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Abstract: Some optimality criteria used in estimation of parameters in finite dimensional space has been 

extended to a separable Hilbert space. Different optimality criteria and their equivalence are established for 

estimating sequence rather than estimator. An illustrious example is provided with the estimation of the mean of 

a Gaussian process   
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I. Introduction 
The classical theory of statistical inference deals with the sample spaces and parameter spaces as finite 

dimensional Euclidian spaces or subsets of it. The observations are assumed to be n independent and identical 

realizations of a random vector. Much of the inference methodologies can be said to be likelihood based. A first 

step in solving such a problem is the calculation of the likelihood function. The assumption that the samples are 

from Rk is not true in general. Sometimes the data may be curves or in general, elements from some abstract 

spaces. Since most of the methods in classical inference are likelihood based, any attempts to extend classical 
method of interest should start with the determination of the likelihood function. A major difficulty is that in the 

spaces of interest, there is no natural invariant Lebesgue measure which plays an important role in classical 

inference. However, fortunately in the abstract spaces, Radon-Nikodym derivative of one hypothetical measure 

with respect to another plays the role of the likelihood. Likelihood based inferences in abstract spaces have been 

discussed in the literature with considerable depth. “Statistical inference for stochastic process” by Basava and 

Prakasa Rao (1980) contains good account of this exposition.  

            There are instance, for example, in inference for stochastic process where both sample space and 

parameter space are abstract. Here also the first step involved is the calculation of the likelihood. But even after 

obtaining the likelihood, the estimation is not straight forward. In most of the cases likelihood function will be 

unbounded. [See for example, Grenander (1981, P.395), Karr (1987), Beder (1987, 88)]. One possible approach 

to overcome this difficulty is to apply the method of sieves systematical exposition by Grenander (1981). 
Adopting Grenander’s approach some authors have already studied estimation for stochastic processes. Works 

of Mckeague (1986), Beder (1987, 88), Karr (1987), Lesbow and Rozanski (1989) can be mentioned in this 

context. 

             In this paper we will define an optimality criterion for a Hilbert space valued parameter through the 

notations of estimating sequence. The criterion so developed is then applied to obtain an optimal estimating 

sequence for the mean of a Gaussian process’ 

 

II. An optimality criterion for a sequence of parameters 
We begin with certain optimality results available in simultaneous estimation of several parameters. 

Let x1,x2,…,xn be random sample of size n from a population characterized by the probability density function 

f(x, θ) θ ∈ Ω Ϲ𝑅𝑚   where Rm being m dimensional Euclidian space. Suppose we are interested in k functions 

Ψ(θ) =  (Ψ1  𝜃 , Ψ2  𝜃 ,… , Ψ𝑘  𝜃 ) 𝑇. A vector of statistics T = (T1,T2
, …,Tk)𝑇 is unbiased for Ψ(θ). If Eθ(Ti) = 

Ψi (θ) for all θ ∈ Ω for every i = 1,2,…,k. We would also say T is marginally unbiased for Ψ(θ) . For any two 

estimators T and S define 

MT = E(T – E(T))(T – E(T))T 

 And   MTS  = E(T – E(T))(S – E(S))T 

Let Uψ denote the class of all unbiased estimators of ψ. 

Definition 2.1 

The estimator T⃰ ∈ Uψ is M- optimal for Ψ if MT − 𝑀𝑇∗ is nonnegative definite for all θ ∈ Ω. 

        A necessary and sufficient condition that T ⃰ ∈ Uψ is M- optimal is that MT ⃰ U = MU T ⃰ = 0 for all θ ∈ Ω, u ∈ 
U0

(k) where U0
(k) is the class of all k-dimentional statistics that are unbiased for 0 = (0,0,…,0)T. This is known as 

klebenov- Linnik- Rukhin theorem. 

 

Definition 2.2 

An estimator 𝑇∗ =  (𝑇1
∗ ,𝑇2

∗… ,𝑇𝑘
∗) is marginally optimal for ψ provided Ti

⃰ is MVUE 
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 for ψi, i = 1,2,…,k.  

