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Abstract: In the context of information theory, Shannon’s entropy  16  plays an important role. In case, one 

has information about the current age  of the component which can be taken into account for measuring its 

uncertainty, Shannon’s entropy is not suitable as such. Consequently, Ebrahimi   3  proposed an alternative 

approach for characterization of distribution functions in terms of conditional Shannon’s  measure of 

uncertainty. In this paper, we  propose generalized residual entropy function for characterization of some life 

time models. Also, upper and lower bound of hazard rate function in terms of generalized residual entropy have 

been obtained. Based on the proposed measure, we derive the generalized residual entropy function for some 

continuous lifetime models.  
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I. Introduction: 
Let 𝑋  be a non- negative random variable denoting the life time of a system, a component or living 

organism with probability density function 𝑓, distribution function 𝐹 and reliability function 𝑅. It is assumed 

that the component is functioning at 𝑡 = 0 and it will fail to some 𝑡 > 0 so that 𝑅 0 = 1. The basic 

characteristics of interest in the reliability theory are 

    𝑅 𝑋 = 𝑃(𝑋 > 𝑥), the survival function, 

              ℎ 𝑥 =
𝑓 𝑥 

𝑅(𝑥)
, the hazard rate function and 

             𝑟 𝑥 =
1

𝑅(𝑡)
 𝑅(𝑥)𝑑𝑥

∞

𝑡
, the mean residual life function. 

Also the following relation can be easily obtained 

              𝑅 𝑡 = exp − ℎ(𝑥)𝑑𝑥

𝑡

0

 . 

    The following equation gives the functional relationship between the hazard rate function and mean residual 

life function 

              ℎ 𝑡 =
𝑟′ 𝑡 + 1

𝑟(𝑡)
, 

where 𝑟′ 𝑡  is the derivative of 𝑟(𝑡) with respect to 𝑡. 
     Shannon  16  defined the basic measure of uncertainty associated with the random variable 𝑋 is given by          

            𝐻 𝑋 = − 𝑓 𝑥 log 𝑓 𝑥 𝑑𝑥

∞

0

                                                                                       (1.1) 

     The entropy is interpreted as the expected uncertainty contained in 𝑓(𝑥) about the predictability  of an 

outcome of the random variable 𝑋.  

Mathai- Haubold  7  introduced the generalized information measure    

         𝑀𝛼 𝑋 =
1

𝛼 − 1
   𝑓2−𝛼

∞

0

 𝑥 𝑑𝑥 − 1 ,𝛼 ≠ 1, 0 < 𝛼 < 2.                                         (1.2)   

For  various properties and applications of (1.2), one should refer to  7,8  
As 𝛼 → 1, (1.2) reduces to Shannon’s information entropy given in (1.1).      

As argued by Ebrahimi   2 , if a unit is known to have survived up to an age 𝑡, then (1.1) is no longer useful in 

measuring the uncertainty about the remaining life time of the unit. The idea is that a unit with great uncertainty 

is less reliable than a unit with low uncertainty. Accordingly, he introduced a measure of uncertainty known as 

residual entropy for the residual life time distribution .The residual entropy of a continuous random variable X  

is defined as 
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          𝐻 𝑋; 𝑡 = − 
𝑓 𝑥 

𝑅 𝑡 

∞

𝑡

log
𝑓 𝑥 

𝑅 𝑡 
 𝑑𝑥                                                                                     (1.3) 

 where  𝑅 𝑡  is the reliability function of the random variable 𝑋. For 𝑡 = 0, (1.3) reduces to (1.1). 

 

II. Some Characterization Results: 
      Based on the measure defined in (1.2), we introduce the new kind of information measure that takes the 

current age of the system into consideration and generalizes (1.3) as 

𝑀𝛼 𝑋; 𝑡 =
1

𝛼 − 1
  
 𝑓2−𝛼 𝑥 

∞

𝑡

𝑅2−𝛼 𝑡 
𝑑𝑥 − 1 ,   𝛼 ≠ 1, 0 < 𝛼 < 2                               (2.1)         

As 𝛼 → 1, (2.1) reduces to (1.3). 

