Properties of semi primitive roots

Dr.K.Vijaya lakshmi

Head, Department of Mathematics, Loyola Academy, Secunderabad.

Abstract

We know that the smallest positive integer f such that $a^{f} \equiv 1 \bmod m$ is called the exponent of ' a ' modulo m and is denoted by $\exp _{m} a$. We say that ' a ' is a semi-primitive root $\bmod m$ if $\exp _{m} a=\frac{\phi(m)}{2}$. In this paper we discuss the properties of the semi primitive roots and examine for which prime 2 is a semi-primitive root. If S is the sum of semi-primitive roots less than p then we proved that $S \equiv \mu\left(\frac{p-1}{2}\right) \bmod p$.Also we proved that if ' a ' is a semi primitive root then ' a ' is a quadratic residue, converse need not be true. It was established that whenever a is a semi-primitive root $\bmod p$ where p is of the form $4 n+3$ then $-a$ is a semi primitive root and if $p=4 n+1$ then $\exp _{m}(-a)=\frac{p-1}{4}$. We establish that 2 is semi-primitive root for mod p whenever ' p ' is of the form $2 q+1$ where ' q ' is an odd prime of the form $4 n+3$ and if $4 n+1,8 n+3$ are primes then -2 is a semi-primitive root mod $8 n+3$ by using Gauss Lemma [1].

Definition: Suppose ' a ' is any integer and m is a positive integer such that $(a, m)=1$.
We say that a is a semi-primitive root $\bmod \mathrm{m}$ if $\exp _{\mathrm{m}} \mathrm{a}=\phi(\mathrm{m}) / 2$. From the definition
It is clear that $a, a^{2}, \ldots . a^{\frac{\phi(m)}{2}}$ are in congruent $\bmod m$ and they form a cyclic sub group of reduced residue system $\bmod \mathrm{m}$.
Theorem 1: If m has a primitive root then there are exactly $\frac{\phi(\phi(m))}{2}$ semi primitive roots given by $S=\left\{a^{n}: 1 \leq n<\frac{\phi(m)}{2},\left(n, \frac{\phi(m)}{2}\right)=1\right\}$

Proof: If a is a semi-primitive root then

$$
\exp _{\mathrm{m}} a=\exp _{\mathrm{m}} a^{n}=\frac{\phi(m)}{2} \Leftrightarrow\left(n, \frac{\phi(m)}{2}\right)=1
$$

So every member of S is a semi-primitive root mod m. Conversely, if ' g ' is a semi-primitive root then

$$
\begin{aligned}
& \exp _{\mathrm{m}} a^{k}=\exp _{\mathrm{m}} g=\frac{\phi(m)}{2} \text { for } 1 \leq k \leq \frac{\phi(m)}{2} \\
& \therefore\left(k, \frac{\phi(m)}{2}\right)=1
\end{aligned}
$$

Now we find the sum of semi-primitive roots less than ' p '.
Theorem 2: If p is an odd prime and S is the sum of semi-primitive roots less than p then

