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Abstract:  An analysis of unsteady MHD flow of an electrically conducting visco-elastic fluid confined between 

two horizontal parallel non conducting plates in presence of a transverse magnetic field and Hall current is 

presented. The lower plate is a stretching sheet while the upper one is an oscillating porous plate, which is 

oscillating in its own plane. The motion of the fluid is produced by the stretching of the lower plate. A constant 

suction is applied at the upper plate and the stretching velocity is taken to be a linear function of distance along 

the channel. The equations governing the flow field are solved by perturbation technique. Expressions for 

velocity distribution of the flow field and non-dimensional skin-friction coefficient are obtained and presented 

graphically to observe the visco-elastic effect in combination of other flow parameters involved in the solution. 

The flow field is observed to be considerably affected by the visco-elastic parameter. 

Keywords - Hall current, MHD, Oscillating porous plate, Perturbation technique, Stretching sheet, Suction    
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I.         Introduction 
           Analysis of flow over a stretching sheet attracts the interest of many researchers in a large scale because 

of its application in different areas such as in the manufacture of sheeting material through an extrusion process, 

the cooling of bath, the boundary layer along material handling conveyers, the aerodynamic extrusion of plastic 

sheets, glass and polymer industries, fiber industry etc. Recently, the boundary layer flow over a moving 

continuous solid surface has become inevitable in various fields of engineering processes. Borkakoti and Bharali 

[1] have studied the MHD flow of a conducting fluid with heat transfer between two horizontal parallel plates 

where the lower one is stretching and the upper one is a porous solid plate. Chiam [2] has analyzed the motion 

of micro polar fluids over stretching sheet. Rajagopal et al. [3] have studied the flow of a visco-elastic fluid over 

a stretching sheet. Agarwal et al. [4] have obtained the solution of flow and heat transfer of a micro polar fluid 

over a stretching sheet using finite element technique. The visco-elastic MHD flow past a stretching sheet has 

been studied by Anderson [5]. He has compared the effect of an external magnetic field and the visco-elastic 

effect on the flow.  Anderson et al. [6] has studied the motion of power law fluid over a stretching sheet. They 

have investigated the flow of an electrically conducting visco-elastic fluid past a flat and a impermeable elastic 

sheet. Char [7] has extended this work to study heat as well as mass transfer.  The coupled stretching flow of a 

two dimensional viscous incompressible fluid through a channel bounded by naturally permeable bed has been 

studied by Chauhan [8]. The unsteady flow over a stretching surface with a magnetic field in a rotating fluid has 

been studied by Takhar and Nath [9]. Kumari et al. [10] have obtained the analytical solution of the boundary 

layer equations over a stretching sheet with mass transfer using series method. Sharma and Mishra [11] have 

investigated the steady MHD flow through horizontal channel. A numerical solution for power law velocity 

distribution of stretching plate has been obtained by Phukan [12]. Bhardwaj [13] has analyzed the steady two 

dimensional flow of viscous, incompressible fluid through a channel bounded by a plane stretched sheet and 

naturally permeable bed. Lodha and Tak [14] have analyzed the boundary layer flow of a hydromagnetic fluid 

over a stretching sheet in the presence of uniform transverse magnetic field with heat transfer taking dissipation 

function into account. The important fact is that the influence of Hall current effects was not concentrated much 

in all the above studies. If a conductor or a semi conductor has current flowing in it because of an applied 

electric field and a transverse magnetic field, there develops a component of electric field in the direction 

orthogonal to both the applied electric field and magnetic field, resulting in a voltage difference between the 

sides of the conductor. This phenomenon is known as the Hall Effect. In an ionized gas, when the strength of the 

magnetic field is large one cannot neglect the effect of Hall current. These Hall currents are particularly 

important as they produce considerable changes in the flow pattern, when the magnetic field is considerably 

large. Gutpa [15] has studied the Hall current effects in the steady MHD flow of an electrically conducting fluid 

past an infinite porous flat plate. Kumar et al. [16] have analyzed the thermal instability of visco-elastic fluid 

permeated with suspended particles in hydromagnetics in porous medium. Kumar and Singh [17] have studied 

the instability of two rotating visco-elastic (Walters B') superposed fluids with suspended particles in porous 

