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Abstract: In this paper we discussed the stability of the null solution of the second order differential equation . 

Under some unusual assumptions we obtain new stability results for this classical equation. 

 

I. Introduction 
Consider the second order ODE         

                                          𝑥′′ + 2𝑓 𝑡 𝑥′ + 𝛽(𝑡)𝑥 + 𝑔 𝑡 𝑥2 = 0, 𝑡 ∈ 𝑅+                                                (1.1) 

where 𝑅+ = [0,∞), 𝑓,  𝛽, 𝑔 ∶ 𝑅+ → 𝑅+ are three given continuous functions. 

   The most familiar interpretation of this equation is that it describes nonlinear oscillations. Stability problems 

for this ODE have been studied intensively so far (see, e.g.,[13]-[15], [16]-[18], and the references therein). 

Recently, T.A. Burton and T. Furumochi [5]  have introduced a new method to study the stability of the null 

solution 𝑥 = 𝑥 ′ = 0 of  equation (1.1), which is based on the Schauder fixed point theorem. They  discussed a 

particular case of (1.1) (one of their assumptions is 𝛽 𝑡 = 1 ) to illustrate their  technique. In [8] Marosamu 

and Vladimirescu have proved stability results for the null solution of the same equation by using relatively 

classical arguments. Here, we reconsider Eq. (1.1) under more general assumptions, which require more 

sophisticated arguments, and prove stability results  (see Theorem 2.1 below).  In particular, we obtain the 

generalized exponential asymptotic stability of the trivial solution. See [20, p. 158] for the definition of this 

concept. 

           

II. The main result 
The following hypotheses will be required: 

(i)   𝑓 ∈ 𝐶 ′(𝑅+)  and  𝑓(𝑡) ≥ 0 for  all  𝑡 ≥ 0 

          (ii)           𝑓 𝑡 𝑑𝑡 = ∞
∞

0
 

         (iii)           there exist two constants ,𝐾 ≥ 0 such that                            |                                                                                                                                                                                                           
                                                                                                                       

                                                     𝑓 ′ 𝑡 + 𝑓2 𝑡  ≤ 𝐾𝑓 𝑡 ,  𝑡 ∈ [,∞);                                                           (2.1)   

         (iv)          𝛽 ∈ 𝐶 ′(ℝ+),   𝛽 decreasing, and  

                                                    𝛽 𝑡 ≥ 𝛽0 > 𝐾2 , for all 𝑡 ∈ 𝑅+                                                                     (2.2)                 

where 𝛽0 is constant.  

         (v)             𝑔 is locally Lipschitzian in 𝑥    

These assumptions are inspired by those in [5], but are more general. 

Notice that (i) and (iii) imply that 𝑓  is uniformly bounded (see [8], Remark 2.2). 

The main result of this paper is the following theorem: 

Theorem 2.1.  If  the  assumptions  (i) ,  (iii) - (v)  are  fulfilled,  then  the  null solution  of  (1.1)  is  uniformly  

stable. If  in  addition  (ii)  holds, then  the  null solution  of   (1.1)  is  asymptotically  stable 

Remark 2.1. Under  the  assumptions  (i) - (v), we  cannot  expect  to  have uniform  asymptotic  stability  for  

the  null  solution.  Indeed, even in the case 𝑔 = 0 and 𝛽 = constant say 𝛽 𝑡 = 1 ∀ 𝑡 ∈ 𝑅+

 
one  can construct a 

fundamental matrix  𝑋(𝑡)  for the corresponding first order linear differential  system  in  (𝑥, 𝑦 = 𝑥 ′) for which 

                                                     𝑋 𝑡 𝑋(𝜏)−1  

does  not  converge  to  zero  as 𝑡 − 𝜏 → ∞  (here  .   denotes a matrix norm)  

 

