m - projective curvature tensor on a Lorentzian para - Sasakian manifolds

Amit Prakash ${ }^{1}$, Mobin Ahmad ${ }^{2}$ and Archana Srivastava ${ }^{3}$
${ }^{1}$ Department of Mathematics, National Institute of Technology, Kurukshetra, Haryana - 136119, India.
${ }^{2}$ Department of Mathematics, Integral University, Kursi Road Lucknow-226 026, India,
${ }^{3}$ Department of Mathematics, S. R. Institute of Management and Technology, BKT, Lucknow - 227 202, India,

Abstract

In this paper we studied m-projectively flat, m-projectively conservative, φ-m-projectively flat LPSasakian manifold. It has also been proved that quasi m-projectively flat LP-Sasakian manifold is locally isometric to the unit sphere $S^{n}(1)$ if and only if M^{n} is m-projectively flat.

Keywords - Einstein manifold, m-projectively flat, m-projectively conservative, quasi m-projectively flat, φ-m-projectively flat.

I. Introduction

The notion of Lorentzian para contact manifold was introduced by K. Matsumoto. The properties of Lorentzian para contact manifolds and their different classes, viz LP-Sasakian and LSP-Sasakian manifolds have been studied by several authors. In [13], M.Tarafdar and A. Bhattacharya proved that a LP-Sasakian manifold with conformally flat and quasi - conformally flat curvature tensor is locally isometric with a unit sphere $S^{n}(1)$. Further, they obtained that an LP-Sasakian manifold with $R(X, Y) \cdot \tilde{C}=0$ is locally isometric with a unit sphere $S^{n}(1)$, where \widetilde{C} is the conformal curvature tensor of type $(1,3)$ and $R(X, Y)$ denotes the derivation of tensor of tensor algebra at each point of the tangent space. J.P. Singh [10] proved that an mprojectively flat para-Sasakian manifold is an Einstein manifold. He has also shown that if in an Einstein PSasakian manifold $R(\xi, X) \cdot W=0$ holds, then it is locally isometric with a unit sphere $H^{n}(1)$. Also an ndimensional η-Einstien P-Sasakian manifold satisfying $W(\xi, X) \cdot R=0$ if and only if either manifold is locally isometric to the hyperbolic space $H^{n}(-1)$ or the scalar curvature tensor r of the manifold is $-n(n-1)$. S.K. Chaubey [18], studied the properties of m-projective curvature tensor in LP-Sasakian, Einstein LP-Sasakian and η-Einstien LP-Sasakian manifold. LP-Sasakian manifolds have also studied by Matsumoto and Mihai [4], Takahashi [11], De, Matsumoto and Shaikh [2], Prasad \& De [9], Venkatesha and Bagewadi[14].

In this paper, we studied the properties of LP-Sasakian manifolds equipped with m-projective curvature tensor. Section 1 is introductory. Section 2 deals with brief account of Lorentzian para-Sasakian manifolds. In section 3, we proved that an m-projectively flat LP-Sasakian manifold is an Einstein manifold and an LP-Sasakian manifold satisfying $\left(C_{1}^{1} W\right)(Y, Z)=0$ is of constant curvature is m-projectively flat. In section 4, we proved that an Einstein LP-Sasakian manifold is m-projectively conservative if and only if the scalar curvature is constant. In section 5, we proved that an n-dimensional φ-m-projectively flat LP-Sasakian manifold is an η-Einstein manifold. In last, we proved that an n-dimensional quasi m - projectively flat LP-Sasakian manifold M^{n} is locally isometric to the unit sphere $S^{n}(1)$ if and only if M^{n} is m-projectively flat.