medium. The laminar fully developed mixed convection with viscous dissipation in a uniformly heated vertical 
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double-passage channel has been studied by Mostafa and Salah [18].  Bakier and Mansour [19] have studied the 

combination of magnetic field and thermophoresis particle deposition in free convection boundary layer from a 

vertical flat plate embedded in a porous medium. Abdallah [20] has investigated analytic solution of heat and 

mass transfer over a permeable stretching plate affected by chemical reaction, internal heating, Dufour-Soret 

effect, and Hall Effect. Raju et al. [21] have studied the Hall-current effects on unsteady MHD flow between 

stretching sheet and an oscillating porous upper parallel plate with constant suction. 

             The object of the present author is to study the unsteady MHD flow of an electrically conducting visco-

elastic fluid characterized by  Walters liquid (Model B′) confined between two horizontal parallel non 

conducting plates in presence of a transverse magnetic field and the effects of Hall current where the lower plate 

is a stretching sheet and the upper one is an oscillating porous plate with  constant suction, which is oscillating 

in its own plane and to observe the visco-elastic effects on flow field along with other flow parameters. Here the 

motion of the fluid is produced by the stretching of the lower plate and suction at the upper porous plate. 

 

           The constitutive equation for Walters liquid (Model B′) is 

𝜎𝑖𝑘 = −𝑝𝑔𝑖𝑘 + 2𝜂0𝑒
𝑖𝑘 − 2𝐾0𝑒

′𝑖𝑘                                                                                                                        (1) 

where  σ
ik
 is  the stress tensor, p is isotropic pressure, gik

 
is  the metric tensor of a fixed co-ordinate system x

i
, v

i
  

is the velocity vector, the contravariant form of e′
ik 

is given by                                                                                                                                                             

𝑒 ′𝑖𝑘 =
𝜕𝑒 𝑖𝑘

𝜕𝑡
+ 𝑣𝑚𝑒𝑖𝑘 ,𝑚− 𝑣𝑖 ,𝑚 𝑒𝑖𝑚 − 𝑣𝑖 ,𝑚 𝑒𝑚𝑘                                                                                                     (2) 

It is the convected derivative of the deformation rate tensor e
ik
 defined by 

2e
ik
 = v

i
, k +v

k
, i                                                                                                                                       (3)   

            Here η0 is the limiting viscosity at the small rate of shear which is given by                                                                                                                                                              

𝜂0 =  𝑁 𝜏 𝑑𝜏  𝑎𝑛𝑑   𝑘0
∞

0
=  𝜏𝑁 𝜏 𝑑𝜏

∞

0
                                                                                                         (4) 

N(τ) being the relaxation spectrum as introduced by Walters [22, 23]. This idealized model is a valid 

approximation of Walters liquid (Model B′) taking very short memories into account so that terms involving 

 𝜏𝑛∞

0
𝑁 𝜏 𝑑𝜏,    𝑛 ≥ 2                                                                                                                                       (5)                                                                                                                                                            

have been neglected. 

 

II.     Mathematical Formulation 
             The unsteady MHD flow of an electrically conducting visco-elastic fluid characterized by Walters 

liquid (Model B′) confined between two horizontal parallel non conducting plates in presence of a transverse 

magnetic field and the effects of Hall current where the lower plate is a stretching sheet and the upper one is an 

oscillating porous plate with constant suction, which is oscillating in its own plane is considered. The x-axis be 

taken along the lower stretching sheet in the flow direction and y-axis is taken perpendicular to the sheet. Two 

equal and opposite forces are introduced along the x-axis to stretch the lower plate so that the position of the 

origin remains unaltered. The fluid is sucked through the upper porous plate with constant velocity V0. A 

transverse magnetic field B0 of small magnitude is applied so that the induced magnetic field is negligible in 

comparison with applied magnetic field.  

