Expansion Maps In D-Metric And Tri D-Metric Spaces

A.S.Saluja and Alkesh Kumar Dhakde

Deptt. Of Mathematics, J.H.Govt. P.G. College, Betul (M.P.), India IES College of Technology, Bhopal (M.P.), India

<u>ABSTRACT</u> In this paper, we obtain some results on fixed points for expansion mappings in D-metric and Tri D-metric spaces, introduced by Dhage [1] .Our results includes several fixed point results in ordinary metric spaces as special cases on the line of Maia [5]. <u>KEYWORDS AND PHRASES</u>: Fixed point, D-metric spaces, Expansion maps, etc. <u>SUBJECT CLASSIFICATION</u>: Primary 47H10, Secondary 54H25.

1. INTRODUCTION:

Motivated by the measure of nearness, the concept of a D-metric space introduced by Dhage [1] is as follows:

A nonempty set X together with a function $\rho: X \times X \times X \to [0,\infty)$, is called a D-metric space with a D-metric ρ , denoted by (X, ρ) , if ρ satisfies the following properties:

(*i*) $\rho(x, y, z) = 0 \Leftrightarrow x = y = z$ (Coincidence) for all $x, y, z \in X$

(*ii*) $\rho(x, y, z) = \rho(\rho\{x, y, z\})$ (Symmetry) Where ρ is a permutation function.

(*iii*) $\rho(x, y, z) \le \rho(x, y, a) + \rho(x, a, z) + \rho(a, y, z)$ for all $x, y, z, a \in X$. (Tetrahedral inequality)

A sequence $\{x_n\} \subset X$, is said to be D-converges to a point $x \in X$ if $\lim_{m,n\to\infty} \rho(x_m, x_n, x) = 0$. Similarly, a sequence $\{x_n\} \subset X$, is called D-Cauchy if $\lim_{m,n,p\to\infty} \rho(x_m, x_n, x_p) = 0$. A complete D-metric space is one in which every D-Cauchy sequence converges to a point in it. A subset S of a D-metric space X is called bounded, if there exists a constant K > 0, such that $\rho(x, y, z) \leq K$ for all $x, y, z \in S$. The infimum of all such k is called the diameter of S and is denoted by $\delta(S)$.

Let $f: X \to X$, then the orbit of f at a point $x \in X$ is a set in X, defined by $O_f(x) = \{x, fx, f^2x, \ldots\}$. Again a D-metric space is called f-orbitally bounded if there exists a constant M > 0 such that $\rho(x, y, z) \le M$ for all $x, y, z \in O_f(x)$. A D-metric space is called f-orbitally complete if every D-Cauchy sequence in $O_f(x)$ converges to a point in X.

It is known that the D-metric ρ is a continuous function on X^3 in the topology of D-metric convergence which is Hausdorff, see Dhage [2].

In 1976, Rosenholtz [7] discussed local expansion mappings. Let (X,d) be an ordinary metric space. Then a mapping $T: X \to X$, expansive on a subset B of X, if d(Tx,Ty) > d(x, y) for all $x, y \in B$ with $x \neq y$.

T is a Local expansion if every point in T has a neighbourhood B on which T is expansive.

In fact Rosenholtz proved, "If (X,d) be a complete metric space and $T: X \to X$ be a self map of X onto itself satisfying;

 $d(Tx,Ty) > \lambda d(x, y)$ for all $x, y \in X$ with $x \neq y$ and $\lambda > 1$. Then *T* has a fixed point in *X* ". We need the following D-Cauchy principle developed by Dhage [3]. **Lemma 1:** (D-Cauchy principle): Let $\{x_n\}$ be bounded sequence with D-bound K, satisfying:

(1.1.1) $\rho(y_n, y_{n+1}, y_p) \le \lambda^n K$, for all $n, p \in N$ with p > n, where $0 \le \lambda < 1$. Then $\{y_n\}$ is a D-Cauchy sequence.

