To find a non-split strong dominating set of an interval graph using an algorithm

Dr. A. Sudhakaraiah*, A. Sreenivasulu ${ }^{1}$,V. Rama Latha ${ }^{2}$, E. Gnana Deepika ${ }^{3}$,
Department of Mathematics, S. V. University, Tirupati-517502, Andhra Pradesh, India.

Abstract

In graph theory, a connected component of an undirected graph is a sub graph in which any two vertices are connected to each other by paths. For a graph G, if the subgraph of G itself is a connected component then the graph is called connected, else the graph G is called disconnected and each connected component sub graph is called it's components. A dominating set $D_{s t}$ of graph $G=(V, E)$ is a non-split strong dominating set if the induced sub graph $\left\langle V-D_{s t}\right\rangle$ is connected. The non-split strong domination number of G is the minimum cardinality of a non-split strong dominating set. In this paper constructed a verification method algorithm for finding a non-split strong dominating set of an interval graph.

Keywords: Domination number, Interval graph, Strong dominating set, Strong domination number, split dominating set.

I. Introduction

Let $\mathrm{I}=\left\{\mathrm{I}_{1}, \mathrm{I}_{2}, \ldots, \mathrm{I}_{\mathrm{n}}\right\}$ be the given interval family. Each interval i in I is represented by $\left[a_{i}, b_{i}\right]$, for $i=1,2, \ldots . ., n$. Here a_{i} is called the left endpoint and b_{i} the right endpoint of the interval I_{i}. Without loss of generality we may assume that all end points of the intervals in I which are distinct between 1and 2 n . The intervals are labelled in the increasing order of their right endpoints. Two intervals i and j are said to intersect each other, if they have non-empty intersection. Interval graphs play important role in numerous applications, many of which are scheduling problems. A graph $G=(V, E)$ is called an interval graph if there is a one-to-one correspondence between V and I such that two vertices of G are joined by an edge in E if and only if their corresponding intervals in I intersect. That is, if
$i=\left[a_{i}, b_{i}\right]$ and $j=\left[a_{j}, b_{j}\right]$, then i and j intersect means either $a_{j}<b_{i}$ or $a_{i}<b_{j}$.
Let G be a graph, with vertex set V and edge set E.
The open neighbourhood set of a vertex $v \in V$ is $n b d(v)=\{u \in V / u v \in E\}$.
The closed neighbourhood set of a vertex $v \in V$ is $n b d[v]=n b d(v) \cup\{v\}$.
A vertex in a graph G dominates itself and its neighbors. A set $D \subseteq V$ is called dominating set if every vertex in $\langle V-D\rangle$ is adjacent to some vertex in D . The domination studied in [1-2]. The domination number γ of G is the minimum cardinality of a dominating set. The domination number is well-studied parameter. We can see this from the bibliography [3] on domination. In [4], Sampathkumar and Pushpa Latha have introduced the concept of strong domination in graphs. Strong domination has been studied [5-7]. Kulli. V. R. et all [8] introduced the concept of split and non-split domination[9] in graphs. Also Dr.A. Sudhakaraiah et all [10] discussed an algorithm for finding a strong dominating set of an interval graph using an algorithm . A dominating set D is called split dominating set if the induced subgraph $\langle V-D\rangle$ is disconnected. The split domination number of γ_{s} of G is the minimum cardinality of a split dominating set. Let $G=(V, E)$ be a graph and $u, v \in V$.
Then u strongly dominates v if
(i) $u v \in E$
(ii) $\operatorname{deg} v \leq \operatorname{deg} u$.

A set $\mathrm{D}_{\text {st }} \subseteq \mathrm{V}$ is a strong dominating set of G if every vertex in $V-D_{s t}$ is strongly dominated by at least one vertex in $D_{s t}$. The strong domination number $\gamma_{s t}(G)$ of G is the minimum cardinality of a strong dominating set. A dominating set $D_{s t} \subseteq V$ of a graph G is a Non-split strong dominating set if the induced subgraph $<V-D>$ is connected.Define $N I(i)=j$, if $\mathrm{b}_{i}<a_{j}$ and there do not exist an interval k such that $b_{i}<a_{k}<a_{j}$. If there is no such j, then define $N I(i)=$ null. $\mathrm{N}_{\mathrm{sd}}(\mathrm{i})$ is the set of all neighbors whose degree is greater than degree
of i and also greater than i.If there is no such neighbor then defines $N_{s d}(i)=$ null. $\mathrm{M}(\mathrm{S})$ is the largest highest degree vertex in the set S .