 

1. The governing equations: 

1.1 Equation of continuity: 

 
𝜕𝑢 

𝜕𝑥 
+

𝜕𝑣 

𝜕𝑦 
= 0                                                                                                                           (6) 

 
1.2 Equations of momentum: 

                                                                                                                                                                 

 
 

Subject to boundary conditions: 

𝑦 = 0:  𝑢 = 𝑐𝑥  ,   𝑣 = 0  

𝑦 = :   𝑢 = 𝑈 0 1 + 𝜖𝑒𝑖𝜔 𝑡  , 𝑣 = 𝑉0                                                                                                                (9) 

We introduce the non-dimensional quantities 
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𝑥 =
𝑥 


, 𝑦 =

𝑦 


, 𝑡 =

𝑡

𝑐
, 𝜔 = 𝜔𝑐, 𝑅𝑒 =

𝑐2

𝜈
, 𝑀 = 𝐵0 

𝜎𝑒

𝜌𝜈
 , 𝑀1 =

𝑀

 1+𝑚2
, 𝑈0 =

𝑈 0


                                           (10) 

such that the equation (6) admits the self similar solution 

𝑢 = 𝑐𝑥 𝑓 ′ 𝑦, 𝑡 , 𝑣 = −𝑐𝑓 𝑦, 𝑡                                                                                                                    (11) 

where dash denotes differentiation with respect to y. 

          Using (10) and (11) in (7) and (8) we get 
𝜕𝑓 ′

𝜕𝑡
+ 𝑓′

2 − 𝑓𝑓″ −
1

𝑅𝑒
𝑓‴ + 𝐾1  

𝜕𝑓‴

𝜕𝑡
+ 2𝑓 ′𝑓‴ − 𝑓𝑓𝑖𝑣 − 𝑓″

2 +
𝑀1

2

𝑅𝑒
𝑓 ′ = −

1

𝜌𝑥𝑐22

𝜕𝑃 

𝜕𝑥
                                   (12) 

𝜕𝑓

𝜕𝑡
− 𝑓𝑓 ′ −

1

𝑅𝑒
𝑓″ + 𝐾1  

𝜕𝑓″

𝜕𝑡
− 𝑓𝑓‴ + 3𝑓′𝑓″ =

1

𝜌𝑐22

𝜕𝑃 

𝜕𝑦
                                                                                (13) 

where 𝐾1 =
𝐾0

𝜌2 , B0 is uniform transverse magnetic field, c is rate of stretching, h is width of the channel, p is 

pressure, Re is stretching Reynolds number, t is time, U0 is characteristic velocity of the upper plate, V0 is 

suction velocity through upper plate, y is similarity variable, ν is kinematic viscosity, ρ is density of the fluid , σe 

is electric conductivity, ω is frequency. 

          Differentiating (13) with respect to x, we get 
𝜕2𝑃 

𝜕𝑥𝜕𝑦
= 0                                                                                                                                                         (14) 

         From equation (12) and (14), we have 

𝑓‴ + 𝑅𝑒𝑓𝑓
″ − 𝑅𝑒

𝜕𝑓 ′

𝜕𝑡
− 𝑅𝑒𝑓′

2 − 𝐾1𝑅𝑒  
𝜕𝑓‴

𝜕𝑡
+ 2𝑓′𝑓‴ − 𝑓𝑓𝑖𝑣 − 𝑓″

2 − 𝑀1
2𝑓 ′ = 𝐶 𝑡                        (15) 

where C(t) is constant with respect to x and y. 

         The corresponding boundary conditions are: 

y=0:  𝑓 = 0, 𝑓′ = 1 

y=1:  𝑓 = −𝛽, 𝑓′ = 𝛼 1 + 𝜖𝑒𝑖𝜔𝑡                                                                                                                   (16) 

where 𝛼 =
𝑈0

𝑐𝑥
  , 𝛽 =

𝑉0

𝑐
  

 

2. Method of solution: 

          Keeping in view the boundary conditions, we assume for 𝜀 ≪ 1, 
𝑓 𝑦, 𝑡 = 𝑓0 𝑦 + 𝜀𝑒𝑖𝜔𝑡 𝑓1 𝑦   

𝐶 𝑡 = 𝐶0 + 𝜀𝑒𝑖𝜔𝑡𝐶1                                                                                                                                  (17) 