Proof of Theorem 2.1 
  we  write equation  (1.1) to a  system 

                                                                      𝒙′ = 𝒚 − 𝒇 𝒕 𝒙 

                                               𝒚′ =  𝒇′ 𝒕 + 𝒇𝟐 𝒕 − 𝟏 𝒙 − 𝒇 𝒕 𝒚 − 𝒈(𝒕)𝒙𝟐 

and write it as  

                                    𝒛′ =  
−𝒇(𝒕) 𝟏
−𝜷(𝒕) −𝒇(𝒕)

 𝑿+  
𝟎 𝟎

𝒇′ 𝒕 + 𝒇𝟐(𝒕) 𝟎
 𝑿+  

𝟎
−𝒈(𝒕)𝒙𝟑
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                                                        𝒛′ = 𝑨 𝒕 𝒛+𝑩 𝒕 𝒛+ 𝑭(𝒕,𝒛),                                                       (2.3)                                    

where 

𝒛 =  
𝒙
𝒚 ,  𝑨 𝒕 =  

−𝒇(𝒕) 𝟏
−𝜷(𝒕) −𝒇(𝒕)

 ,  B 𝒕 =  
𝟎 𝟎

𝒇′ 𝒕 + 𝒇𝟐 𝒕 𝟎
  

                                                                            𝑭 𝒕,𝒛 =  
𝟎

−𝒈(𝒕)𝒙𝟐
  

It  is  easily  seen  that  our  stability  question  reduces  to  the  stability  of  the null  solution  𝑧 𝑡 = 0  of  

system  (2.3). 

     Let 𝑡0 ≥ 0   be arbitrarily fixed and  let  𝒛 𝒕, 𝒕𝟎 =  
𝒂(𝒕, 𝒕𝟎) 𝒃(𝒕, 𝒕𝟎)
𝒄(𝒕, 𝒕𝟎) 𝒅(𝒕, 𝒕𝟎)

  ,  𝒕 ≥ 𝟎 

be the fundamental  matrix  to  the  linear  system 

                                                                     𝒛′ = 𝑨 𝒕 𝒛                                                                      (2.4)  

which  is  equal  to  the  identity  matrix  for  𝑡 = 𝑡0 then 

 

                                                         𝒂′ 𝒕, 𝒕𝟎 = −𝒇 𝒕 𝒂 𝒕, 𝒕𝟎 + 𝒄 𝒕, 𝒕𝟎  
                                                        𝒄′ 𝒕, 𝒕𝟎 = −𝜷 𝒕 𝒂 𝒕, 𝒕𝟎 − 𝒇(𝒕)𝒄 𝒕, 𝒕𝟎  
                                                        𝒃′ 𝒕, 𝒕𝟎 = −𝒇 𝒕 𝒃 𝒕, 𝒕𝟎 + 𝒅 𝒕, 𝒕𝟎                                                   (2.5) 

 𝒅′ 𝒕, 𝒕𝟎 = −𝜷 𝒕 𝒃 𝒕, 𝒕𝟎 − 𝒇 𝒕 𝒅 𝒕, 𝒕𝟎                                                           
 

So, since 𝛽 is decreasing (hypothesis (iv)), the first two equations of (2.5) lead us to 

                                         
𝟏

𝟐
 𝜷 𝒕 𝒂(𝒕, 𝒕𝟎)𝟐 + 𝒄(𝒕, 𝒕𝟎)𝟐 

′
≤ −𝒇(𝒕) 𝜷 𝒕 𝒂(𝒕, 𝒕𝟎)𝟐 + 𝒄(𝒕, 𝒕𝟎)𝟐  

and hence 

                                                  𝜷 𝒕 𝒂(𝒕, 𝒕𝟎)𝟐 + 𝒄(𝒕, 𝒕𝟎)𝟐 ≤ 𝜷 𝒕𝟎 𝒆
−𝟐 𝒇 𝒖 𝒅𝒖

𝒕

𝒕𝟎  , ∀ 𝒕 ≥ 𝒕𝟎.                   (2.6) 