II. Algorithms.

2.1.To find a Strong dominating set (SDS) of an interval graph using an algorithm[9].

 Input : Interval family $I=\left\{I_{1}, I_{2}, \ldots . ., I_{n}\right\}$.Output : Strong dominating set of an interval graph of a given interval family.
Step $1: S_{1}=n b d[1]$.
Step $2: \mathrm{S}=$ The set of vertices in S_{1} which are adjacent to all other vertices in S_{1}.
Step $3: \mathrm{D}_{\text {st }}=$ The largest highest degree interval in S .
Step $4: \mathrm{LI}=$ The largest interval in $\mathrm{D}_{s t}$
Step 5 : If $\mathrm{N}_{s d}(L I)$ exists
Step 5.1: $\mathrm{a}=\mathrm{M}\left(\mathrm{N}_{s d}(L I)\right)$.
Step $5.2: \mathrm{b}=$ The largest highest degree interval in nbd [a].
Step $5.3: \mathrm{D}_{s t}=D_{s t} \cup\{b\}$ goto step 4.
end if
else
Step 6 : Find NI(LI)
Step 6.1: If $\mathrm{NI}(\mathrm{LI})$ null goto step 7.
Step 6.2 : $\mathrm{S}_{2}=n b d[N I(L I)]$.
Step $6.3: \mathrm{S}_{3}=$ The set of all neighbors of $N I(L I)$ which are greater than or equal to $N I(L I)$
Step 6.4 : $\mathrm{S}_{4}=$ The set of all vertices in S_{3} which are adjacent to all vertices in S_{3}.
Step 6.5 : $\mathrm{c}=$ The largest highest degree interval in S_{4}.
Step $6.6: \mathrm{D}_{s t}=D_{s t} \cup\{c\}$ goto step 4.
Step 7 : End.

```
2.2.To find a Non-split Strong dominating set (NSSDS) of an interval graph using an algorithm.
Input : Interval family I= {I I, I, 发,------------- In } .
Output : Whether a strong dominating set is a non split strong dominating set or not.
Step1:S S =nbd[1]
Step2:S=The set of vertices in S}\mp@subsup{S}{1}{}\mathrm{ which are adjacent to all other vertices in S}\mp@subsup{S}{1}{}\mathrm{ .
Step3: D }\mp@subsup{\textrm{st}}{\textrm{t}}{}=\mathrm{ The largest highest degree interval in S .
Step4 : LI=The largest interval in D}\mp@subsup{\textrm{D}}{\mathrm{ st }}{
Step5: If W Wd
    Step 5.1 : }\textrm{a}=\textrm{M}(\mp@subsup{\textrm{N}}{\textrm{sd}}{}(\textrm{LI})
    Step 5.2: b=The largest highest degree interval in nbd[a]
    Step 5.3: D D st = D Dt }\cup{b}\mathrm{ go to step 4
    End if
    Else
Step 6 : Find NI(LI).
    Step 6.1: If NI(LI)=null go to step 7.
    Step 6.2 : S S =nbd[NI(LI)]
    Step 6.3: S S = The set of all neighbors of NI(LI) which are greater than or
                equal to NI(LI).
```