         Using (17) in (15) and separating steady and unsteady parts we get,  

𝑓0
‴ + 𝑅𝑒𝑓0𝑓0

″ − 𝑅𝑒𝑓0′
2 − 𝑀1

2𝑓0
′ − 𝐾1𝑅𝑒 2𝑓0′𝑓0‴ − 𝑓0𝑓0

𝑖𝑣 − 𝑓0″
2 = 𝐶0                                                     (18) 

 
 

with modified boundary conditions: 

y=0:  𝑓0 = 0, 𝑓1 = 0, 𝑓0
′ = 1, 𝑓1

′ = 1        at y = 0   

y=1:  𝑓0 = −𝛽, 𝑓1 = 0, 𝑓0
′ = 𝛼, 𝑓1

′ = 𝛼    at y = 1                                                                                          (20) 

         For 𝑅𝑒 ≪ 1 , we now apply the perturbation scheme                      

𝑓0 = 𝑓00 + 𝑅𝑒𝑓01 + 𝑜(𝑅𝑒
2)  

𝑓1 = 𝑓10 + 𝑅𝑒𝑓11 + 𝑜(𝑅𝑒
2)  

𝐶0 = 𝐶00 + 𝑅𝑒𝐶01 + 𝑜 𝑅𝑒
2   

𝐶1 = 𝐶10 + 𝑅𝑒𝐶11 + 𝑜 𝑅𝑒
2                                                                                                                     (21) 

           Substituting (21) in (18) and (19) and comparing the coefficients of various powers of Re we get the 

following sets of equations: 

 

2.1 Zeroth order equations: 

𝑓00
‴ − 𝑀1

2𝑓00
′ = 𝐶00                                                                                                                               (22) 

𝑓01
‴ + 𝑓00𝑓00

″ − 𝑓00 ′
2 − 𝑀1

2𝑓01
′ − 𝐾1 2𝑓00 ′𝑓00

‴ − 𝑓00𝑓00
𝑖𝑣 − 𝑓00″

2 = 𝐶01                                                    (23) 

with relevant  boundary conditions: 

y=0:   𝑓00 = 0, 𝑓01 = 0, 𝑓00 ′ = 1, 𝑓01 ′ = 0           
y=1:   𝑓00 = −𝛽, 𝑓01 = 0, 𝑓00 ′ = 𝛼, 𝑓01 ′ = 0                                                                                                  (24) 

 

2.2 First order equations: 

𝑓10
‴ − 𝑀1

2𝑓10
′ = 𝐶10                                                                                                                                        (25)      

 



Visco-Elastic Unsteady Mhd Flow Between Two Horizontal Parallel Plates With Hall Current 

www.iosrjournals.org                                                             23 | Page 

 
Subject to boundary conditions: 

y=0:   𝑓10 = 0, 𝑓11 = 0, 𝑓10 ′ = 0, 𝑓11 ′ = 0          
y=1:   𝑓10 = 0, 𝑓11 = 0, 𝑓10 ′ = 𝛼, 𝑓11 ′ = 0                                                                                                     (27) 

On solving equations (22), (23), (25) and (26), we obtain,  

𝑓00 = 𝐵1 + 𝐵2𝑒
𝑀1𝑦 + 𝐵3𝑒

−𝑀1𝑦 −
𝐶00

𝑀1
2 𝑦                                                                                                       (28)                                                                            

𝑓01 = 𝐵4 + 𝐵5𝑒
𝑀1𝑦 + 𝐵6𝑒

−𝑀1𝑦 −
𝑏1

𝑀1
2 𝑦 +

𝑏2

2𝑀1
2 𝑦𝑒

𝑀1𝑦 +
𝑏3

2𝑀1
2 𝑦𝑒

−𝑀1𝑦 +
𝑏4

2𝑀1
2 𝑒

𝑀1𝑦  
𝑦2

2
−

3𝑦

2𝑀1
  

          +  
𝑏5

2𝑀1
2 𝑒−𝑀1𝑦  

𝑦2

2
+

3𝑦

2𝑀1
 −

𝐶01

𝑀1
2 𝑦                                                                                                       (29) 

𝑓10 = 𝐵7 + 𝐵8𝑒
𝑀1𝑦 + 𝐵9𝑒

−𝑀1𝑦 −
𝐶10

𝑀1
2 𝑦                                                                                                       (30) 