II. Preliminaries

An n - dimensional differentiable manifold M^{n} is a Lorentzian para-Sasakian (LP-Sasakian) manifold, if it admits a $(1,1)$ - tensor field ϕ, a vector field ξ, a 1-form η and a Lorentzian metric g which satisfy

$$
\begin{gather*}
\phi^{2} X=X+\eta(X) \xi \tag{2.1}\\
\eta(\xi)=-1, \tag{2.2}\\
g(\phi X, \phi Y)=g(X, Y)+\eta(X) \eta(Y) \tag{2.3}\\
g(X, \xi)=\eta(X), \tag{2.4}\\
\left(D_{X} \phi\right)(Y)=g(X, Y) \xi+\eta(Y) X+2 \eta(X) \eta(Y) \xi, \tag{2.5}\\
\text { and } D_{X} \xi=\phi X, \tag{2.6}
\end{gather*}
$$

for arbitrary vector fields X and Y , where D denote the operator of covariant differentiation with respect to Lorentzian metric g, (Matsumoto, (1989) and Matsumoto and Mihai, (1988)).
In an LP-Sasakian manifold M^{n} with structure (ϕ, ξ, η, g), it is easily seen that
(a) $\phi \xi=0$
(b) $\eta(\phi X)=0$
(c) $\operatorname{rank} \phi=(n-1)$

Let us put $F(X, Y)=g(\phi X, Y)$,
then the tensor field F is symmetric $(0,2)$ tensor field

$$
\begin{align*}
& F(X, Y)=F(Y, X) \tag{2.9}\\
& F(X, Y)=\left(D_{X} \eta\right)(Y)
\end{align*}
$$

$$
\begin{equation*}
\text { and }\left(D_{X} \eta\right)(Y)-\left(D_{Y} \eta\right)(X)=0 \tag{2.10}
\end{equation*}
$$

An LP- Sasakian manifold M^{n} is said to be Einstein manifold if its Ricci tensor S is of the form

$$
\begin{equation*}
S(X, Y)=k g(X, Y) \tag{2.11}
\end{equation*}
$$

An LP- Sasakian manifold M^{n} is said to be an η-Einstein manifold if its Ricci tensor S is of the form

$$
\begin{equation*}
S(X, Y)=\alpha g(X, Y)+\beta \eta(X) \eta(Y) \tag{2.12}
\end{equation*}
$$

for any vector fields X and Y , where α, β are the functions on M^{n}.
Let M^{n} be an n-dimensional LP-Sasakian manifold with structure (φ, ξ, η, g). Then we have
(Matsumoto and Mihai, (1998) and Mihai, Shaikh and De,(1999)).

$$
\begin{align*}
& \quad g(R(X, Y) Z, \xi)=\eta(R(X, Y) Z)=g(Y, Z) \eta(X)-g(X, Z) \eta(Y) \tag{2.14}\\
& \quad R(\xi, X) Y=g(X, Y) \xi-\eta(Y) X \\
& R(\xi, X) \xi=X+\eta(X) \xi \tag{2.15}\\
& R(X, Y) \xi=\eta(Y) X-\eta(X) Y \tag{2.15}\\
& S(X, \xi)=(n-1) \eta(X) \tag{2.16}\\
& S(\varphi X, \varphi Y)=S(X, Y)+(n-1) \eta(X) \eta(Y) \tag{2.17}
\end{align*}
$$

for any vector fields X, Y, Z; where $R(X, Y) Z$ is the Riemannian curvature tensor of type (1,3). S is a Ricci tensor of type $(0,2), Q$ is Ricci tensor of type $(1,1)$ and r is the scalar curvature.
$g(Q X, Y)=S(X, Y)$ for all X, Y.
m-projective curvature tensor W on an Riemannian manifold $\left(M^{n}, g\right)(n>3)$ of type $(1,3)$ is defined as follows (G.P.Pokhariyal and R.S. Mishra (1971)).