Throughout in this paper we use the symbol

 $\rho(x, y, z) \cdot \rho(x, y, z) = \{\rho(x, y, z)\}^2 = \rho^2(x, y, z)$

2. MAIN RESULTS:

THEOREM 2.1 : Let $f: X \to X$ be a surjective mapping of a f-orbitally bounded and forbitally complete D-metric space (X, ρ) . If there exists non-negative reals a_1, a_2, \dots, a_7 with $a_1 + a_3 + a_5 > 0, a_2 < 1$ and $a_1 + a_2 + a_3 + a_4 + a_5 + a_6 + a_7 > 1$, such that ; (2.1.1)

$$\rho^{2}(fx, fy, fz) \ge a_{1} \cdot \rho^{2}(x, y, z) + a_{2} \cdot \rho^{2}(x, fx, fz) + a_{3} \cdot \rho^{2}(y, fy, z) + a_{4} \cdot \rho(x, fx, fz)\rho(x, y, z) + a_{5} \cdot \rho(y, fy, z)\rho(x, y, z) + a_{6} \cdot \rho(x, fx, fz)\rho(y, fy, z) + a_{7} \cdot \rho(fx, fy, fz)\rho(x, y, z)$$

for all $x, y, z \in X$ with $x \neq y \neq z$. Then f has a fixed point in X.

<u>PROOF</u>: Let $x_0 \in X$. Since f is surjective, there exists an element x_1 satisfying $x_1 \in f^{-1}(x_0)$. By the way we can take $x_n \in f^{-1}(x_{n-1})$, $n = 2, 3, 4, \dots$.

If
$$x_m = x_{m-1}$$
 for some *m*, then x_m is a fixed point of *f*.
Without loss of generality, we can assume $x_n \neq x_{n-1}$ for every *n*. From (2.1.1), we have
 $\rho^2(x_{n-1}, x_n, x_{n+p-1}) = \rho^2(fx_n, fx_{n+1}, fx_{n+p})$
 $\ge a_1 \cdot \rho^2(x_n, x_{n+1}, x_{n+p}) + a_2 \cdot \rho^2(x_n, fx_n, fx_{n+p}) + a_3 \cdot \rho^2(x_{n+1}, fx_{n+1}, x_{n+p})$
 $+ a_4 \cdot \rho(x_n, fx_n, fx_{n+p}) \rho(x_n, x_{n+1}, x_{n+p}) + a_5 \cdot \rho(x_{n+1}, fx_{n+1}, x_{n+p}) \rho(x_n, x_{n+1}, x_{n+p})$
 $+ a_6 \cdot \rho(x_6, fx_n, fx_{n+p}) \rho(x_{n+1}, fx_{n+1}, x_{n+p}) + a_7 \cdot \rho(fx_n, fx_{n+1}, fx_{n+p}) \rho(x_n, x_{n+1}, x_{n+p})$
 $= a_1 \cdot \rho^2(x_n, x_{n+1}, x_{n+p}) + a_2 \cdot \rho^2(x_n, x_{n-1}, x_{n+p-1}) + a_3 \cdot \rho^2(x_{n+1}, x_n, x_{n+p})$
 $+ a_4 \cdot \rho(x_n, x_{n-1}, x_{n+p-1}) \rho(x_n, x_{n+1}, x_{n+p}) + a_5 \cdot \rho(x_{n+1}, x_n, x_{n+p}) \rho(x_n, x_{n+1}, x_{n+p})$

Thus,

$$(a_{1} + a_{3} + a_{5}) \cdot \rho^{2}(x_{n}, x_{n+1}, x_{n+p}) + (a_{4} + a_{6} + a_{7}) \cdot \rho(x_{n-1}, x_{n}, x_{n+p-1}) \rho(x_{n}, x_{n+1}, x_{n+p}) - (1 - a_{2}) \cdot \rho^{2}(x_{n-1}, x_{n}, x_{n+p}) \le 0$$

Or,

$$\begin{array}{ll} \textbf{(2.1.2)} & \left(a_1 + a_3 + a_5\right)t^2 + \left(a_4 + a_6 + a_7\right)t - (1 - a_2) \leq 0 \ , \ \text{where} \\ \textbf{(2.1.3)} & t = \left\lfloor \rho(x_n, x_{n+1}, x_{n+p}) / \rho(x_{n-1}, x_n, x_{n+p-1}) \right\rfloor \\ \text{Let} \ g: \begin{bmatrix} 0, \infty \end{pmatrix} \to R \ \text{be the function} \\ \textbf{(2.1.4)} & g(t) = (a_1 + a_3 + a_5)t^2 + (a_4 + a_6 + a_7)t - (1 - a_2) \\ \text{Then from the hypothesis,} \ g(0) = a_2 - 1 < 0 \\ \text{and} \ g(1) = a_1 + a_2 + a_3 + a_4 + a_5 + a_6 + a_7 - 1 > 0 \ . \end{array}$$

Let $k \in (0,1)$ be the root of the equation g(t) = 0. Then, $g(t) \le 0$ for $t \le k$ and therefore

$$\rho(x_{n}, x_{n+1}, x_{n+p}) \leq k \cdot \rho(x_{n-1}, x_{n}, x_{n+p-1})$$

$$\leq k^{2} \cdot \rho(x_{x-2}, x_{n-1}, x_{n+p-2})$$

$$\leq \dots$$

$$\leq k^{n} M$$

Where M is a D-bound of $0_f(x)$.