We now  show that 𝑀𝛼 𝑋; 𝑡    uniquely determines the 𝑅(𝑡). 

 

Theorem 2.1:   Let 𝑋 be the non negative random variable having continuous density function 𝑓 and 

distribution function 𝐹  with survival function 𝑅(𝑡). Assume that 𝑀𝛼 𝑋; 𝑡 < ∞ , 𝛼 ≠ 1, 0 < 𝛼 < 2  and 

decreasing, then 𝑀𝛼 𝑋; 𝑡  uniquely determines 𝑅 𝑡 . 
Proof:  From (2.1), we have  

         𝑓2−𝛼

∞

𝑡

 𝑥 𝑑𝑥 = 𝑅2−𝛼 𝑡   𝛼 − 1 𝑀𝛼 𝑋; 𝑡 + 1      

Differentiating above equation with respect to 𝑡, we get 

      2 − 𝛼 ℎ 𝑡   𝛼 − 1 𝑀𝛼 𝑋; 𝑡 + 1 − ℎ2−𝛼 𝑡 −  𝛼 − 1 𝑀𝛼
′  𝑋; 𝑡 = 0                      (2.2) 

where  ℎ 𝑡 =
𝑓 𝑡 

𝑅 𝑡 
  is the hazard rate function. 

Hence for fixed 𝑡, ℎ 𝑡  is a solution of 

    𝑝 𝑥 =  2 − 𝛼 𝑥  𝛼 − 1 𝑀𝛼 𝑋; 𝑡 + 1 − 𝑥2−𝛼 −  𝛼 − 1 𝑀𝛼
′  𝑋; 𝑡                             (2.3) 

Differentiating both sides with respect to 𝑥, we have 

   𝑝′(𝑥) =  2 − 𝛼   𝛼 − 1 𝑀𝛼 𝑋; 𝑡 + 1 −  2 − 𝛼 𝑥1−𝛼 . 

For extreme value of (2.3), put 𝑝′ 𝑥 = 0, we have 

   𝑥𝑡 =  1 +  𝛼 − 1 𝑀𝛼 𝑋; 𝑡  
1

1−𝛼   . 

Also, 𝑝′′(𝑥) =  𝛼 − 1  2 − 𝛼 𝑥−𝛼 . 

Two cases arises: 

Case I:  Let 𝛼 > 1, then 𝑝′′(𝑥) > 0.  Thus 𝑝(𝑥) attains minimum at 𝑥𝑡 . Also, 𝑝 0 > 0 and 𝑝 ∞ = −∞. 

Further, 𝑝(𝑥) decrease for 0 < 𝑥 < 𝑥𝑡  and increases for 𝑥 > 𝑥𝑡 . So 𝑥 = ℎ(𝑡) is a unique solution to 𝑝 𝑥 = 0. 

 Case II: Let 0 < 𝛼 < 1, then 𝑝′′(𝑥) < 0.  Thus 𝑝(𝑥) attains maximum at 𝑥𝑡 . Also, 𝑝 0 < 0 and 𝑝 ∞ = ∞. 

Further, 𝑝(𝑥) increase for 0 < 𝑥 < 𝑥𝑡  and decrease for 𝑥 > 𝑥𝑡 . So 𝑥 = ℎ(𝑡) is a unique solution to 𝑝 𝑥 = 0. 

Combining both the cases, we conclude that 𝑀𝛼 𝑋; 𝑡  uniquely determines ℎ(𝑡), which uniquely determines 

𝑅 𝑡 . 
 

Theorem 2.2: The uniform distribution over  𝑎, 𝑏 , 𝑎 < 𝑏 can be characterized by decreasing generalized 

residual entropy. 

Proof:  Let  𝑋~𝑈 𝑎, 𝑏 , 𝑎 < 𝑥 < 𝑏. 

 Therefore, 𝑓 𝑥 =
1

𝑏−𝑎
, 𝑎 < 𝑥 < 𝑏  

and  𝑅𝑋 𝑥 =
𝑏−𝑥

𝑏−𝑎
. 