$$
\begin{equation*}
W(X, Y) Z=R(X, Y) Z-\frac{1}{2(n-1)}[S(Y, Z) X-S(X, Z) Y+g(Y, Z) Q X-g(X, Z) Q Y] \tag{2.18}
\end{equation*}
$$

so that ' $W(X, Y, Z, U) \stackrel{\text { def }}{=} g(W(X, Y) Z, U)=' W(Z, U, X, Y)$.
On an n-dimensional LP-Sasakian manifold, the Concircular curvature tensor C is defined as

$$
\begin{equation*}
C(X, Y) Z=R(X, Y) Z-\frac{r}{n(n-1)}[g(Y, Z) X-g(X, Z) Y] \tag{2.19}
\end{equation*}
$$

Now, in view of $S(X, Y)=\frac{r}{n} g(X, Y)$, (2.18) becomes

$$
W(X, Y) Z=C(X, Y) Z
$$

Thus, in an Einstein LP-Sasakian manifold, m-projective curvature tensor W and the concircular curvature tensor C concide.

III. m-projectively flat LP-Sasakian manifold

In this section we assume that $W(X, Y) Z=0$.
Then from (2.18), we get

$$
\begin{equation*}
R(X, Y) Z=\frac{1}{2(n-1)}[S(Y, Z) X-S(X, Z) Y+g(Y, Z) Q X-g(X, Z) Q Y] \tag{3.1}
\end{equation*}
$$

Contracting (3.1) with respect to X, we get

$$
\begin{equation*}
S(Y, Z)=\frac{r}{n} g(Y, Z) \tag{3.2}
\end{equation*}
$$

Hence we can state the following theorem.
Theorem 3.1: Let M^{n} be an n-dimensional m-projectively flat LP-Sasakian manifold, then M^{n} be an Einstien manifold.

$$
\begin{align*}
& \text { Contracting (2.18) with respect to } X \text {, we get } \\
& \quad\left(C_{1}^{1} W\right)(Y, Z)=S(Y, Z)-\frac{1}{2(n-1)}[n S(Y, Z)-S(Y, Z)+r g(Y, Z)-g(Y, Z)] \tag{3.3}\\
& \text { Or, }\left(C_{1}^{1} W\right)(Y, Z)=\frac{n}{2(n-1)}\left[S(Y, Z)-\frac{r}{n} g(Y, Z)\right] \tag{3.4}
\end{align*}
$$

where $\left(C_{1}^{1} W\right)(Y, Z)$ is the contraction of $W(X, Y) Z$ with respect to X.
If $\left(C_{1}^{1} W\right)(Y, Z)=0$, then from (3.4), we get

$$
\begin{equation*}
S(Y, Z)=\frac{r}{n} g(Y, Z) \tag{3.5}
\end{equation*}
$$

Using (3.5) in (3.1), we get

$$
\begin{equation*}
' R(X, Y, Z, W)=\frac{r}{n(n-1)}[g(Y, Z) g(X, W)-g(X, Z) g(Y, W)] . \tag{3.6}
\end{equation*}
$$

Hence we can state the following theorem.
Theorem 3.2. An m-projectively flat LP-Sasakian manifold satisfying $\left(C_{1}^{1} W\right)(Y, Z)=0$ is a manifold of constant curvature.

Using (3.5) and (3.6) in (2.18), we get

$$
W(X, Y) Z=0,
$$

i.e. the manifold M^{n} is m-projectively flat.

Hence we can state the following theorem.
Theorem 3.3. An LP-Sasakian manifold $\left(M^{n}, g\right)(n>3)$ satisfying $\left(C_{1}^{1} W\right)(Y, Z)=0$, is of constant curvature is m-projectively flat.

IV. Einstein LP-Sasakian manifold satisfying $(\operatorname{div} W)(X, Y) Z=0$

Definition 4.1. A manifold $\left(M^{n}, g\right)(n>3)$ is called m-projectively conservative if (Hicks N.J.(1969)),

$$
\begin{equation*}
\operatorname{div}(W)=0 \tag{4.1}
\end{equation*}
$$

where $d i v$ denotes divergence.
Now differentiating (2.18) covariently, we get

$$
\begin{align*}
\left(D_{U} W\right)(X, Y) Z= & \left(D_{U} R\right)(X, Y) Z-\frac{1}{2(n-1)}\left[\left(D_{U} S\right)(Y, Z) X-\left(D_{U} S\right)(X, Z) Y+g(Y, Z)\left(D_{W} Q\right) X\right. \\
& \left.-g(X, Z)\left(D_{W} Q\right) Y\right] \tag{4.2}
\end{align*}
$$