𝑓11 = 𝐵10 + 𝐵11𝑒
𝑀1𝑦 + 𝐵12𝑒

−𝑀1𝑦 −
𝑏9

𝑀1
2 𝑦 +

𝑏10

2𝑀1
2 𝑦𝑒

𝑀1𝑦 +
𝑏11

2𝑀1
2 𝑦𝑒

−𝑀1𝑦 + 
𝑏12

2𝑀1
2 𝑒

𝑀1𝑦  
𝑦2

2
−   

3𝑦

2𝑀1
 +

           
𝑏13

2𝑀1
2 𝑒

−𝑀1𝑦  
𝑦2

2
+

3𝑦

2𝑀1
 −

𝐶11

𝑀1
2 𝑦                                                                                                            (31) 

 𝑓00 ′ = 𝐵2𝑀1𝑒
𝑀1𝑦 − 𝐵3𝑀1𝑒

−𝑀1𝑦 −
𝐶00

𝑀1
2                                                                                                       (32)                                          

 

𝑓10 ′ = 𝐵8𝑀1𝑒
𝑀1𝑦 − 𝐵9𝑀1𝑒

−𝑀1𝑦 −
𝐶10

𝑀1
2                                                                                                        (34)   

𝑓11
′ = 𝐵11𝑀1𝑒

𝑀1𝑦 − 𝐵12𝑀1𝑒
−𝑀1𝑦 −

𝑏9

𝑀1
2 +

𝑏10

2𝑀1
2  𝑒

𝑀1𝑦 + 𝑀1𝑦𝑒
𝑀1𝑦 +

𝑏11

2𝑀1
2  𝑒

−𝑀1𝑦 −  𝑀1𝑦𝑒
−𝑀1𝑦 +

           
𝑏12

2𝑀1
2  𝑀1𝑒

𝑀1𝑦  
𝑦2

2
−

3𝑦

2𝑀1
 + 𝑒𝑀1𝑦  𝑦 −

3

2𝑀1
  +

𝑏13

2𝑀1
2  −𝑀1𝑒

−𝑀1𝑦  
𝑦2

2
+ 

3𝑦

2𝑀1
 + 𝑒−𝑀1𝑦  𝑦 +

3

2𝑀1
  −

𝐶11

𝑀1
2                                                                                                                       

                                                                                                                                                                       (35) 

          Finally using (17) and (21) the velocity field is obtained in terms of f as  

𝑓 𝑦, 𝑡 = 𝑓00 𝑦 + 𝑅𝑒𝑓01 𝑦 + 𝜖𝑒𝑖𝜔𝑡  𝑓10 𝑦 + 𝑅𝑒𝑓11 𝑦                                                                           (36) 

 

2.3 Skin friction:  

         The skin friction at the plate y = 0 is given by 

𝜎0 =  𝜎𝑥𝑦  𝑦=0
=  

1

𝑅𝑒
𝑓″ 𝑦, 𝑡 − 𝐾1  

𝜕𝑓″ 𝑦 ,𝑡 

𝜕𝑡
− 3𝑓′ 𝑦, 𝑡 𝑓″ 𝑦, 𝑡 − 𝑓 𝑦, 𝑡 𝑓‴ 𝑦, 𝑡   

𝑦=0
                            (37) 

         The skin friction at the plate y = 1 is given by 

𝜎1 =  𝜎𝑥𝑦  𝑦=1
=  

1

𝑅𝑒
𝑓″ 𝑦, 𝑡 − 𝐾1  

𝜕𝑓″ 𝑦 ,𝑡 

𝜕𝑡
− 3𝑓′ 𝑦, 𝑡 𝑓″ 𝑦, 𝑡 − 𝑓 𝑦, 𝑡 𝑓‴ 𝑦, 𝑡   

𝑦=1
                            (38) 

          The constants are obtained but not given here due to brevity. 