     By an application of klebenov- Linnik- Rukhin theorem one conclude that an estimator is M – optimal if and 

only if it is marginally optimal. Some other equivalent optimality criteria are D-optimality, T- optimality and E- 
optimality. See B.K. Kale (1999) for a fairly good discussion. 

     A natural question that can arise is, can we consider a more general abstract parameter space and derive a 

similar optimality criteria. As an immediate generalization suppose that the parameter space Ω is a real 

separable Hilbert space. Then there exists a countable orthonormal basis {ei} such that any θ ∈ Ω can be written 

as Θ = Σψi ei , where ψi = (θ,ei) where (.,.) is the inner product associated with the Hilbert space Ω. Thus 

estimation of θ reduces to that of estimating ψi , 1,2,…. It is also well known that  

Σψi
2
 < ∞ …………(2.1) 

Notice that practically one cannot estimate all ψi’s simultaneously. But the condition (2.1) tells us that ψi → 0 as 

i → ∞. Thus one take ψi = 0 after a stage say I  d and estimate θ. This is precisely method of sieves suggested by 

Grenander (1981). Instead of resorting  to method of sieves we will consider an estimating sequence and 

formulate an optimality criteria for an estimating sequence {Ti}.  
 

 Definition 2.3   

        A sequence of estimators T={Ti}is called an unbiased estimating sequence for ψ={ψi}if        Eθ(Ti) = ψi for 

all θ ∈ Ω, I =1,2,…….. Now we define three optimality criteria and establish their equivalence. 

 

Definition 2.4 

        An unbiased estimating sequence T={Ti}is sequential M-optimal for Ψ={ψi} if (T1,T2…..Tk)‛ is M-

opti∈∈mal for (ψ1, ψ2,….. ψk)’for every K=1,2,… 

 

Definition 2.5 
         An unbiased estimating sequence {Ti}is marginally optimal if Ti is MVUE for ψi , for all i = 1,2,3…. 

       For an estimating sequence {Ti}, consider the linear functional   l iψi
∞
𝑖=1  , such that   l i

2∞
𝑖=1  < ∞. 

 

Definition 2.6 

      An unbiased estimating sequence {Ti} is functionally optimal if   l iTi
∞
𝑖=1  is MVUE for  

  l iψi
∞
𝑖=1  for all {li} satisfying    l i

2∞
𝑖=1  < ∞. 

           Theorem 2.1  

              Let U0 be the set of all unbiased estimators of 0 ,that is U0 = {u, Eθ(u) = 0, for all θ ∈ Ω}, then an 

estimating sequence 𝑇∗ = {Ti
⃰} is functionally optimal if Eθ((Σ li Ti

⃰) u)  = 0 for all u ∈ U0 and all θ ∈ Ω 

        Proof 

             Suppose the condition 𝐸𝜃  ((𝛴 𝑙𝑖  𝑇𝑖
∗)𝑢)  = 0 for all u ∈ U0 consider the estimator   

      Σ li Ti
⃰ - Σ li Ti where {Ti}is any other unbiased estimating sequence. Then, 

  𝑬𝜽 (𝜮 𝒍𝒊 𝑻 𝒊
∗ −  𝜮 𝒍𝒊 𝑻𝒊)  =  𝟎 and so 𝑬 𝜽(𝜮 𝒍𝒊 𝑻 𝒊

∗) ( 𝜮 𝒍𝒊 𝑻𝒊
∗ −  𝜮 𝒍𝒊 𝑻𝒊 )   =  𝟎 which implies  

𝑬 𝜽(𝜮 𝒍𝒊 𝑻𝒊
∗)𝟐 =   𝑬 𝜽 𝜮 𝒍𝒊 𝑻𝒊

∗  (𝜮 𝒍𝒊 𝑻𝒊)  