Hence,  𝑀𝛼 𝑋; 𝑡 =
1

𝛼−1
  𝑏 − 𝑡 𝛼−1 − 1   

 and       𝑀𝛼
′  𝑋; 𝑡 = − 𝑏 − 𝑡 𝛼−2. 

Also, 𝑥𝑡 =  1 +  𝛼 − 1 𝑀𝛼 𝑋; 𝑡  
1

1−𝛼 =  𝑏 − 𝑡 −1. 
Thus, from (2.3) we have 𝑝 𝑥𝑡 = 0. 
Hence the theorem is proved. 

 

Theorem 2.3: The distribution of the random variable 𝑋 is exponential iff  

𝑀𝛼 𝑋; 𝑡 = 𝑘, where k  is a constant. 

Proof: Let 𝑋~ exp 𝜃 . 
Therefore , 

𝑀𝛼 𝑋; 𝑡 =
𝜃1−𝛼

 𝛼 − 1  2 − 𝛼 
−

1

𝛼 − 1
= 𝑘. 
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Conversely, let  𝑀𝛼 𝑋; 𝑡 = 𝑘.  
Therefore    𝑀𝛼

′  𝑋; 𝑡 = 0. 

Thus from (2.2), we have 

     ℎ 𝑡 =   2 − 𝛼  𝛼𝑐 − 𝑐 + 1  
1

1−𝛼 = 𝑘,   a constant. 
Hence 𝑋~ exp 𝜃 . 
 

Theorem 2.4: The relationship of the form 

   𝑀𝛼
′  𝑋; 𝑡 = 𝑐ℎ2−𝛼 𝑡                                                                                                                 (2.4)  

is satisfied iff the random variable 𝑋 have 

(i) exponential distribution  

for 𝑐 = 0. 

(ii)  Pareto II distribution with survival function 

     𝑅 𝑡 =  1 + 𝑝𝑡 −𝑞 , 𝑝 > 0, 𝑞 >
𝛼−1

2−𝛼
, 𝑡 > 0  

for 𝑐 > 0 and 

(iii) Beta (Mukherjee and Islam) distribution  with survival function 

      𝑅 𝑡 =  1 −𝑚𝑡 𝑛 , 𝑚 > 0,𝑛 >
𝛼−1

𝛼−2
, 0 < 𝑡 <

1

𝑚
 

for 𝑐 < 0.  
Proof: The proof of (i) is simple and hence omitted. 

(ii) if 𝑋 has Pareto II distribution , then the p.d.f and hazard rate function is given by  

      𝑓 𝑡 = 𝑝𝑞 1 + 𝑝𝑡 −(𝑞+1) and ℎ 𝑡 =
𝑝𝑞

1+𝑝𝑡
  respectively. 

Therefore , 

        𝑀𝛼 𝑋; 𝑡 =
1

𝛼 − 1
 
 𝑝𝑞 2−𝛼 1 + 𝑝𝑡 𝛼−1

𝑝  𝑞 + 1  2 − 𝛼 − 1 
− 1 . 

Differentiating above expression with respect to 𝑡, we have 

    𝑀𝛼
′  𝑋; 𝑡 = 𝑐ℎ2−𝛼 𝑡 , 

where 𝑐 =
1

 𝑞+1  2−𝛼 −1
> 0. 

Conversely , let  𝑀𝛼
′  𝑋; 𝑡 = 𝑐ℎ2−𝛼 𝑡 , 𝑐 > 0. 

Therefore from (2.2), we have 

       2 − 𝛼  𝑓2−𝛼

∞

𝑡

 𝑥 𝑑𝑥 =  𝛼𝑐 − 𝑐 + 1 ℎ1−𝛼 𝑡 𝑅2−𝛼 𝑡 . 

Differentiating both sides with respect to 𝑡, we get 

   
𝑑

𝑑𝑡
 

1

ℎ 𝑡 
 = 𝑐 2 − 𝛼 = 𝑘    say . 

Thus,  

   ℎ 𝑡 =
1

𝑘𝑡 + 𝑑
                                                                                                                       2.5  

where 𝑑 > 0 is a constant. 