Which gives on contraction

$$
\begin{align*}
\operatorname{div}(W)(X, Y) Z= & \operatorname{div}(R)(X, Y) Z-\frac{1}{2(n-1)}\left[\left(D_{X} S\right)(Y, Z)-\left(D_{Y} S\right)(X, Z)+g(Y, Z) \operatorname{div}(Q) X-\right. \\
& g X, Z \operatorname{div} Q Y . \tag{4.3}
\end{align*}
$$

But $\operatorname{div}(Q)=\frac{1}{2} d r$, using in (4.3), we get

$$
\begin{align*}
\operatorname{div}(W)(X, Y) Z= & \operatorname{div}(R)(X, Y) Z-\frac{1}{2(n-1)}\left[\left(D_{X} S\right)(Y, Z)-\left(D_{Y} S\right)(X, Z)+\frac{1}{2} g(Y, Z) d r(X)-\right. \\
& 12 g X, Z d r Y . \tag{4.4}
\end{align*}
$$

But from (Eisenhart L.P.(1926)), we have

$$
\begin{equation*}
\operatorname{div}(R)(X, Y) Z=\left(D_{X} S\right)(Y, Z)-\left(D_{Y} S\right)(X, Z) \tag{4.5}
\end{equation*}
$$

Using (4.5) in (4.4), we get
$\operatorname{div}(W)(X, Y) Z=\frac{(2 n-3)}{2(n-1)}\left[\left(D_{X} S\right)(Y, Z)-\left(D_{Y} S\right)(X, Z)\right]-\frac{1}{4(n-1)}[g(Y, Z) d r(X)-g(X, Z) d r(Y)]$.
If LP-Sasakian manifold is an Einstein manifold, then from (1.12) and (4.5), we get

$$
\operatorname{div}(R)(X, Y) Z=0
$$

From (4.6) and (4.7), we get

$$
\begin{equation*}
\operatorname{div}(W)(X, Y) Z=-\frac{1}{4(n-1)}[g(Y, Z) d r(X)-g(X, Z) d r(Y)] \tag{4.7}
\end{equation*}
$$

From (4.1) and (4.8), we get

$$
[g(Y, Z) d r(X)-g(X, Z) d r(Y)]=0
$$

which shows that r is constant. Again if r is constant then from (4.8), we get

$$
\operatorname{div}(W)(X, Y) Z=0
$$

Hence we can state the following theorem.
Theorem 4.1. An Einstein LP-Sasakian manifold $\left(M^{n}, g\right)(n>3)$ is m-projectively conservative if and only if the scalar curvature is constant.

V. φ - m-projectively flat LP-Sasakian manifold

Definition 5.1. A differentiable manifold $\left(M^{n}, g\right), n>3$, satisfying the condition

$$
\begin{equation*}
\varphi^{2} W(\varphi X, \varphi Y) \varphi Z=0 \tag{5.1}
\end{equation*}
$$

is called φ-m - projectively flat LP-Sasakian manifold.(Cabrerizo, Fernandez, Fernandez and Zhen (1999)).
Suppose that $\left(M^{n}, g\right), n>3$ is a $\varphi-\mathrm{m}$ - projectively flat LP-Sasakian manifold. It is easy to see that $\varphi^{2} W(\varphi X, \varphi Y) \varphi Z=0$, holds if and only if

$$
g(W(\varphi X, \varphi Y) \varphi Z, \varphi W)=0
$$

for any vector fields X, Y, Z, W.
By the use of (2.18), $\varphi-\mathrm{m}$ - projectively flat means

$$
' R(\varphi X, \varphi Y, \varphi Z, \varphi W)=\frac{1}{2(n-1)}\left[\begin{array}{c}
S(\varphi Y, \varphi Z) g(\varphi X, \varphi W)-S(\varphi X, \varphi Z) g(\varphi Y, \varphi W)+ \tag{5.2}\\
g(\varphi Y, \varphi Z) S(\varphi X, \varphi W)-g(\varphi X, \varphi Z) S(\varphi Y, \varphi W)
\end{array}\right]
$$

where ' $R(X, Y, Z, W)=g(R(X, Y) Z, W)$.