Similarly, from the last two equations of (2.5), we get 

                                                    𝜷 𝒕 𝒃(𝒕, 𝒕𝟎)𝟐 + 𝒅(𝒕, 𝒕𝟎)𝟐 ≤ 𝒆
−𝟐 𝒇 𝒖 𝒅𝒖

𝒕

𝒕𝟎  , ∀ 𝒕 ≥ 𝒕𝟎                            (2.7) 

Consider 𝑧 = (𝑥, 𝑦)𝑇 ∈ 𝑅2 the norm  𝑧 =  𝛽0𝑥
2 + 𝑦2 

For 𝑧0 = (𝑥0 , 𝑦0)𝑇 ∈ 𝑅2 we  obtain  from  (2.6),(2.7), and hypothesis (iv), 

                                                      𝒛(𝒕, 𝒕𝟎)𝒛𝟎 =  
𝒂 𝒕, 𝒕𝟎 𝒙𝟎 + 𝒃 𝒕, 𝒕𝟎 𝒚𝟎
𝒄 𝒕, 𝒕𝟎 𝒙𝟎 + 𝒅 𝒕, 𝒕𝟎 𝒚𝟎

                                                                                 

                                                     ≤  𝒙𝟎
𝟐 + 𝒚𝟎

𝟐 ×  𝜷 𝒕  𝒂 𝒕, 𝒕𝟎 
𝟐 + 𝒅 𝒕, 𝒕𝟎 

𝟐 + [𝒄(𝒕, 𝒕𝟎)𝟐 + 𝒅(𝒕, 𝒕𝟎)𝟐   

                                                    ≤ 𝜸 𝟏 + 𝜷(𝒕𝟎)𝒆
− 𝒇 𝒖 𝒅𝒖

𝒕

𝒕𝟎  𝒛𝟎                                                               (2.8)  

where 𝛾 = max{1,
1

 𝛽0
}   Moreover, since 

𝒛 𝒕, 𝒕𝟎 𝒛 𝒔, 𝒕𝟎 
−𝟏  

𝟎
𝟏
 =  

𝜼(𝒕, 𝒔, 𝒕𝟎)
𝝁(𝒕, 𝒔, 𝒕𝟎)

 , ∀ 𝒕 ≥ 𝒔 ≥ 𝒕𝟎 ≥ 𝟎 

    Satisfies system (2.4), we deduce as before 

 𝒛 𝒕, 𝒕𝟎 𝒛 𝒔, 𝒕𝟎 
−𝟏  

𝟎
𝟏
  =  𝜷𝟎𝜼(𝒕, 𝒔, 𝒕𝟎)𝟐 + 𝝁(𝒕, 𝒔, 𝒕𝟎)𝟐 

                                              ≤  𝜷(𝒕)𝜼(𝒕, 𝒔, 𝒕𝟎)𝟐 + 𝝁(𝒕, 𝒔, 𝒕𝟎)𝟐 

                                                                 ≤  𝜷(𝒔)𝜼(𝒕, 𝒔, 𝒕𝟎)𝟐 + 𝝁(𝒕, 𝒔, 𝒕𝟎)𝟐𝒆− 𝒇 𝒖 𝒅𝒖
𝒕

𝒔  

                                                                                    = 𝒆− 𝒇 𝒖 𝒅𝒖
𝒕

𝒔
 ,    𝒕 ≥ 𝒔 ≥ 𝒕𝟎 ≥ 𝟎,                             (2.9) 

    Let us prove the first part of Theorem 2.1. Consider 𝑧0 ≠ 0 with  𝑧0  small enough, 𝑡0 ≥ 0, and let us denote 

by 𝑧(𝑡, 𝑡0𝑧0) the unique solution of (2.3) which is equal to 𝑧0 for 𝑡 = 𝑡0. By hypotheses (i) and (v), 𝑧(𝑡, 𝑡0𝑧0) is 

defined on a maximal right interval, say, [𝑡0, 𝑙) and satisfies the following integral equation 