Now if we let, 𝑝 =
𝑘

𝑑
, 𝑞 =

1

𝑘
, then ℎ 𝑡 =

𝑝𝑞

1+𝑝𝑡
, which is the hazard rate function of Pareto II distribution. 

(iii) Let 𝑋 follow beta distribution with p.d.f 

     𝑓 𝑡 = 𝑚𝑛 1 −𝑚𝑡 𝑛−1 ,𝑚,𝑛 > 0, 0 < 𝑡 <
1

𝑚
. 

 The hazard rate function is given by 

    ℎ 𝑡 =
𝑚𝑛

1−𝑚𝑡
. 

The proof of first part follows from direct calculation. 

For the converse part, 𝑐 < 0, the proof follows easily from  (2.5). 

         Hooda and Kumar  6  characterize exponential distribution based on certain functional relation ship 

between the generalized residual entropy function and the mean residual function. In the next theorem, we 

characterize exponential distribution based on functional relation ship between the generalized residual entropy 

function defined in (2.1) and mean residual function, 

 

THEOREM 2.5: Let 𝑋 be a continuous random variable, if 𝑟𝛼(𝑡) and 𝑀𝛼 𝑋; 𝑡  be mean residual life function 

and generalized residual entropy function,  where 𝑟𝛼(𝑡) is defined as  
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      𝑟𝛼 𝑡 =
1

𝑅2−𝛼(𝑡)
 𝑅2−𝛼 𝑥 𝑑𝑥,𝛼 ≠ 1, 0 < 𝛼 < 2,

∞

𝑡

                                                  2.6 , 

then the relation given below 

     𝑀𝛼 𝑋; 𝑡 + 𝑟𝛼 𝑡 = 𝑀𝛼 𝑋 + 𝑟𝛼 0                                                                               (2.7) 

holds for all 𝑡 ≥ 0 iff  𝑋 follows the exponential distribution. 

Proof: Let  𝑋~ exp 𝜃 . 
Therefore , 

      𝑀𝛼 𝑋; 𝑡 =
𝜃1−𝛼

 𝛼 − 1  2 − 𝛼 
−

1

𝛼 − 1
 

and  𝑟𝛼 𝑡 =
1

𝜃 2−𝛼 
. 

Thus, 𝑀𝛼 𝑋; 𝑡 + 𝑟𝛼 𝑡 = 𝑀𝛼 𝑋 + 𝑟𝛼 0 . 
Conversely , let (2.7) holds, we show that 𝑋 follows the exponential distribution. 

Differentiating (2.7) with respect to 𝑡, we get 

     𝑀𝛼
′  𝑋; 𝑡 + 𝑟𝛼

′  𝑡 = 0                                                                                                         2.8 . 

Differentiating (2.6) with respect to 𝑡 and using the relation ℎ 𝑡 =
𝑟 ′ 𝑡 +1

𝑟(𝑡)
, we get 

      𝑟𝛼
′  𝑡 =  2 − 𝛼 𝑟𝛼 𝑡 ℎ 𝑡 − 1                                                                                       (2.9) 

 Substituting (2.9) and value of  𝑀𝛼
′  𝑋; 𝑡  from (2.2) into (2.8), we get 

    ℎ′ 𝑡  𝑘 −  2 − 𝛼 ℎ1−𝛼 𝑡  = 0                                                                                      (2.10) 

where  𝑘 = 𝑀𝛼 𝑋; 𝑡 + 𝑟𝛼 𝑡  is a constant. 

Thus, either ℎ′ 𝑡 = 0 or 𝑘 −  2 − 𝛼 ℎ1−𝛼 𝑡 = 0. Hence in both the cases ℎ(𝑡) is constant. Hence the theorem 

is proved. 

 

III. New Class Of Life Time Distribution: 
              In this section we give two new class of life time distribution based on generalized residual entropy 

𝑀𝛼 𝑋; 𝑡 .  Based on this measure , we have the following definition: 

Definition 3.1:   A non negative random variable 𝑋 is said to have decreasing (increasing) uncertainty in 

generalized residual entropy DUGRL (IUGRL) if 𝑀𝛼 𝑋; 𝑡   is decreasing (increasing)  in 𝑡, 𝑡 > 0. 
    This implies that the random variable 𝑋  has  DUGRL (IUGRL) if 

            𝑀𝛼
′  𝑋; 𝑡 ≤ (≥)0 . 