Let $\left\{e_{1}, e_{2}, \ldots, e_{n-1}, \xi\right\}$ be a local orthonormal basis of vector fields in M^{n} by using the fact that $\left\{\varphi e_{1}, \varphi e_{2}, \ldots, \varphi e_{n-1}, \xi\right\}$ is also a local orthonormal basis, if we put $X=W=e_{i}$ in (5.2) and sum up with respect to i, then we have

$$
\begin{align*}
\sum_{i=1}^{n-1} ' R\left(\varphi e_{i}, \varphi Y, \varphi Z, \varphi e_{i}\right) & =\frac{1}{2(n-1)} \sum_{i=1}^{n-1}\left[S(\varphi Y, \varphi Z) g\left(\varphi e_{i}, \varphi e_{i}\right)-S\left(\varphi e_{i}, \varphi Z\right) g\left(\varphi Y, \varphi e_{i}\right)\right. \\
& \left.+g(\varphi Y, \varphi Z) S\left(\varphi e_{i}, \varphi e_{i}\right)-g\left(\varphi e_{i}, \varphi Z\right) S\left(\varphi Y, \varphi e_{i}\right)\right] \tag{5.3}
\end{align*}
$$

On an LP-Sasakian manifold, we have (Özgür (2003))
$\sum_{i=1}^{n-1} R\left(\varphi e_{i}, \varphi Y, \varphi Z, \varphi e_{i}\right)=S(\varphi Y, \varphi Z)+g(\varphi Y, \varphi Z)$,
$\sum_{i=1}^{n-1} S\left(\varphi e_{i}, \varphi e_{i}\right)=r+(n-1)$,
$\sum_{i=1}^{n-1} g\left(\varphi e_{i}, \varphi Z\right) S\left(\varphi Y, \varphi e_{i}\right)=S(\varphi Y, \varphi Z)$,
$\sum_{\substack{i=1 \\ n-1}\left(\varphi e_{i}, \varphi e_{i}\right)=(n+1), ~}^{n}$
$\sum_{i=1}^{n-1} g\left(\varphi e_{i}, \varphi Z\right) g\left(\varphi Y, \varphi e_{i}\right)=g(\varphi Y, \varphi Z)$,
so, by the virtue of (5.4)-(5.8), the equation(5.3) takes the form

$$
\begin{equation*}
S(\varphi Y, \varphi Z)=\left[\frac{r}{n-1}-1\right] g(\varphi Y, \varphi Z) \tag{5.9}
\end{equation*}
$$

By making the use of (2.3) and (2.17) in (5.9), we get

$$
S(Y, Z)=\left[\frac{r}{n-1}-1\right] g(Y, Z)+\left[\frac{r}{n-1}-n\right] \eta(Y) \eta(Z)
$$

Hence we can state the following theorem.
Theorem 5.1. Let M^{n} be an n-dimenstional $n>3, \varphi-\mathrm{m}$ - projectively flat LP-Sasakian manifold, then M^{n} is an η-Einstein manifold with constants $\alpha=\left[\frac{r}{n-1}-1\right]$ and $\beta=\left[\frac{r}{n-1}-n\right]$.