 Step 6.4 : \(\mathrm{S}_{4}=\) The set of all vertices in \(\mathrm{S}_{3}\) which are adjacent to all
 vertices in \(\mathrm{S}_{3}\).
 Step 6.5 : \(\mathrm{c}=\) The largest highest degree interval in \(\mathrm{S}_{4}\).
 Step \(6.6: \mathrm{D}_{s t}=D_{s t} \cup\{c\}\) goto step 4.
 Step 7 : V=\{1, 2,3,------------n\}
Step 8 : $\left|\mathrm{D}_{\text {st }}\right|=\mathrm{k}$
Step 9: $\mathrm{S}_{\mathrm{N}}=\left\{V-D_{\text {st }}\right\}=\left\{\mathrm{S}_{1}, \mathrm{~S}_{2}, \mathrm{~S}_{3},-\cdots-\cdots----, \mathrm{S}_{\mathrm{k}}\right\}, \mathrm{k}_{1} \leq \mathrm{n}-\mathrm{k}$

```
Step 10 : for \(\left(i=1\right.\) to \(\left.k_{1}-1\right)\)
    \{
    For \(\left(\mathrm{j}=\mathrm{i}+1\right.\) to \(\left.\mathrm{k}_{1}\right)\)
    \{
    If \(\left(\mathrm{S}_{\mathrm{i}}, \mathrm{S}_{\mathrm{j}}\right) \in \mathrm{E}\) of G then plot \(\mathrm{S}_{\mathrm{i}}\) to \(\mathrm{S}_{\mathrm{j}}\)
\} \}
The induced sub graph \(\mathrm{G}_{1}=\mathrm{V}-\mathrm{D}_{\text {st }}\) is obtained
Step 11 : If \(W\left(G_{1}\right)=1\)
\(\mathrm{D}_{\text {st }}\) is non split strong dominating set
Else
\(\mathrm{D}_{\text {st }}\) is split strong dominating set
End.
```


III. Main Theorems

Theroem 1: Let G be an interval graph corresponding to an interval family $I=\left\{I_{1}, I_{2}, I_{3},--\cdots--I_{n}\right\}$. If i and j are any two intervals in I such that $i \in D_{\text {st }}$ is minimum strong dominating set of the given interval graph $G, j \neq 1$ and j is contained in i and if there is at least one interval to the left of j that intersects j and at least one interval $k \neq i$ to the right of j that intersects j then $D_{s t}$ is a non split strong domination.
Proof : Let G be an interval graph corresponding to an interval family $I=\left\{I_{1}, I_{2}, I_{3}, \cdots---I_{n}\right\}$. Let i and j be any two intervals in I such that $i \in D_{\text {st }}$, where $D_{\text {st }}$ is a minimum strong dominating set of the given interval graph G, $\mathrm{j} \neq 1$ and j is contained in i and suppose there is at least one interval to the left of j that intersects j and at least one interval $\quad \mathrm{k} \neq \mathrm{i}$ to the right of j that intersects j . Then it is obviously we know that j is adjacent to k in the induced subgraph $\left\langle\mathrm{V}-\mathrm{D}_{\mathrm{st}}\right\rangle$.Then there will be a connection in $\left\langle\mathrm{V}-\mathrm{D}_{\mathrm{st}}\right\rangle$ to its left.