$$
\mathrm{S} \equiv \mu\left(\frac{\mathrm{p}-1}{2}\right) \bmod p
$$

Proof: Suppose ' a ' is a semi-primitive root $\bmod p$, then a^{n} is a semi-primitive root $\bmod p$.
$\Leftrightarrow\left(n, \frac{p-1}{2}\right)=1$
$\therefore S=\sum_{1 \leq n \leq \frac{s-1}{2}} a^{n} \bmod p$
But $\sum_{1 \leq n \leq \frac{p-1}{2}} a^{n}=\sum_{1 \leq n \leq \frac{p-1}{2}} a^{n} \sum_{d / n \& d \left\lvert\, \frac{p-1}{2}\right.} \mu(d)=\sum_{d \left\lvert\, \frac{p-1}{2}\right.} \mu(d) a^{n \delta}$
$=\sum_{\delta<\frac{p-1}{2 d}}\left(a^{d}\right)^{\delta} \cdot \sum_{d \left\lvert\, \frac{p-1}{2}\right.} \mu(d)$
$=\mu\left(\frac{p-1}{2}\right) a^{\frac{p-1}{2}}+\sum_{\delta<\frac{p-1}{2 d}}\left(a^{d}\right)^{\delta} \sum_{d / \frac{p-1}{2}} \mu(d)$
$=\mu\left(\frac{p-1}{2}\right) a^{\frac{p-1}{2}}+\sum_{d 1 \frac{p-1}{2}} \mu(d) \frac{a^{d}\left(a^{\frac{p-1}{2}}-1\right)}{a^{d}-1}$
Since $d / \frac{p-1}{2}$ and $\frac{a^{\frac{p-1}{2}}-1}{a^{d}-1}$ is an integer we have $S=\mu\left(\frac{p-1}{2}\right) \bmod \mathrm{p}$.
If p is a prime of the form $8 \mathrm{n}+1$, then $\mu\left(\frac{p-1}{2}\right)=\mu(4 n)=0 . \therefore S=0$
We know that ' a ' is quadratic residue $\bmod \mathrm{p}$ if $\mathrm{x}^{2} \equiv \mathrm{a}(\bmod \mathrm{p})$ has a solution.
Theorem3: If ' a ' is semi-primitive root $\bmod p$ then ' a ' is a quadratic residue mod p. Proof: \boldsymbol{A} is a semi primitive root mod $p \Rightarrow a^{\frac{p-1}{2}} \equiv 1 \bmod p$

Since p is an odd prime p has a primitive root say g .
$\operatorname{Now}(\mathrm{a}, \mathrm{p})=1$ we have $a \equiv g^{k} \bmod p ; 1 \leq k \leq \phi(p)$
$1 \equiv a^{\frac{p-1}{2}} \equiv\left(g^{k}\right)^{\frac{p-1}{2}}(\bmod p)$
$\Rightarrow \mathrm{p}-1$ divides $\mathrm{k} . \frac{p-1}{2} \quad$ since g is a primitive root $\bmod \mathrm{p}$.
$\Rightarrow \frac{k}{2}$ is an integer i.e $\frac{k}{2}=m$
$\therefore a \equiv\left(g^{m}\right)^{2}(\bmod p)$
$\Rightarrow g^{m}$ is a solution of $\therefore x^{2} \equiv a(\bmod p)$ Therefore a is a quadratic residue $\bmod \mathrm{p}$.
However converse is not true as there are $\frac{\phi(\phi(p))}{2}$ semi-primitive roots and $\frac{p-1}{2}$ quadratic residues.

Theorem4: If ' a ' is a primitive root $\bmod p$ where $p=4 n+3$, then $-a$ is a semi primitive root $\bmod p$.
Proof: Let ' a ' be a primitive root $\bmod \mathrm{p}$.
Then $a^{p-1} \equiv 1 \bmod p \Rightarrow(-a)^{p-1} \equiv 1 \bmod p$
$a^{p-1} \equiv 1 \bmod p \Rightarrow\left(a^{\frac{p-1}{2}}+1\right)\left(a^{\frac{p-1}{2}}-1\right) \equiv 0 \bmod p$
$\Rightarrow a^{\frac{p-1}{2}} \equiv-1 \bmod p$ as a is a primitive root $\bmod \mathrm{p}$.
$\Rightarrow(-a)^{\frac{p-1}{2}} \equiv 1 \bmod p$
Suppose $\exp _{\mathrm{m}}(-\mathrm{a})=\mathrm{f}$
Then $\mathrm{f} \left\lvert\, \frac{p-1}{2}\right., 1 \leq \mathrm{f} \leq \frac{p-1}{2}$; i.e. $2 \mathrm{f}<\mathrm{p}-1$
Since $\exp _{\mathrm{m}}(-\mathrm{a})=\mathrm{f}$ we have $(-\mathrm{a})^{2 \mathrm{f}} \equiv 1(\bmod \mathrm{p})$
$\Rightarrow \mathrm{a}^{2 \mathrm{f}} \equiv 1(\bmod \mathrm{p})$ which is a contradiction since ' a ' is a primitive root $\bmod \mathrm{p}$.

Therefore $\mathrm{f}=\frac{p-1}{2}$
Hence -a is semi-primitive root $\bmod \mathrm{p}$.
Similarly we can prove that if ' p ' is of the form $4 n+1$ then $\exp _{m}(-a)=p-1 / 4$ when n is odd.