≤  𝑬 𝜽
𝟏𝒍𝟐(𝜮 𝒍𝒊 𝑻𝒊

∗)𝟐   𝑬 𝜽
𝟏𝒍𝟐(𝜮 𝒍𝒊 𝑻𝒊)

𝟐  
Hence 

  𝑬𝜽 (𝜮 𝒍𝒊 𝑻𝒊
∗)𝟐   ≤ 𝑬𝜽 (𝜮 𝒍𝒊 𝑻𝒊)

𝟐  
Or          𝑽𝒂𝒓 𝜽 (𝜮 𝒍𝒊 𝑻𝒊

∗) ≤ 𝑽𝒂𝒓 𝜽(𝜮 𝒍𝒊 𝑻𝒊) 

Proving that   l i
∞
𝑖=1 Ti

⃰  is MVUE for    𝑙𝑖 𝜓𝑖∞
𝑖=1 . Conversely suppose   l i

∞
𝑖=1 𝑇𝑖

∗ is MVUE and if possible 

suppose 𝐸𝜃0
 ((  l i

∞
𝑖=1 Ti

⃰ )u0) ≠ 0 for some given choice of θ = θ0 and u0 ∈ U0  

Define  

λ = 
−𝑬𝜽𝟎

  𝜮𝒍𝒊 𝑻𝒊 ⃰ 𝒖𝟎 

𝑬𝜽𝟎
(𝒖𝟎

𝟐)
 

Then      

                              𝑬𝜽𝟎
( 𝒍𝒊 𝑻𝒊

∗ + 𝝀𝒖𝟎)𝟐 = 𝑬𝜽𝟎
 ( 𝒍𝒊 𝑻𝒊

∗)𝟐 + 𝝀𝟐 𝑬𝜽𝟎
 𝒖𝟎

𝟐 − 𝟐𝑬𝜽𝟎
(( 𝒍𝒊 𝑻𝒊

∗)𝒖𝟎)
𝑬𝜽 ( 𝒍𝒊 𝑻𝒊

∗)𝒖𝟎

𝑬𝜽𝟎
 𝒖𝟎

𝟐 
  

=  𝑬𝜽( 𝒍𝒊 𝑻𝒊
∗)𝟐 − 

𝑬𝜽𝟎
𝟐(( 𝒍𝒊 𝑻𝒊

∗)𝒖𝟎

𝑬𝜽𝟎
 𝒖𝟎

𝟐 
 

<  𝑬𝜽𝟎
( 𝒍𝒊 𝑻𝒊

∗)𝟐  

Hence  

                              𝒗𝒂𝒓𝜽𝟎(( 𝒍𝒊 𝑻𝒊
∗)  < 𝒗𝒂𝒓𝜽𝟎( 𝒍𝒊 𝑻𝒊

∗ + 𝝀𝒖𝟎)   

This is a contradiction to the assumption that  𝑙𝑖  𝑇𝑖
∗  is MVUE for   𝑙𝑖𝜓𝑖

∞
𝑖=1  this proves the theorem, 

Theorem 2.2 

An estimating sequence {Ti} is marginally optimal if and only if it is functionally optimal, 
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Proof 

 Suppose {Ti} is functionally optimal. Then   l iTi
∞
𝑖=1  is MVUE for   𝑙𝑖𝜓𝑖

∞
𝑖=1 . Choose li = 0, i≠ 𝑘 and lk = 1, 

then Tk is MVUE for Ψk , k = 1,2,… Thus {Ti} is marginally optimal. Conversely suppose {Ti} is marginally 

optimal. Then   

                  𝑬𝜽 𝑻𝒊 𝒖 = 𝟎,∀ 𝜽 𝝐 𝜴,𝒖 𝝐 𝑼𝟎 

Hence                                  

 𝑬𝜽(  𝒍𝒊 𝑻𝒊) 𝒖  =  𝒍𝒊 𝑬𝜽
∞
𝟏  (𝑻𝒊 𝒖) = 0 

   Thus by theorem 2.1 {Ti} is functionally optimal.   