Interval family I
As follows an algorithm with illustration for neighbours as given interval family I. We construct an interval graph G from interval family $\mathrm{I}=\{1,2,3,------10\}$ as follows
$\operatorname{nbd}[1]=\{1,2,3\}, \quad \operatorname{nbd}[2]=\{1,2,3,4\}, \quad \operatorname{nbd}[3]=\{1,2,3,4,6\}$,
$\operatorname{nbd}[4]=\{2,3,4,5,6\}, \quad \operatorname{nbd}[5]=\{4,5,6,7\}, \quad \operatorname{nbd}[6]=\{3,4,5,6,7,9\}$,
$\operatorname{nbd}[7]=\{5,6,7,8,9\}, \quad \operatorname{nbd}[8]=\{7,8,9,10\}, \quad \operatorname{nbd}[9]=\{6,7,8,9,10\}$,
nbd[10] $=\{8,9,10\}$.
$\mathrm{N}_{\mathrm{sd}}(1)=\{2,3\}, \quad \mathrm{N}_{\mathrm{sd}}(2)=\{3,4\}, \quad \mathrm{N}_{\mathrm{sd}}(3)=\{6\}, \quad \mathrm{N}_{\mathrm{sd}}(4)=6, \quad \mathrm{~N}_{\mathrm{sd}}(5)=\{6\}, \quad \mathrm{N}_{\mathrm{sd}}(6)=n u l l, \quad \mathrm{~N}_{\mathrm{sd}}(7)=n u l l, \quad \mathrm{~N}_{\mathrm{sd}}(8)=\{9\}$,
$\mathrm{N}_{\mathrm{sd}}(9)=$ null,$\quad \mathrm{N}_{\mathrm{sd}}(10)=$ null.
$\mathrm{NI}(1)=4, \quad \mathrm{NI}(2)=5, \quad \mathrm{NI}(3)=5, \quad \mathrm{NI}(4)=7, \quad \mathrm{NI}(5)=8, \quad \mathrm{NI}(6)=8, \quad \mathrm{NI}(7)=10, \quad \mathrm{NI}(8)=$ null, $\quad \mathrm{NI}(9)=$ null,
$\mathrm{NI}(10)=$ null.
Procedure for finding a non-split strong dominating set of an interval graph using an algorithm.
Step 1: $S_{1}=\{1,2,3\}$.
Step 2: $S=\{1,2,3\}$.
Step 3: $\mathrm{D}_{\mathrm{st}}=\{3\}$.
Step 4 : LI=3.
Step 5 : $\mathrm{N}_{\mathrm{sd}}(3)=\{6\}$.
Step 5.1: $\mathrm{a}=\mathrm{M}\left(\mathrm{N}_{\mathrm{sd}}(3)\right)=\mathrm{M}(\{6\})=6$.
Step 5.2 : $\mathrm{b}=6$.
Step $5.3: \mathrm{D}_{\text {st }}=\{3\} \cup\{6\}=\{3,6\}$
Step 6 : LI=6.
Step 7 : NI(6)=8
Step7.1: $\mathrm{S}_{2}=\operatorname{nbd}[8]=\{7,8,9,10\}$.
Step7.2: $S_{3}=\{8,9,10\}$.
Step7.3: $\mathrm{S}_{4}=\{8,9,10\}$
Step7.4:c=9.
Step7.5: $\mathrm{D}_{\text {st }}=\mathrm{D}_{\text {st }} \cup\{9\}=\{3,6\} \cup\{9\}=\{3,6,9\}$.
Step 8 : V=\{1,2,3,--------10\}

```
Step 9 : \(\left|D_{\text {st }}\right|=3\)
Step10 : \(\mathrm{S}_{\mathrm{N}}=\{1,2,3,4,5,6,8,10\}\)
Step11 : for \(\mathrm{i}=1, \mathrm{j}=2,(1,2) \in \mathrm{E}\), plot 1 to 2
    for \(i=2, j=3,(2,3) \in E\), plot 2 to 3
    for \(i=3, j=4,(4,5) \in E\), plot 4 to 5
        \(j=5,(4,6) \in E\), plot 4 to 6
    for \(\mathrm{i}=4, \mathrm{j}=5,(5,6) \in \mathrm{E}\), plot 5 to 6
        \(j=6,(5,7) \in E\), plot 5 to 7
    for \(\mathrm{i}=5, \mathrm{j}=6,(6,7) \in \mathrm{E}\), plot 6 to 7
    for \(i=6, j=7,(7,8) \in E\), plot 7 to 8
    for \(i=7, j=8,(8,10) \in E\), plot 8 to 10
```

The induced sub graph $\mathrm{G}_{1}=\left\langle V-D_{\text {st }}\right\rangle$ is obtained.
Step12: $\mathrm{W}\left(\mathrm{G}_{1}\right)=1$
Therefore $\mathrm{D}_{\text {st }}$ is the non split dominating set .
Step13: End
Out put : $\{3,6,9\}$ is a non split strong dominating set .
Theorem 2: If i and j are two intervals in I such that $i \in D_{\text {st }}$ where $D_{\text {st }}$ is a minimum dominating set of $G, j=1$ and j is contained in i and if there is one more interval other than i that intersects j then non-split strong domination occurs in G .
Proof : Let $I=\left\{I_{1}, I_{2}, I_{3}, I_{4}, \cdots-\cdots--I_{n}\right\}$ be an interval family. Let $j=1$ be the interval contained in i where $i \in D_{s t}$, where $D_{\text {st }}$ is the minimum strong dominating set of G. Suppose k is an interval, $k \neq i$ and k intersect j. Since $\mathrm{i} \in \mathrm{D}_{\text {st }}$, the induced subgraph $\left\langle V-D_{\text {st }}\right\rangle$ does not contain i. Further in $\left\langle V-D_{\text {st }}\right\rangle$, the vertex j is adjacent to the vertex k and hence there will not be any disconnection in $\left\langle\mathrm{V}-\mathrm{D}_{\mathrm{st}}\right\rangle$. Therefore we get non split strong domination in G .In this connection as follows an algorithm .