      𝒛 𝒕, 𝒕𝟎,𝒛𝟎 = 𝐳 𝐭, 𝒕𝟎 𝒛𝟎 +  𝒛(𝒕, 𝒕𝟎)
𝒕

𝒕𝟎
𝒛(𝒔, 𝒕𝟎)−𝟏 𝑩 𝒔 𝒛 𝒔, 𝒕𝟎,𝒛𝟎 + 𝑭 𝒔, 𝒛 𝒕, 𝒕𝟎,𝒛𝟎   𝒅𝒔      (2.10)

                              

 

for  all  𝑡 ∈ [𝑡0, 𝑙). From  (2.8)-(2.10) we infer that 

   𝒛 𝒕, 𝒕𝟎,𝒛𝟎  ≤ 𝜸 𝟏 + 𝜷(𝒕𝟎) 𝒛𝟎 𝒆
− 𝒇 𝒔 𝒅𝒖

𝒕

𝒕𝟎
 
              

                           + 𝒆− 𝒇 𝒖 𝒅𝒖
𝒕

𝒔
   𝒇′ 𝒔 + 𝒇𝟐(𝒔)  𝒙(𝒔, 𝒕𝟎,𝒛𝟎) + 𝒈 𝒔 𝒙𝟐(𝒔) 𝒅𝒔

𝒕

𝒕𝟎
,    ∀ 𝒕 ∈  𝒕𝟎, 𝒍    (2.11) 

we infer from (2.11) that 
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 𝒛 𝒕, 𝒕𝟎,𝒛𝟎  ≤ 𝜸 𝟏 + 𝜷(𝒕𝟎) 𝒛𝟎 +𝑫  𝒛(𝒔, 𝒕𝟎,𝒛𝟎) 𝒅𝒔

𝒕

𝒕𝟎
,  ∀ 𝒕 ∈  𝒕𝟎, 𝒍                     (2.12)  

 
with a positive constant D and    

                                            𝒛 𝒕, 𝒕𝟎,𝒛𝟎  ≤ 𝜸 𝟏 + 𝜷(𝒕𝟎)𝒆𝑫𝒉 𝒛𝟎  , ∀ 𝒕 ∈  𝒕𝟎, 𝒍                                 (2.13) 

Thus 𝑧 𝑡, 𝑡0, 𝑧0  as well as 𝑧′ 𝑡, 𝑡0, 𝑧0   are bounded on   𝑡0, 𝑙  and so  𝑧 𝑡, 𝑡0, 𝑧0  can be extended to the right of 

𝑙. This fact contradicts the maximality of l. Therefore 𝑧 𝑡, 𝑡0, 𝑧0  exists on   𝑡0, 𝑙  with 𝑙 > . 

     Now, we assume  < 𝑙 < ∞. We are going to find an estimate for 𝑧 𝑡, 𝑡0, 𝑧0  on the  interval  , 𝑙 . This time, 

our hypothesis (iii) comes into  play. We have for all  𝑡 ∈  , 𝑙  

 𝒛 𝒕, 𝒕𝟎, 𝒛𝟎  ≤ 𝜸 𝟏 + 𝜷 𝒉  𝒛 𝒉, 𝒕𝟎,𝒛𝟎  𝒆
− 𝒇 𝒖 𝒅𝒖

𝒕

𝒉 +  𝒆− 𝒇 𝒖 𝒅𝒖
𝒕

𝒔 𝑲𝒇 𝒔  𝒙 𝒔, 𝒕𝟎, 𝒛𝟎  𝒅𝒔  
𝒕

𝒉
  

                       + 𝒆− 𝒇 𝒖 𝒅𝒖
𝒕

𝒔 𝒈 𝒔 𝒙𝟐(𝒔, 𝒕𝟎,𝒛𝟎)𝒅𝒔
𝒕

𝒉
                                                                                  (2.14)   