 

III.     Discussion 
           The flow field along the y-direction at the stretching sheet is characterized by –f(y, t) and  has been 

illustrated in Fig.s 1 to 3 for the fixed values of the flow parameters Re=.5, ω=5, ωt=π/4, ε=.01, α=.8, β=.8, M=2 

and M=4 with variations in m. Here α is the velocity parameter of the upper oscillating porous plate, β is the 

suction parameter, M is the magnetic parameter and m is the Hall current parameter. In all these figures, the 

visco-elastic effect is exhibited by the parameter K1 (K1= 0, 0.15, 0.3). The value 0 of K1 corresponds to 

Newtonian fluid. In numerical calculations, the real part is implied throughout. 

            Fig.s 1 to 3 illustrate the flow field along y-direction for m=0, 2 and 4 respectively for M=2 and 4 with 

other flow parameters remaining unaltered. 

            It is noticed from Fig. 1 (m=0) that the velocity profile v in the y-direction diminishes with the growth 

of the visco-elastic parameter K1 in comparision with that of Newtonian fluid for M=2 and M=4 both. It is also 

observed that the magnitude of v decreases up to y=.1, then increases throughout the centre of the channel up to 

y=.85 and finally decreases near the moving sheet (y=1). It is further found that the visco-elastic effect is the 

highest in the centre of the channel with a higher variation for M=4 than for M=2 while it is almost nil near the 

sheets. It is also seen that the magnitude of v decreases with the increase of M in the centre of the channel and 

remains the same near the sheets. 

           Fig. 2 (m=2) illustrates that the velocity profile enhances for M=2 and M=4 with the rising effect of the 

visco-elastic parameter K1. For m=2 (Fig. 2), the visco-elastic effect is the highest in the centre of the channel 

with a higher variation for M=2 than for M=4 while it is almost nil near the sheets.  It is also observed that the 

magnitude of v decreases up to y=.05, then increases throughout the centre of the channel up to y=.64 and 

finally decreases near the moving sheet (y=1) for M=2 while the magnitude decreases up to y=.1, then increases 
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throughout the centre of the channel up to y=.84 and finally decreases near the moving sheet (y=1) for M=4. It is 

further observed that the magnitude of v decreases with the increase of M in the centre of the channel and 

remains the same near the sheets. The visco-elastic effect is more prominent for M=2 than for M=4.  

            Fig. 3 (m=4) illustrates that the velocity profile enhances for M=2 and M=4 with the rising effect of the 

visco-elastic parameter K1. For m=4 (Fig. 3), the visco-elastic effect is the highest in the centre of the channel 

with a higher variation for M=2 than for M=4 while it is almost nil near the sheets.  It is also observed that the 

magnitude of v increases up to y=.55 and then decreases for both M=2 and M=4. It is also observed that the 

magnitude of v decreases with the increase of M in the centre of the channel and remains the same near the 

sheets.  

           Fig.s 4 to 6 illustrate the velocity of the flow field along the stretching sheet i.e. along x- direction 

which is characterized by f′(y, t) for the fixed values of the flow parameters Re=.5, ω=5, ωt=π/4, ε=.01, α=.8, 

β=.8, M=2 and M=4 with variations in m (=0, 2 and 4).   

           Fig. 4 (m=0) explains that f′(y, t) and hence the velocity profile u along the stretching sheet i.e. along x- 

direction has an accelerating trend near the stretching sheet and a decelerating trend near the moving sheet with 

the growth of  the visco-elastic parameter K1 for both M=2 and M=4. The magnitude of u decreases near the 

stretching sheet up to y=.4 and then increases up to the moving sheet for M=2 and the magnitude of u decreases 

near the stretching sheet up to y=.5 and then increases up to the moving sheet for M=4. The visco-elastic effect 

is more prominent for M=4 than for M=2. 

           Fig. 5 (m=2) illustrates that the velocity profile u diminishes near the stretching sheet and enhances 

near the moving sheet with the growth of the visco-elastic parameter K1 for both M=2 and M=4. The magnitude 

of u decreases near the stretching sheet up to y= .3, then increases up to y=.85 and finally decreases near the 

moving sheet for M=2 while it decreases up to y=.4 and then increases up to the moving sheet for M=4. The 

visco-elastic effect is more prominent for M=2 than for M=4.  

           Fig. 6 (m=4) describes that the velocity profile u declines near the stretching sheet and enhances near 

the moving sheet with the rising effect of the visco-elastic parameter K1 for both M=2 and M=4. The magnitude 

of u decreases near the stretching sheet up to y= .25, then increases up to y=.82 and finally decreases near the 

moving sheet for both M=2 and M=4. The visco-elastic effect is more prominent for M=2 than for M=4.  