VI. quasi m-projectively flat LP-Sasakian manifold

Definition 6.1. An LP-Sasakian manifold M^{n} is said to be quasi m-projectively flat, if

$$
\begin{equation*}
g(W(X, Y) Z, \varphi U)=0 \tag{6.1}
\end{equation*}
$$

for any vector fields X, Y, Z, U.
From (2.18), we get
$g(W(X, Y) Z, \varphi U)=g(R(X, Y) Z, \varphi U)-\frac{1}{2(n-1)}[S(Y, Z) g(X, \varphi U)-S(X, Z) g(Y, \varphi U)$

$$
\begin{equation*}
+g(Y, Z) S(X, \varphi U)-g(X, Z) S(Y, \varphi U)] \tag{6.2}
\end{equation*}
$$

Let $\left\{e_{1}, e_{2}, \ldots, e_{n-1}, \xi\right\}$ be a local orthonormal basis of vector fields in M^{n} by using the fact that $\left\{\varphi e_{1}, \varphi e_{2}, \ldots, \varphi e_{n-1}, \xi\right\}$ is also a local orthonormal basis, if we put $X=\varphi e_{i}, U=e_{i}$ in (5.2) and sum up with respect to i, then we have

$$
\begin{array}{r}
\sum_{i=1}^{n-1} g\left(W\left(\varphi e_{i}, Y\right) Z, \varphi e_{i}\right)=\sum_{i=1}^{n-1} g\left(R\left(\varphi e_{i}, Y\right) Z, \varphi e_{i}\right)-\frac{1}{2(n-1)} \sum_{i=1}^{n-1}\left[S(Y, Z) g\left(\varphi e_{i}, \varphi e_{i}\right)-\right. \\
\left.S\left(\varphi e_{i}, Z\right) g\left(Y, \varphi e_{i}\right)+g(Y, Z) S\left(\varphi e_{i}, \varphi e_{i}\right)-g\left(\varphi e_{i}, Z\right) S\left(Y, \varphi e_{i}\right)\right] \tag{6.3}
\end{array}
$$

On an LP-Sasakian manifold by straight forward calculation, we get

$$
\begin{align*}
& \sum_{i=1}^{n-1} ' R\left(e_{i}, Y, Z, e_{i}\right)=\sum_{i=1}^{n-1} ' R\left(\varphi e_{i}, Y, Z, \varphi e_{i}\right)=S(Y, Z)+g(\varphi Y, \varphi Z) \tag{6.4}\\
& \sum_{\substack{i=1 \\
n-1}} S\left(\varphi e_{i}, Z\right) g\left(Y, \varphi e_{i}\right)=S(Y, Z)-(n-1) \eta(Y) \eta(Z) \tag{6.5}\\
& \text { Using (5.4), (5.7), (6.4), (6.5) in (6.3), we get }
\end{align*}
$$

$$
\sum_{i=1}^{n-1} g\left(W\left(\varphi e_{i}, Y\right) Z, \varphi e_{i}\right)=S(Y, Z)+g(\varphi Y, \varphi Z)
$$

$$
\begin{equation*}
-\frac{1}{2(n-1)}[(n-1) S(Y, Z)+(r+n-1) g(Y, Z)+2(n-1) \eta(Y) \eta(Z)] \tag{6.6}
\end{equation*}
$$

Using (2.3) in (6.6), we get

$$
\begin{equation*}
\sum_{i=1}^{n-1} g\left(W\left(\varphi e_{i}, Y\right) Z, \varphi e_{i}\right)=\frac{1}{2}\left[S(Y, Z)-\left(\frac{r}{n}-1\right) g(Y, Z)\right] \tag{6.7}
\end{equation*}
$$

If M^{n} is quasi m-projectively flat , then (6.7) reduces to

$$
\begin{equation*}
S(Y, Z)=\left(\frac{r}{n}-1\right) g(Y, Z) \tag{6.8}
\end{equation*}
$$

Putting $Z=\xi$ in (6.8) and then using (2.6) and (2.16), we get

$$
\begin{equation*}
r=n(n-1) \tag{6.9}
\end{equation*}
$$

Using (6.9) in (6.8), we get

$$
\begin{equation*}
S(Y, Z)=(n-1) g(Y, Z) \tag{6.10}
\end{equation*}
$$

i.e. M^{n} is an Einstein manifold.