Theorem 2.3 

                  The estimating sequence {Ti} is sequentially M-optimal if and only if it is marginally optimal 

Proof 

                    Let 𝑇𝑘  = [𝑇𝑖 ,… . .𝑇𝑘𝑖]
𝑇  and  

                         𝑈(𝑘) = [𝑢𝑖 …… . 𝑢𝑘 ]𝑇, where  𝑢𝑖  ∈  𝑈0 . 
The proof immediately follows from the following observations 

                               Eθ(Ti Uj) for all j,θ, I =1,2,…. If and only if 𝐸 (𝑇(𝐾)𝑈(𝑘)𝑇 ) = 0, for all   𝑢(𝑘) ∈ 𝑈0
𝑘   and for 

every θ if and  only if  

                          Cov(T
K

,U
K
)=0,For all u(k) ∈ U0

K and all θ 

Remark 

   The last two theorems tells us that all the optimality criteria are one and the same . later on we simply say the 

estimating sequence is optimal if it satisfy any one of the criteria discussed above. 

  We now proceed to illustrate the criteria in the estimation of mean of a Gaussian process 

 

III. Gaussian process 
                 Let {x(t),t ∈ T} be a stochastic process defined on (Ω, ₣) where T is some general index set. Let V be 

the set of all finite linear combinations of the form   𝑛
𝑖=1 ci x(ti). Let P be a probability measure attached to the 

measurable space (Ω, ₣). Then under the probability measure P,VP – the set of all P – equivalent classes of 

elements of V becomes a vector space. We say that the process is  Gaussian under P, if each element of Vp is a 

normal random variable. In this case VP Ϲ L2(Ω, ₣, p) and its completion Hp consist of only normal random 

variables. We denote the norm and inner product in Hp by || . ||p and ( . , .)p respectively 

where (x, y)p = covp(x , y) for x , y ∈ Hp the space Hp is usually called Gaussian space. The process {x(t),t ∈ T} 
is called a Gaussian process. 

The function m(t)=EP(x(t)) is called mean function of Gaussian process and R( s, t)= Cov(x(s),x(t)) is called 

covariance function . We now introduce the concept of reproducing kernel Hilbert space with kernel R, for 

every t ∈ T  

Definition 3.1 

(a) R (. , t) ∈  K (R,T) and 

(b)  For every f ∈ K(R,T) 

< f , R(. , t) > = f ( t ) 
Where < . , . > denote inner product on K( R , T ) 

Example 

Let T=[o,b], b <∞ and R (s,t)=min (s,t)  for s , t  ∈ [o,b]. define 

K (R,T) = { 𝒇 ∶  𝒇 ( 𝒕 ) =  𝒇𝑰(𝒖)𝒅𝒖,𝒇𝑰 ∈  𝑳𝟐(𝑻)
𝒕

𝟎
} 

Where L2(T) is the set of all square integrable functions defined on T and f I is the derivative of f. if we define  

                < f , g > = 𝐟𝐈 ( 𝐮) 𝐠𝐈 (𝐮) 𝐝𝐮
𝒃

𝟎   , for f , g ∈ k (R,T),then k (R,T) is a Hilbert space 

To see this observe that  R(s,t)= Min (s,t) =  𝐼 0,𝑡  𝑢 𝑑𝑢
𝑠

0
 

Therefore   R(.,t) ∈ K(R,T) as I[0,t] ∈ L2(T) 

Also < f, R (. , t) > = f ′(s) 
𝑏

0
I [0,t] (s) ds =  f ′(t) dt 

𝑡

0
 = f(t) 

The following lemma from Becker (1987) gives a Fourier type expansion for the covariance function R 

Lemma 3.1      

               Let {ek, K ∈ A} be complete orthonormal set in K (R,T),then we have R(s,t) = ∑k∈A ek(s)ek(t) For all (s, 

t)∈  T x T and that the set 𝐴′ = {k ∈ A: ek(s) ek(t) ≠ 0} is atmost countable . The isomorphic isomorphism 

between HP and K(R, T) is established through the next lemma. 