From (2.14) it follows that 

 𝒛 𝒕, 𝒕𝟎, 𝒛𝟎  ≤ 𝜸 𝟏 + 𝜷 𝒉  𝒛 𝒉, 𝒕𝟎,𝒛𝟎  𝒆
− 𝒇 𝒖 𝒅𝒖

𝒕

𝒉 + 𝒆− 𝒇 𝒖 𝒅𝒖
𝒕

𝒔  𝒇′ 𝒔 + 𝒇𝟐(𝒔)  𝒙(𝒔, 𝒕𝟎,𝒛𝟎) 𝒅𝒔
𝒕

𝒉
 

                       + 𝒆− 𝒇 𝒖 𝒅𝒖
𝒕

𝒔  𝒈 𝒔 𝒙𝟐(𝒔, 𝒕𝟎,𝒛𝟎) 𝒅𝒔
𝒕

𝒉
                                                                               

                      ≤ 𝜸 𝟏 + 𝜷 𝒉  𝒛 𝒉, 𝒕𝟎,𝒛𝟎  𝒆
− 𝒇 𝒖 𝒅𝒖

𝒕

𝒉                                                           

                      + 𝒆− 𝒇 𝒖 𝒅𝒖
𝒕

𝒔
𝒕

𝒉
 𝑲𝒇 𝒔  𝒙 𝒔, 𝒕𝟎, 𝒛𝟎  𝒅𝒔+ 𝑴𝒇 𝒔  𝒙 𝒔, 𝒕𝟎, 𝒛𝟎  

𝟑 𝒅𝒔 

                      = 𝝑(𝒕) ,  ∀ 𝒕 ∈ [𝒉, 𝒍)                                                                                                  (2.15) 
Then by (2.15)                     

                                                       𝝑′(𝒕) ≤  
𝑲+𝑴𝝑 𝒕 

 𝜷𝟎
− 𝟏 𝝑(𝒕)𝒇(𝒕)   where 𝑴 ∈  𝟎, 𝜷𝟎 −𝑲  

                                                      𝝑 𝒉 = 𝜸 𝟏 + 𝜷(𝒉) 𝒛 𝒉, 𝒕𝟎, 𝒛𝟎   

                             𝒛 𝒕, 𝒕𝟎,𝒛𝟎  ≤ 𝝑 𝒕 ≤ 𝝑 𝒉 𝒆
 
𝑲+𝑴𝝑 𝒉 

 𝜷𝟎
−𝟏  𝒇 𝒖 𝒅𝒖

𝒕

𝒉 , ∀𝒕 ∈ [𝒉, 𝒍]                        (2.16) 

                                              
From (2.16) we can see that 𝑧 𝑡, 𝑡0, 𝑧0   is  bounded. Since 𝑧′ 𝑡, 𝑡0, 𝑧0   is also bounded, it follows that 𝑙 = ∞. 

Now, for 휀 > 0 we denote 

𝜹 = 𝜹 𝜺 =
𝜺𝒆−𝑫𝒉

𝜸𝟐 (𝟏 + 𝜷(𝟎)(𝟏 + 𝜷(𝒉)
 

From (2.13) it follows that   𝑧 𝑡, 𝑡0, 𝑧0  ≤
휀

𝛾 1+𝛽()
  for  all   𝑡 ∈ [𝑡0,]  provided  that  

 𝑧0 < 𝛿. Therefore,  by 𝑀 ∈  0, 𝛽0 − 𝐾  and (2.16),  𝑧 𝑡, 𝑡0, 𝑧0  ≤ 𝜗  < 휀 for  all 𝑡 ≥ . 

Summarizing, if  0 ≤ 𝑡0 ≤  , the  solution 𝑧 𝑡, 𝑡0, 𝑧0  starting from any point, 𝑧0, with  𝑧0 < 𝛿  exists on 

[𝑡0,∞)  and satisfies  𝑧 𝑡, 𝑡0, 𝑧0  < 휀    for  all 𝑡 ≥ 𝑡0. 