Theorem5: If $8 n-1$ and $4 n-1$ are primes then 2 is a semi-primitive root $\bmod 8 n-1$.
Proof; Let $\mathrm{p}=8 \mathrm{n}-1$ and $\mathrm{q}=4 \mathrm{n}-1$. Then $\mathrm{p}-1=2 \mathrm{q}$.
From Gauss lemma we have
$\left(\frac{2}{p}\right) \equiv 2^{\frac{p-1}{2}}(\bmod p)$
And

$$
\begin{gathered}
\left(\frac{2}{p}\right)=(-1)^{\frac{p^{2}-1}{8}}=(-1)^{\frac{(8 n-1)^{2}-1}{8}}=(-1)^{8 n^{2}-2 n}=1 i . e 2^{\frac{p-1}{2}} \equiv 1(\bmod p) \\
\therefore 2^{\frac{p-1}{2}} \equiv 1(\bmod p)
\end{gathered}
$$

Suppose $\exp _{\mathrm{p}} 2=\mathrm{f}$ then $2^{\mathrm{f}} \equiv 1(\bmod \mathrm{p})$ and f divides $\mathrm{p}-1 / 2$ i.e $\left.\mathrm{f}\right|_{\mathrm{q}}$
Since q is a prime we have $\mathrm{f}=\mathrm{q}$.
Thus 2 is a semi-primitive root $\bmod p$.
Theorem 6: ' 2 ' is a semi primitive root $\bmod p$, where $p=2 q+1, q$ being an odd prime of the form $4 n+3$.

Proof: Let $\mathrm{p}=2 \mathrm{q}+1$ then $\mathrm{p}-1 / 2=\mathrm{q}$ where $\mathrm{q}=4 \mathrm{n}+3$

$$
\therefore 2^{\frac{p-1}{2}} \equiv 1(\bmod p)
$$

By Gauss lemma,
Suppose $\exp _{\mathrm{p}} 2=\mathrm{f}$ then $2^{\mathrm{f}} \equiv 1(\bmod \mathrm{p})$ and f divides $\mathrm{p}-1 / 2$ i.e. $f \mid \mathrm{q}$
Since q is a prime we have $f=\mathrm{q}$.
Thus 2 is a semi-primitive root $\bmod \mathrm{p}$.

Theorem7: If $8 n+3$ and $4 n+1$ are primes then -2 is a semi-primitive root $\bmod 8 n+3$.
Proof: let $\mathrm{p}=8 \mathrm{n}+3$ and $\mathrm{q}=4 \mathrm{n}+1$ So $\mathrm{p}-1 / 2=4 \mathrm{n}+1$.
By Gauss lemma

$$
\begin{aligned}
& \left(\frac{2}{p}\right)=(-1)^{\frac{p^{2}-1}{8}}=(-1)^{\frac{(8 n+3)^{2}-1}{8}}=(-1)^{8 n^{2}+6 n+1}=(-1)^{(4 n+1)(2 n+1)}=-1 \\
& \therefore 2^{\frac{p-1}{2}} \equiv-1(\bmod p) \text { hence }(-2)^{\frac{p-1}{2}} \equiv 1 \bmod p
\end{aligned}
$$

Suppose $\exp _{\mathrm{p}}(-2)=\mathrm{f}$ then $(-2)^{\mathrm{f}} \equiv 1(\bmod \mathrm{p})$ and f divides $\mathrm{p}-1 / 2$ i.e $\left.f\right|_{\mathrm{q}}$
Since q is a prime we have $f=\mathrm{q}$
Thus -2 is a semi-primitive root mod p .
Key Words: Universal exponent, exponent, λ - primitive root, semi-primitive root, primitive root.

References:

[1] Apostol Tom M: Introduction to Analytic Number Theory, Springer International Student Edition.
[2] Leveque W.J.: Topics in Number Theory, Vol. 1 Reading mass (1956).
[3] Vegh E: λ-primitive roots. Portugaliae Mathematica 40 (1981) 297-303.
[4] An Introduction to Theory of Numbers by Ivan Niven, Herbert S. Zuckerman - Wiley Eastern Limited.
[5] Elementary Number theory by David M .Burton.