Lemma 3.2 

                 Let {x (t),t ∈ T} be a centered Gaussian process (that is E(x(t)=0) define on (Ω, ₣,P)and R(s,t)be the 

covariance function of the process then the following holds: 

(a) The R.K.H.S.  k(R,T) is given by  { f : f(t) = (x(t),yf) for a unique yf ∈ HP} with inner product 

 < f , g  > = ( yf,yg) the map given by ᴧ (yf) = f is an isomorphism of HP onto K(R,T). 
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(b) For each t, x(t)=   ek(t)(Uk) 𝑘∈𝐴  where Uk = 𝛬−1(ek), k ∈ A are iid N(0,1) variables . Further the 

series ∑k∈A ek(t)ek(UK) converges almost surely. The map 𝛬 (yf)=f is called Loeve map.  

       Let {x(t),t ∈ T} be a Gaussian process define on (Ω,π,P)  with mean function m(t) = Ep(x(t))  
and covarience function R(s,t) = Covp( x (s) , x (t)). Let P0 be a another Gaussian measure set . Ep0(x(x))=0  and  

covp(x ( t ),x (s))= R (s,t).assume that the RKHS  K(R,T) generated by R is complete so that an orthonormal 

basis {ek}is always countable Chatterji,S.P. and Handrekar,V.(1978)  has shown that P0 and p are equivalent if 

and only if  m ∈ k(R , T) assume that m ∈ k(R , T). since {ek}is a complete orthonormal basis for k(R , T) and m 

∈ k(R , T),m=∑k=1
∞ ak ek where ak ∈ l2 ,the set of square summable sequence. From elementary Hilbert space 

theory {ak}is unique to m. notice that  

                                             𝑬𝑷
(𝑿 𝒕 )

 = 𝒎(𝒕)  =  (𝒙(𝒕) ,𝒚𝒎)𝒑𝟎  

                                           Where Y = 𝛬−1 (m). since Uk= 𝛬−1 (ek) 

𝑬𝑷  𝑼𝒌 =   𝑼𝒌 ,𝒀𝒎 𝒑𝟎    

= (𝛬−1 𝒆𝒌 ,𝛬−1 𝒆𝒌 )𝒑𝟎   

=< 𝒆𝒌 ,𝒎 > =  𝒂𝒌 
And                                     𝑪𝒐𝒗𝒑  𝑼𝒌,𝑼𝒍 =  (𝛬−1 𝒆𝒌 ,𝛬−1 𝒆𝒍 )𝒑𝟎 

=   < 𝒆𝒌,𝒆𝒍 > 
=  𝜹𝒌𝒍 

Thus Uk
’s are independent N(ak,1) random variable under the probability measure P. 

Finally the Radon Nikodym derivative of P with respect to P0 is given by  
𝒅𝒑

𝒅𝒑𝟎
= 𝒆𝒙𝒑{ (𝒂𝒌 𝑼𝒌  −

𝒂𝒌
𝟐

𝟐
)∞

𝒌=𝟏 }         (see Beder (1987) 

Example 3.1 

                   Let= [0,b] and R is any continuous Covarience function defined on T X T. Define the integral 

operator with kernel R as 

     𝑹(𝒇(𝒔))  =  𝑹(𝒔, 𝒕) 𝒇(𝒕) 𝒅𝒕

𝒃

𝟎

 

                 Then R is an operator on L2 with countable system of eigen values {λk}and eigen functions {φk}. We 

use R for the operator as well as Kernel ) and we have  

                               𝑹(𝒔, 𝒕) =   𝝀𝒌 𝒆𝒌(𝒔)𝒆𝒌(𝒕)𝒌                 (C.F. Ash and Gardner(1975) p 37) 
Let  k(R,T)  be the space spanned by {φk}and define the inner product on K(R,T) as follows. For 

f=  𝑎𝑘𝜑𝑘𝑘   and g = ∑bk φk, define . 

