generation within the thin hollow disk, the radial stress develops tensile stresses 

where as angular stress develops compressive stresses. Also it can be observed that heat flow and direction of 

body displacement are parallel and proportionate.  

The results obtained here are useful in engineering problems particularly in the determination of state 

of stress in thin hollow disk. Also any particular case of special interest can be derived by assigning suitable 

values to the parameters and functions in the expressions (17), (21), (22) and (23). 
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