Interval family I
As follows an algorithm with illustration for neighbours as given interval family I. We construct an interval graph G from interval family $\mathrm{I}=\{1,2,3,-------10\}$ as follows $\operatorname{nbd}[1]=\{1,2,3\}, \quad \operatorname{nbd}[2]=\{1,2,3,4\}, \quad \operatorname{nbd}[3]=\{1,2,3,4,6\}$, $\operatorname{nbd}[4]=\{2,3,4,6,7\}, \quad \operatorname{nbd}[5]=\{5,6,7\}, \quad \operatorname{nbd}[6]=\{3,4,5,6,7,8\}$, $\operatorname{nbd}[7]=\{4,5,6,7,8,9\}, \quad \operatorname{nbd}[8]=\{6,7,8,9,10\}, \operatorname{nbd}[9]=\{7,8,9,10\}, \operatorname{nbd}[10]=\{8,9,10\}$.
$N_{\mathrm{sd}}(1)=\{2,3\}, \quad \mathrm{N}_{\mathrm{sd}}(2)=\{3,4\}, \mathrm{N}_{\mathrm{sd}}(3)=\{4\}, \quad \mathrm{N}_{\mathrm{sd}}(4)=\{7\}, \quad \mathrm{N}_{\mathrm{sd}}(5)=\{7\}, \quad \mathrm{N}_{\mathrm{sd}}(6)=\{7\}, \quad \mathrm{N}_{\mathrm{sd}}(7)=$ null, $\quad \mathrm{N}_{\mathrm{sd}}(8)=$ null $\quad \mathrm{N}_{\mathrm{sd}}(9)=$ null, $\quad \mathrm{N}_{\mathrm{sd}}(10)=$ null.
$\mathrm{NI}(1)=4, \quad \mathrm{NI}(2)=5, \quad \mathrm{NI}(3)=5, \quad \mathrm{NI}(4)=5, \quad \mathrm{NI}(5)=8, \quad \mathrm{NI}(6)=9, \quad \mathrm{NI}(7)=10, \quad \mathrm{NI}(8)=n u l l, \quad \mathrm{NI}(9)=n u l l$, $\mathrm{NI}(10)=$ null.

Procedure for finding a non-split strong dominating set of an interval graph using an algorithm.

Step 1: $S_{1}=\{1,2,3\}$
Step 2 : $\mathrm{S}=\{1,2,3\}$
Step 3 : $\mathrm{D}_{\mathrm{st}}=3$
Step 4 : LI=3
Step 5 : $\mathrm{N}_{\mathrm{sd}}(3)=6$
Step 6: $\mathrm{a}=6$
Step 7: b=7
Step $8: \mathrm{D}_{\text {stt }}=\{3\} \cup\{7\}=\{3,7\}$
Step 9 : LI=7
Step10 : NI(7)=10

$$
\text { Step10.1: } S_{2}=\{8,9,10\}
$$

Step10.2 : $\mathrm{S}_{3}=\{10\}$
Step10.3: $\mathrm{S}_{4}=\{10\}$
Step10.4: b=10
Step10.5: $\mathrm{D}_{\text {st }}=\{3,7,9\}$
Step11:V=\{1,2,3,-------10\}
Step 12: $\left|D_{\text {st }}\right|=3$
Step13 : $\mathrm{S}_{\mathrm{N}}=\{1,2,4,5,6,8,9\}$