Now, an application of Lemma 2.1 yields that $\{x_n\}$ is a D-Cauchy sequence. Since X is f-orbitally complete, there is a point $x \in X$ such that, $\lim_{n \to \infty} x_n = x$.

Now, we shall show that x is a fixed point of f.

Since, f is surjective there exists y in X, such that $y \in f^{-1}(x)$

For infinitely many $n, x_n \neq x$, hence for such n, we have

$$\begin{split} \rho^{2}(x_{n}, x, x) &= \rho^{2}(fx_{n+1}, fy, fy) \\ &\geq a_{1}.\rho^{2}(x_{n+1}, y, y) + a_{2}.\rho^{2}(x_{n+1}, fx_{n+1}, fy) + a_{3}.\rho^{2}(y, fy, y) \\ &+ a_{4}.\rho(x_{n+1}, fx_{n+1}, fy).\rho(x_{n+1}, y, y) + a_{5}.\rho(y, fy, y).\rho(x_{n+1}, y, y) \\ &+ a_{6}.\rho(x_{n+1}, fx_{n+1}, fy).\rho(y, fy, y) + a_{7}.\rho(fx_{n+1}, fy, fy).\rho(x_{n+1}, y, y) \\ &= a_{1}.\rho^{2}(x_{n+1}, y, y) + a_{2}.\rho^{2}(x_{n+1}, x_{n}, x) + a_{3}.\rho^{2}(y, x, y) \\ &+ a_{4}.\rho(x_{n+1}, x_{n}, x).\rho(x_{n+1}, y, y) + a_{5}.\rho(y, x, y).\rho(x_{n+1}, y, y) \\ &+ a_{6}.\rho(x_{n+1}, x_{n}, x).\rho(y, x, y) + a_{7}.\rho(x_{n}, x, x).\rho(x_{n+1}, y, y) \end{split}$$

On letting $n \to \infty$, we obtain

$$0 \ge a_1 \cdot \rho^2(x, y, y) + a_2 \cdot \rho^2(x, x, x) + a_3 \cdot \rho^2(y, x, y) + a_4 \cdot \rho(x, x, x) \cdot \rho(x, y, y) + a_5 \cdot \rho(y, x, y) \cdot \rho(x, y, y) + a_6 \cdot \rho(x, x, x) \cdot \rho(y, x, y) + a_7 \cdot \rho(x, x, x) \cdot \rho(x, y, y) = (a_1 + a_3 + a_5) \cdot \rho^2(x, y, y)$$

Since, $a_1 + a_3 + a_5 > 0$, So x = y.

Thus x is a fixed point of f.

This completes the proof.

<u>COROLLARY</u> 2.2: Let $f: X \to X$ be a surjective mapping of a f-orbitally bounded and forbitally complete D-metric space X. If there exists a real constant k > 1, such that (2.2.1) $\rho^2(fx, fy, fz) \ge k \cdot \rho^2(x, y, z)$ for all $x, y, z \in X$ with $x \ne y \ne z$. Then f has a fixed point in X.

PROOF: Proof of the corollary 2.2 follows easily from theorem 2.1.

3. It is possible that a D-metric space which is complete w.r.t. a D-metric but may not be complete w.r.t. another D-metric on X. In this section we consider a D-metric space with three D-metrics, i.e. a tri D-metric space and investigate some results on the fixed points on the line of Maia [5].