Theorem 3.1: If  a distribution is DUGRL as well as IUGRL  for some constant 𝑘, then it must be exponential. 

Proof: Since the random variable X  is both DUGRL and IUGRL ,  

therefore,   

       𝑀𝛼 𝑋; 𝑡 = 𝑘, where  𝑘 is a constant.   

Differentiating both sides with respect to 𝑡, we get 

    ℎ 𝑡 =   2 − 𝛼  𝛼𝑐 − 𝑐 + 1  
1

1−𝛼 = 𝑘,   a constant. 
Therefore the distribution must be an exponential distribution. 

The following theorem gives the upper and lower bound of ℎ 𝑡  in terms of 𝑀𝛼 𝑋; 𝑡  
Theorem 3.2: If 𝑋 is DUGRL (IUGRL), then 

   ℎ 𝑡 ≥  ≤   2 − 𝛼   𝛼 − 1 𝑀𝛼 𝑋; 𝑡 + 1  
1

1−𝛼 . 
Proof: The proof follows from Definition 3.1 and equation (2.2).  

Corollary 3.1:  If 𝑋 is DUGRL (IUGRL), then 

   𝑅 𝑡 ≤  ≥ exp  −   2 − 𝛼   𝛼 − 1 𝑀𝛼 𝑋;𝑢 + 1  
1

1−𝛼

𝑡

0

𝑑𝑢   ∀ 𝑡 ≥ 0. 

 

IV. Generalized Residual Entropy Expressions for Some Life Time Models: 
Belzuence et. al  2  derive the residual entropy expression for some continuous distribution functions. 

Corresponding to these distributions, we derive the generalized residual entropy function based on the measure 

defined in (2.1). 

(i) Exponential Distribution: 

        𝑓 𝑥 = 𝜃𝑒−𝜃𝑥 , 𝑥 > 0,𝜃 > 0. 

      𝑀𝛼 𝑋; 𝑡 =
𝜃1−𝛼

 𝛼 − 1  2 − 𝛼 
−

1

𝛼 − 1
. 

(ii) Uniform Distribution: 
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     𝑓 𝑥 =
1

𝑏−𝑎
, 𝑎 < 𝑥 < 𝑏 . 

   𝑀𝛼 𝑋; 𝑡 =
1

𝛼 − 1
  𝑏 − 𝑡 𝛼−1 − 1 . 

(iii) Pareto II Distribution: 

      𝑓 𝑥 = 𝑝𝑞 1 + 𝑝𝑥 −(𝑞+1). 

    𝑀𝛼 𝑋; 𝑡 =
1

𝛼 − 1
 
 𝑝𝑞 2−𝛼 1 + 𝑝𝑡 𝛼−1

𝑝  𝑞 + 1  2 − 𝛼 − 1 
− 1 . 

(iv)  Beta Distribution: 

    𝑓 𝑥 = 𝜃𝑥𝜃−1, 0 < 𝑥 < 1,𝜃 > 0. 

     𝑀𝛼 𝑋; 𝑡 =
1

𝛼 − 1
  

𝜃2−𝛼 1 − 𝑡 𝜃−1  2−𝛼 +1 

  𝜃 − 1  2 − 𝛼 + 1  1 − 𝑡𝜃 2−𝛼
− 1 . 

(v) Finite Range Distribution: 

 

      𝑓 𝑥 =
𝛽1

𝜗
 1 −

𝑥

𝜗
 
𝛽1−1

,𝛽1 > 0, 0 ≤ 𝑡 ≤ 𝜗 < ∞. 

     𝑀𝛼 𝑋; 𝑡 =
1

𝛼 − 1
 

𝛽1
2−𝛼

𝜗1−𝛼   𝛽1 − 1  2 − 𝛼 + 1 
 1 −

𝑡

𝜗
 
𝛼−1

− 1 . 
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