Step14 : for $\mathrm{i}=1, \mathrm{j}=2,(1,2) \in \mathrm{E}$, plot 1 to 2
for $i=2, j=3,(2,4) \in E$, plot 2 to 4
for $\mathrm{i}=3, \mathrm{j}=4,(4,5) \in \mathrm{E}$, plot 4 to 5
for $\mathrm{i}=4, \mathrm{j}=5,(5,6) \in \mathrm{E}$, plot 5 to 6
for $\mathrm{i}=5, \mathrm{j}=6, \quad(6,8) \in \mathrm{E}$, plot 6 to 8
for $\mathrm{i}=6, \mathrm{j}=7,(8,9) \in \mathrm{E}$, plot 8 to 9
The induced subgraph $\mathrm{G}_{1}=\left\langle\mathrm{V}-\mathrm{D}_{\text {st }}\right\rangle$ is obtained .
Step15: $W\left(G_{1}\right)=1$.
Therefore $\mathrm{D}_{\text {st }}$ is the non split strong dominating set.
Step16: End
Output : $\{3,7,10\}$ is a non split strong dominating set .
Theorem 3 : Let $D_{\text {st }}$ be a strong dominating set which is obtained by algorithm SDS. If i, j, k are three consecutive intervals such that $\mathrm{i}<\mathrm{j}<\mathrm{k}$ and $\mathrm{j} \in \mathrm{D}_{\text {st }}$, i intersects j , j intersect k and i interest k then non split strong domination occurs in G .
Proof : Suppose $I=\left\{I_{1}, I_{2}, I_{3},-----I_{n}\right\}$ be an interval family. Let i, j, k be three consecutive intervals satisfying the hypothesis. Now i and k intersect implies that i and k are adjacent induced sub graph $\left\langle\mathrm{V}_{\text {st }}\right\rangle$ an algorithm as follows .

Interval family I
As follows an algorithm with illustration for neighbours as given interval family I. We construct an interval graph G from interval family $\mathrm{I}=\{1,2,3,-------10\}$ as follows
$\operatorname{nbd}[1]=\{1,2,3\}, \quad \operatorname{nbd}[2]=\{1,2,3,4\}, \quad \operatorname{nbd}[3]=\{1,2,3,4,5\}$,
$\operatorname{nbd}[4]=\{2,3,4,5,6\}, \quad \operatorname{nbd}[5]=\{3,4,5,6,7\}, \operatorname{nbd}[6]=\{4,5,6,7,8\}$,
$\operatorname{nbd}[7]=\{5,6,7,8,9\}, \quad \operatorname{nbd}[8]=\{6,7,8,9\}, \quad \operatorname{nbd}[9]=\{7,8,9,10\}, \operatorname{nbd}[10]=\{9,10\}$.
$\mathrm{N}_{\mathrm{sd}}(1)=\{2,3\}, \quad \mathrm{N}_{\mathrm{sd}}(2)=\{3,4\}, \mathrm{N}_{\mathrm{sd}}(3)=$ null, $\mathrm{N}_{\mathrm{sd}}(4)=$ null, $\mathrm{N}_{\mathrm{sd}}(5)=$ null, $\mathrm{N}_{\mathrm{sd}}(6)=$ null, $\mathrm{N}_{\mathrm{sd}}(7)=$ null,
$\mathrm{N}_{\mathrm{sd}}(8)=$ null, $\quad \mathrm{N}_{\mathrm{sd}}(9)=$ null, $\quad \mathrm{N}_{\mathrm{sd}}(10)=$ null.
$\mathrm{NI}(1)=4, \quad \mathrm{NI}(2)=5, \quad \mathrm{NI}(3)=6, \quad \mathrm{NI}(4)=7, \quad \mathrm{NI}(5)=8, \quad \mathrm{NI}(6)=9, \quad \mathrm{NI}(7)=10, \quad \mathrm{NI}(8)=10, \quad \mathrm{NI}(9)=$
null, $\mathrm{NI}(10)=$ null.

Procedure for finding a non-split strong dominating set of an interval graph using an algorithm.