          Fig.s 7 to 10 illustrate the behavior of skin-friction coefficient against α and β on the stretching (y=0) and 

moving (y=1) sheets respectively for m=2, Re=.5, ω=5, ωt=π/4, ε=.01, M=2 and M=4.  

          It is observed from Fig. 7 and Fig. 9 that the skin-friction coefficient σ0 against α and β respectively at 

the stretching sheet (y=0) diminishes for both M=2 and M=4 with the rise of the visco-elastic parameter K1 in 

comparision with that of the Newtonian fluid flow (K1=0). 

          Fig.s 8 and Fig. 10 depict that the skin-friction coefficient σ1 against α and β respectively at the moving 

sheet (y=1) enhances for both M=2 and M=4 with the growth of the visco-elastic parameter K1 in comparision 

with that of the Newtonian fluid flow (K1=0). 

        It is also seen from the Fig.s 7 to 10 that the visco-elastic effect is more prominent for M=2 than for  

M=4.   

 

IV.      Figures: 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1: -f against y for M=2, M=4, m=0, α=.8, β=.8, Re=.5, ωt=π/4, ω=5, ε=.01 
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Figure 2: -f against y for M=2, M=4, m=2, α=.8, β=.8, Re=.5, ωt=π/4, ω=5, ε=.01 

 
 

Figure 3: -f against y for M=2, M=4, m=4, α=.8, β=.8, Re=.5, ωt=π/4, ω=5, ε=.01 

 
 

Figure 4: f′ against y for M=2, M=4, m=0, α=.8, β=.8, Re=.5, ωt=π/4, ω=5, ε=.01 
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Figure 5: f′ against y for M=2, M=4, m=2, α=.8, β=.8, Re=.5, ωt=π/4, ω=5, ε=.01 

 
Figure 6: f′ against y for M=2, M=4, m=4, α=.8, β=.8, Re=.5, ωt=π/4, ω=5, ε=.01 

 
Fig-7: σ0 against α on the plate y=0 for M=2, M=4, m=2, β=.8, Re=.5, ωt=π/4, ω=5, ε=.01 
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Fig-8: σ1 against α on the plate y=1 for M=2, M=4, m=2, β=.8, Re=.5, ωt=π/4, ω=5, ε=.01 

 
Fig-9: σ0 against β on the plate y=0 for M=2, M=4, m=2, α=.8, Re=.5, ωt=π/4, ω=5, ε=.01 

 
 

Fig-10: σ1 against β on the plate y=1 for M=2, M=4, m=2, α=.8, Re=.5, ωt=π/4, ω=5, ε=.01 

V.     Conclusion 
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           An unsteady MHD flow of an electrically conducting visco-elastic fluid between two horizontal 

parallel non conducting plates in presence of a transverse magnetic field and the effects of Hall current where 

the lower plate is a stretching sheet while the upper one is a porous plate, which is oscillating in its own plane is 

studied for different values of visco-elastic parameter K1 in combination of other flow parameters.  

From this study, we make the following conclusions: 

 The flow field is considerably affected by the visco-elastic parameter. 

 The velocity along y-direction diminishes in absence of Hall current effect but enhances in presence of Hall 

current effect with the growth of the visco-elastic parameter. 

 The magnitude of the velocity along y-direction decelerates with the rising trend of magnetic parameter. 

 The visco-elastic effect in velocity along y-direction is more prominent in the centre of the channel. 

 The velocity along the stretching sheet enhances near the stretching sheet but diminishes near the moving 

sheet with the growth of the visco-elastic parameter in absence of Hall current effect. 

 The velocity along the stretching sheet diminishes near the stretching sheet but enhances near the moving 

sheet with the growth of the visco-elastic parameter in presence of Hall current effect. 

 The visco-elastic effect in velocity is prominent for variation of magnetic parameter in presence or absence 

of the Hall current effect. 

 The skin-friction coefficient diminishes at the stretching sheet and enhances at the moving sheet with the 

growth of the visco-elastic parameter. 
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