THEOREM 3.1: Let X be a D-metric space with three D-metrics ρ , ρ_1 and ρ_2 . Let $f: X \to X$ be a surjective mapping. If there exists non-negative reals $a_1, a_2, a_3, \dots, a_7$ with $a_1 + a_3 + a_5 > 0$, $a_2 < 1$ and $a_1 + a_2 + a_3 + a_4 + a_5 + a_6 + a_7 > 1$, such that the following conditions hold in X;

- (i) $\rho_2(x, y, z) \le \rho_1(x, y, z) \le \rho(x, y, z)$ for all $x, y, z \in X$.
- (ii) X is f-orbitally bounded and f-orbitally complete w.r.t. ρ_1
- (iii) f is continuous w.r.t. ρ_2 .
- (iv) f Satisfies condition (2.1.1) w.r.t. ρ .

Then f has a fixed point in X.

<u>PROOF</u>: Let $x_0 \in X$. Since f is surjective, there exists an element x_1 satisfying $x_1 \in f^{-1}(x_0)$. By the same way we can take

$$x_n \in f^{-1}(x_{n-1})$$
, $n = 2, 3, 4, \dots$

Then proceeding as in the proof of theorem (2.1), with similar arguments , we get

$$\rho(x_n, x_{n+1}, x_{n+p}) \le k^n \rho(x_0, x_1, x_p)$$

Since, $\rho_1 \leq \rho$ on X^3 , we have

$$\rho_{1}(x_{n}, x_{n+1}, x_{n+p}) \leq \rho(x_{n}, x_{n+1}, x_{n+p})$$
$$\leq k^{n} \rho(x_{0}, x_{1}, x_{p})$$

$\leq k^n M$, where M is a D - bound of $0_f(x)$ w.r.t. ρ_1

Now, an application of Lemma 2.1 yields that $\{x_n\}$ is a D-Cauchy sequence in X.

w.r.t. ρ_1 . Since X is f-orbitally complete w.r.t. ρ_1 , there exists a point $x \in X$ such that,

$$\lim_{n \to \infty} x_n = x$$

Again since, $\rho_2 \leq \rho_1$ on X^3 , we have

$$\lim_{n \to \infty} \rho_2^{2}(x_n, x, x) \le \lim_{n \to \infty} \rho_1^{2}(x_n, x, x) = 0$$

Or, $\lim_{n\to\infty} \rho_2^2(x_n, x, x) = 0$

This implies that the sequence $\{x_n\}$ converges to x w.r.t. ρ_2 .

Now, by the continuity of f w.r.t. ρ_2 it follows that

$$x = \lim_{n \to \infty} x_n = \lim_{n \to \infty} f x_{n+1} = f \left[\lim_{n \to \infty} x_n \right] = f x$$

Thus x is a fixed point of f. This completes the proof.

<u>COROLLARY</u> 3.2: Let X be a D-metric space with three D-metrics ρ , ρ_1 and ρ_2 .Let $f: X \to X$ be a surjective mapping. If there exists a real constant k > 1, such that, the following conditions hold in X;

(i) $\rho_2(x, y, z) \le \rho_1(x, y, z) \le \rho(x, y, z)$ for all $x, y, z \in X$

- (ii) X is f-orbitally bounded and f-orbitally complete w.r.t. ρ_1
- (iii) f is continuous w.r.t. ρ_2 .
- (iv) f Satisfies condition (2.2.1) w.r.t. ρ .
- Then f has a fixed point in X.

PROOF: Proof of the corollary 3.2 follows easily from theorem 3.1.

<u>REFERENCES</u>:

DHAGE, B.C.,

- [1] Generalized metric spaces and mapping with fixed point, Bull. Calcutta Math. Soc., 84 (1992), 329-336.
- [2] Generalized metric space and topological structure I, Analene, Stint, Univ. "AL. I. Cuza", Iasi 45 (1999).

- [3] On Kannan type maps in D-metric spaces, Jour. Nat. and Phy. Sci. II (1997). **DHAGE, B.C. AND RHOADES, B.E.**
- [4] A comparison of two contraction principles, Math. Sci. Res., Hot-Line, 3 (8), (1999), 49-53.

MAIA, M.G.

[5] Un osscravazions sulle contrazoni metriche, Rend. Sem. Math. Padova, 40 (1968), 139-143.

RHOADES, B.E.

[6] A comparison of various definitions of contractive mappings, Trans. Amer. Math. Soc., (1976), 257-290.

ROSENHOLTZ;

[7] Local expansion derivatives and fixed points, Fund. Math., 91 (1976), 1-4.

WONG, S.Z., LI., B.Y., GAO, Z.M., ISEKI, K.;

[8] Some fixed point theorems on expansion mappings, Math. Japonica 29, 4(1984), 631-636.