Step 1: $\mathrm{S}_{1}=\{1,2,3\}$

Step 2 : $\mathrm{S}=\{1,2,3\}$
Step 3 : $\mathrm{D}_{\mathrm{st}}=3$
Step 4 : LI=3
Step 5 : $\mathrm{NI}(3)=6$
Step 6 : Nbd[6]=\{4,5,6,7,8\}
Step 6.1: $S_{3}=\{6,7,8\}$
Step 6.2 : $S_{3}=\{6,7,8\}$
Step 6.3 : $\mathrm{S}_{4}=\{6,7,8\}$
Step 6.4 : c=8
Step 6.5 : $D_{\text {st }}=\{3,8\}$
Step 7 : LI=8
Step 8 : NI(8)=null
Step 9 : V=\{1,2,3,--------10\}
Step10: $\left|D_{\text {st }}\right|=2$
Step11: $\mathrm{S}_{\mathrm{N}}=\{1,2,4,5,6,9,10\}$
Step12 : for $i=1, j=2,(1,2) \in E$, plot 1 to 2 for $\mathrm{i}=2, \mathrm{j}=3,(2,4) \in \mathrm{E}$, plot 2 to 4 for $\mathrm{i}=3, \mathrm{j}=4,(4,5) \in \mathrm{E}$, plot 4 to 5 $j=5,(4,6) \in E$, plot 4 to 6
for $\mathrm{i}=4, \mathrm{j}=5,(5,6) \in \mathrm{E}$, plot 5 to 6 $\mathrm{j}=6,(5,7) \in \mathrm{E}$, plot 5 to 7
for $\mathrm{i}=5, \mathrm{j}=6,(6,7) \in \mathrm{E}$, plot 6 to 7
for $\mathrm{i}=6, \mathrm{j}=7,(7,9) \in \mathrm{E}$, plot 7 to 9
The induced sub graph G_{1} is obtained .
Step13:W $\left(\mathrm{G}_{1}\right)=1$
Therefore $\mathrm{D}_{\text {st }}$ is the non split strong dominating set.
Step14: End
Output: $\{3,8\}$ is a non split strong dominating set .

IV. Conclusions

We studied the non-split strong domination in interval graphs. In this paper we discussed a verification method algorithm for finding a non-split strong dominating set of an interval graph.

Acknowledgements

The authors would like to express their gratitude of the anonymous referees for their suggestions and inspiring comments on this paper

References

[1]. T. W. Haynes, S.T. Hedetniemi and P.J.Slater, Fundamentals of domination in graphs, Marcel Dekker, Inc., New York (1998).
[2]. T. W. Haynes, S.T. Hedetniemi and P.J.Slater, Domination in Graphs: advanced topics, Marcel Dekker, Inc., New York (1998).
[3]. Hedetniemi, S. T, Laskar, R. C. , Bibliography on domination in graphs and some basic definitions of domination parameters, Discrete Mathematics 86 (1-3), (1990), 257-277.
[4]. Sampathkumar, E., and Pushpa Latha, Strong weak domination and domination balance in graph, Discrete Math. Vol. 161, 1996, p. 235-242.
[5]. Domke et.al, On parameters related to strong and weak domination in graphs, Discrete Math. Vol. 258, (2002) p. ,1-11.
[6]. Hattingh J.H., Henning M.A., On strong domination in Graphs, J. Combin. Math. Combin. Comput. Vol.26, (1998) p. 73-92.
[7]. Rautenbach, D., Bounds on the strong domination number, Discrete Math. Vol. 215, (2000) p. 201-212.
[8]. Kulli, V. R. and Janakiram, B., The Non-Split domination number of graph, International Journal of management and systems. Vol.19. No.2, p. 145-156, 2000.
[9]. Maheswari, B., Nagamuni Reddy, L., and A. Sudhakaraiah , Split and Non-split dominating set of circular-arc graphs, J. curr. Sci Vol 3. No.2, (2003)p. 369-372.
[10]. Dr. A. Sudhakaraiah, V. Rama Latha, E. Gnana Deepika and T.Venkateswarulu, To Find Strong Dominating Set and Split Strong Dominating Set of an Interval Graph Using an Algorithm, IJSER , Vol. 2,(2012), 1026-1034.