                                          < f , g > =    𝒂𝒋 𝒃𝒋  
𝝋𝒋 (𝒕)𝝋𝒌(𝒕) 

√𝝀𝒌 𝝀𝒋 
𝒅𝒕 

                                                        =   
𝒂𝒌 𝒃𝒌 

𝝀𝒌
𝒌   

Set    ek=√λk ek, then {ek}is a complete orthonormal basis for k(R,T)  

                            R(s,t) =  𝒆𝒌 𝒔 𝒆𝒌(𝒕)𝒌           &          < 𝑹  . , 𝒕 ,𝒇 > = <   𝒆𝒌 𝒕 𝒆𝒌 ,  𝒂𝒋 𝒆𝒌 > 

            =   𝒂𝒌 𝒆 𝒌 𝒕 =  𝐟 (𝐭)  

 Thus  k(R,T) is a R.K.H.S. of  x(t) is Gaussian process with mean function     m ∈ k (R,T) and covariance 

function R then m admits the decomposition. M=∑ ak ek and   x(t)= Uk  ek  (t) 𝑘  where  ak = < m , ek  > and 

𝑼𝒌  =
 𝟏

𝝀𝒌
    𝒙 (𝒕) 𝒆𝒌(𝒕) 𝒅𝒕

𝒃

𝟎
        (C.F. Ash and Gardner(1975)) 

Example 3.2  (wiener process)                                                                                                        

                            Let x(t) be a wiener process defined on [0,b] with mean m (.) and covariance function 

R(s,t)=Min (s,t). 

 since R(s,t)= Min (s,t) the integral equation  𝑹(𝒔, 𝒕) 𝝋(𝒕) 𝒅𝒕
𝒃

𝟎
 =  𝝀 𝝋(s)   becomes  

                                                𝒕 𝝋(𝒕) 𝒅𝒕

𝒔

𝟎

    +     𝒔 𝝋(𝒕)𝒅𝒕 

𝒃

𝒔

=   𝝀 𝝋(𝒔)     → (𝟑.𝟏)  

On differentiating (3.1) with respect to S we have  

                                               𝑺 𝝋(𝒔)   +  𝝋(𝒕)𝒅𝒕

𝒃

𝒔

   −  𝒔 𝝋(𝒔)   = 𝝀 𝝋𝑰(𝒔) 

                                                    𝒊.𝒆.     𝝋(𝒕)𝒅𝒕
𝒃

𝒔
  = 𝝀 𝝋 𝑰 (𝒔)      → (𝟑.𝟐) 

Differentiating again we get  

-φ(s)  =  λ φ 
II
(s) 
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If  λ = 0 then φ (s)=0 and so λ = 0 is not an eigen value. Putting s = 0 in (3.1) we get  

                                                                     λ φ (0) = 0      →  𝝋 (𝟎)  =  𝟎 
Putting s= b in (3.2) we get                             0 = λ φ

I
 (b) → φ

I
 (b) = 0 

Thus  {φ , λ} satisfies  

                                                         φ II  +  λ
-1

 φ = 0  with φ (0)= φ
I 
(b) = 0 

solving the above differential equation after putting    𝜆−1 = 𝛽2  we get  

     𝝋𝒌 𝒕 =  
𝟐

𝒃
 

𝟏
𝟐

 𝑺𝒊𝒏 𝜷𝒌 𝒕 ,    𝒌 ∈  𝒛+ 

with eigen  values  λk   =  𝛽𝑘
−2, where βk = (k - 

1

 2
) π/b 

thus the function ek(t)= √λk φk(t) = βk
-1 (2/b)1/2 sin βk(t) is a completely orthonormal basis for  k (R , T ) and  

      𝑼𝒌  =  𝜷𝒌 (𝟐/𝒃)𝟏/𝟐   𝒙 𝒕 𝒔𝒊𝒏 𝜷𝒌 𝒕 𝒅𝒕 

𝒃

𝟎

  