Now using (6.10) in (2.18), we get

$$
\begin{equation*}
W(X, Y) Z=R(X, Y) Z-[g(Y, Z) X-g(X, Z) Y] \tag{6.11}
\end{equation*}
$$

If LP-Sasakian manifold is m-projectively flat , then from (6.11), we get

$$
\begin{equation*}
R(X, Y) Z=[g(Y, Z) X-g(X, Z) Y] \tag{6.12}
\end{equation*}
$$

Hence we can state the following theorem.
Theorem 6.2. A quasi m-projectively flat LP-Sasakian manifold M^{n} is locally isomeric to the unit sphere $S^{n}(1)$ if and only if M^{n} is m-projectively flat.

References

[1] D. E. Blair, Contact manifolds on Riemannian geometry, Lecture Notes in Mathematics, Vol.509, Spinger-Verlag, Berlin, 1976.
[2] U. C. De, K. Matsumoto and A. A. Shaikh, On Lorentzian para-Sasakian manifolds, Rendicontidel Seminario Mathematico di Messina, Series II, Supplemento al 3 (1999), 149-158.
[3] K. Matsumoto, On Lorentzian para-contact manifolds, Bull. Of Yamagata Univ. Nat. Sci., 12 (1989), 151-156.
[4] K. Matsumoto, I. Mihai, On certain transformation in a Lorentzian para-Sasakian manifold, Tensor N.S., 47 (1988), 189-197.
[5] R. H. Ojha, A notes on the m-projective curvature tensor, Indian J. Pure Applied Math., 8 (1975), No. 12, 1531-1534.
[6] R. H. Ojha, On Sasakian manifold, Kyungpook Math. J., 13 (1973), 211-215.
[7] G. P. Pokhariyal and R. S. Mishra, Curvature tensor and their relativistic significance II, Yokohama Mathematical Journal, 19 (1971), 97-103.
[8] S. Prasad and R. H. Ojha, Lorentzian para contact submanifolds, Publ. Math. Debrecen, 44/3-4 (1994), 215-223.
[9] A. A. Shaikh and U. C. De, On 3-dimensional LP-Sasakian manifolds, Soochow J. of Math., 26 (4) (2000), 359-368.
[10] J. P. Singh, On an Einstein m-projective P-Sasakian manifolds, (2008) (to appear in Bull. Cal. Math. Soc.).
[11] T. Takahashi, Sasakian ϕ-symmetric spaces, Tohoku Math. J., 29 (1977), 93-113.
[12] S. Tanno, Curvature tensors and non-existance of killing vectors, Tensor N. S., 2(1971), 387-394.
[13] M. Tarafdar and A. Bhattacharya, On Lorentzian para-Sasakian manifolds, Steps in Differential Geometry, Proceeding of the Colloquium of Differential Geometry, 25-30 july 2000, Debrecen, Hungry, 343-348.
[14] Venkatesha and C. S. Begewadi, On concircular ϕ-recurrent LP-Sasakian Manifolds, Differential Geometry-Dynamical Systems, 10 (2008), 312-319.
[15] K. Tano, and M. Kon, Structures on manifolds, Series in Pure Mathematics, Vol. 3, World Scientific, Singapore, 1984.
[16] A. Taleshian and N. Asghari, On LP-Sasakian manifolds satisfying certain conditions on the concircular curvature tensor, Differential Geometry- Dynamical Systems, 12,(2010), 228-232.
[17] S. K. Chaubey and R. H. Ojha, On the m-projective curvature tensor of a Kenmotsu manifold, Differential Geometry-Dynamical Systems, 12,(2010), 1-9.
[18] S. K. Chaubey, Some properties of LP-Sasakian manifolds equipped with m-projective curvature tensor, Bulletin of Mathematical Analysis and applications, 3 (4), (2011), 50-58.