            If  𝑡0 ≥ ,  then analogously we obtain that 𝑙 = ∞ and 

                                     𝒛 𝒕, 𝒕𝟎, 𝒛𝟎  ≤ 𝝑 𝟏 + 𝜷(𝒕𝟎) 𝒛𝟎 𝒆
 
𝑲+𝑴𝝑(𝒉)

 𝜷𝟎
−𝟏  𝒇 𝒖 𝒅𝒖

𝒕

𝒕𝟎 , ∀𝒕 ∈ [𝒉,∞)         (2.17) 

Therefore,  with  the  same . as  before,  𝑧0 < 𝛿 implies  again that  𝑧 𝑡, 𝑡0 , 𝑧0  < 휀  for  all 𝑡 ≥ 𝑡0 Hence  

the  null  solution  is  uniformly  stable. If  in  addition (ii) is  fulfilled,  then  by  (2.16), and (2.17)  it  follows  

that  the  null  solution to (1.1)  is  asymptotically  stable. The   proof of Theorem 2.1 is complete.  

Remark 2.2  If  𝑓 satisfies (i) - (iii), then 𝑓 𝑡 > 0 for all 𝑡 ≥ . Let us assume, by contradiction, that  𝑓 𝑡1 =
0 for  some 𝑡1 ≥ .  Then,  one  can prove  that 𝑓 𝑡 = 0  for 𝑡 ≥ 𝑡1  Indeed, if  𝑓 𝑡2 > 0  for  some 𝑡2 > 𝑡1 

then the  function 𝑢 =
1

𝑓
  is  well  defined  on  the  maximal  interval  containing  𝑡2 on  which 𝑓 > 0 , say  

(𝑐,𝑑),  and  satisfies  the  inequality 

𝒖′ 𝒕 +𝑲𝒖 𝒕 − 𝟏 ≥ 𝟎, 𝒕 ∈ (𝒄,𝒅). 
This implies that 

𝒅

𝒅𝒕
 𝒆𝑲𝒕  𝒖 𝒕 −

𝟏

𝑲
  ≥ 𝟎, 𝒕 ∈  𝒄, 𝒕𝟐  

i.e., the function 𝑡 → 𝑒𝐾𝑡  𝑢 𝑡 −
1

𝐾
  decreasing on   𝑐, 𝑡2 ,  but this is impossible since the limit of this function  

is ∞ as 𝑡 → 𝑐+
 . Thus, 𝑓 𝑡 = 0 for all 𝑡 ≥ 𝑡1, which  contradicts  (ii). Therefore,  we  have  proved  that indeed 

𝑓 𝑡 > 0  for  all 𝑡 ≥  Consequently,  the  function   𝑝 𝑡 =  𝑓 𝑠 𝑑𝑠
∞

0
  is  strictly  increasing,  at  least  for  

𝑡 ≥ .  By  the  above  proof  we  have  that the  null  solution  is  generalized  exponentially  asymptotically  

stable with this 𝑝 𝑡 . 
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Remark  2.3.  if, 𝛽 𝑡 = 1, 𝑡 ∈ 𝑅+ the fundamental matrix Z(𝑡, 𝑧0)  can be determined explicitly  

𝒛 𝒕,𝒛𝟎 = 𝒆
− 𝒇 𝒖 𝒅𝒖

𝒕

𝒕𝟎  
𝐜𝐨𝐬(𝒕 − 𝒕𝟎) 𝐬𝐢𝐧(𝒕 − 𝒕𝟎
−𝐬𝐢𝐧(𝒕 − 𝒕𝟎 𝐜𝐨𝐬(𝒕 − 𝒕𝟎

    

In general, this is not possible, so in our proof we had to get estimates without having an explicit form of 𝑧(𝑡, 𝑡0) 

 

III. Conclusion : 
These stability results can be extended to the case when the differential equation is vectorial equation. 

More precisely, assume that 𝑓 and 𝛽 are scalar functions satisfying the   
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