Estimation problem  

Let {xi (t) , t ∈ T } , i = 1,2,……..n consist of n iid  sample of observations of the process x(t) defined on the 

probability space (Ω, ₣,p) with mean function m(t) = Ep (x(t)) and covariance function R(s,t) = covp(x(s),x(t)) as 

before take 𝑃0  as Gaussian measure  so that 𝐸𝑝0
x(t)) = 0 and 𝑐𝑜𝑣𝑝0

  (x(s), x(t)) = R (s , t) assume that m ∈ 

k(R,T) then the Radon Nikodym derivative of P with respect to P0  in the product sample space is  

       
𝒅𝒑 𝒏Θ 

𝒅𝒑𝟎
𝒏Θ =   𝒆𝒙𝒑

𝒏

𝒊=𝟏

  { (𝒂𝒌𝑼𝒌𝒊
 –
𝟏

𝟐
 𝒂𝒌

𝟐

)

∞

𝒌=𝟏

} 

      = 𝐞𝐱𝐩{   (𝒂𝒌𝑼𝒌𝒊
 –
𝒂𝒌
𝟐

𝟐
 )

∞

𝒌=𝟏

𝒏

𝒊=𝟏

} 

       =  𝒆𝒙𝒑 {𝒏 (𝒂𝒌 𝑼𝒌
    –

𝒂𝒌
𝟐

𝟐
 )

∞

𝒌=𝟏

} 

where  𝑈𝑘
      =1/n  𝑈𝑘𝑖

 .𝑛
𝑖=1   Since m(t) =  (𝑎𝑘𝑒𝑘  (𝑡)∞

𝑘=1 , estimation of m can be carried out by estimating 

 {ak}. For the estimation purpose the above Radom Nikodym derivative can be used as the likelihood function . 

Berder (1987) observed that the above likelihood function is unbounced in {ak} and a direct maximum 

likelihood method cannot be adopted. He introduced a sieve based on orthogonal projection to derive a 

consistant estimator Subramanyam, A and U. N. NaikNimbalkar (1990) has shown that  (𝑤𝑘𝑛(𝑈𝑘
    − 𝑎𝑘

∞
𝑘=1 )𝑒𝑘 

in an optimal estimating function for estimating the mean function m . Solving the equation  

                                              (𝒘𝒌𝒏 (𝒖𝒌    − 𝒂𝒌
∞
𝒌=𝟏 )𝒆𝒌 = 𝟎 

We get  𝑎𝑘   =  𝑈𝑘
    ,  k=1,2,… 

Theorem 3.1 

               The estimating sequence {𝑎𝑘   = 𝑈𝑘
     } is an optimal estimating sequence 

Proof 

Since E (𝑼𝒌𝒊
) = ak 

E(𝑼𝒌
    )=

𝟏

𝒏
∑

n
i=1 𝑼𝒌𝒊

 = ak 

thus {𝑈𝑘
    } is an unbiased estimating sequence. Again since Uk1,………Ukn and iid observations from N(ak,1) 

further ( Uk1,………Ukn) and Ul1,………Uln are independent. Therefore 𝑈𝑘
     is a complete sufficient statistic for ak 

and hence it is MVDE for ak. Thus we consider that {𝑈𝑘
    }is marginally optimal for {ak}. This proves the 

theorem. 

 

IV. Conclusion 
                  A limitation for the estimating sequence is that usually it can not be directly used as an estimator of 

the infinite dimensional parameter (Anilkumar (1994), Subramanian & Naik Nimbalkar(1990). Some 
modifications is to be made on the estimator so that range of the modified estimator falls in the parameter space. 

Method of sieves is one such approach (Beder (1988, 1989). Sometimes a Bayes procedure is useful in picking 

up a suitable estimator (Anilkumar (1994)). But in such modification, one has to sacrifice the optimality 

property enjoyed by the estimating sequence and has to be satisfied by asymptotic properties. However in all 

such situations optimal estimating sequence is a right point to start.  
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