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 Abstract: We develop and analyze a mathematical model on malaria dynamics using ordinary differential 

equations, in order to investigate the effect of certain parameters on the transmission and spread of the disease. 

We introduce dimensionless variables for time, fraction of infected human and fraction of infected mosquito and 

solve the resulting system of ordinary differential equations numerically. Equilibrium points are established and 

stability criteria analyzed. The results reveal that the parameters play a crucial role in the interaction between 
human and infected mosquito. 
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I. Introduction 
Malaria is a parasitic vector-borne disease caused by a protozoan parasite of the genus Plasmodium. 

The disease is transmitted to humans by a mosquito of the genus Anopheles. Each time an Anopheles mosquito 

bites an infected person, it becomes infected with the malaria parasite. Thereafter, the malaria parasites replicate 

inside the mosquito’s body. The mosquito then retransmits the parasites to anyone that it bites through its saliva. 

The parasites undergo series of transformations inside the human body until malaria symptoms become apparent 

in about seven to twenty one days after infection. Malaria is a serious disease which if left untreated could result 

in death. According to World Health Organization (WHO) estimates malaria is responsible for almost one 

million deaths a year in Sub-Saharan Africa. However, malaria is a disease that can be prevented, if standard 
and adequate measures are put in place, or contained, leading to an outbreak of the disease in small proportion 

(epidemic), or even widespread outbreak of the disease (endemic).  

The first attempt at mathematical modeling of malaria is attributed to Ross [1]. A major extension of 

Ross’ model was carried out by Macdonald [2]. In its simplest form, the Ross-Macdonald model has the 

representation: 

 

 
Ever since, there has been various modifications, improvements and advancements in mathematical 

modeling of malaria. In their model, Aron and May [3] considered some malaria characteristics such as an 

incubation period in the mosquito, a periodically fluctuating density of mosquitoes, superinfection and a period 

of immunity in humans. Anderson and May [4] considered the effect of age structure on the basic Ross-

Macdonald model. Roberts and Heesterbeek [5] gave an overview of the use of mathematical models to explain 

the epidemiology of infectious diseases, and to assess the potential benefits of proposed control strategies with 

special reference to malaria. Chitnis [6] modeled malaria using ordinary differential equations. He analyzed the 

existence and stability of disease-free and endemic equilibria. 

This is an attempt to investigate the effects of certain parameters involved in the dynamics of malaria 
epidemiology through mathematical modeling, with the aim of describing the distribution of the disease, 

identifying the risk factors, for the disease, and providing a source of information for planners and 

administrators involved in various prevention, detection and control programmes. 

 

II. Materials and Methods 
Following Roberts and Heesterbeek [5] we analyze a simple malaria model as follows: 

 
where 

  = Fraction of infected human. 

  = Fraction of infected mosquitos. 

  Number of female mosquitoes per human host in an infection free state. 
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 = Per biting rate of mosquitoes on humans. 

  = Probability that a bite by an infectious mosquito transmits the agent. 

 = Probability that a bite of an infected human by a susceptible mosquito results in transmission of the                                                                                                                                                    

        agent to the mosquito. 

 = Rate at which humans recover from infection. 

 = Per capita death rate of mosquitos. 

     We introduce dimensionless variable for fraction of infected human, fraction of infected mosquitos and time. 

That is, we let 

 

 

 
Then  

 

 

 

 

 

 
Substituting (7) – (12) into  the first equation of (3) gives: 

 

 

 
Similarly, on substituting (7) – (12) into  the second equation of (3) gives: 

 

 
 

 

 
Therefore, the non-dimensionalized equations are 

 
Where 

 
   is the per capita biting rate of mosquitoes on human. 

 is the number of female mosquitoes per human host in an infection free steady state. 

    is the per capita death rate of mosquitoes. 
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2.1  Equilibria 

Disease free equilibrium:- This is the equilibrium that is attained by an entirely healthy population in the 

absence of mosquitoes: 

 

 
Endemic equilibrium:- At this state, the human contains the susceptible and infected. The equilibrium generally 

takes the form: 

 

 
 

2.3  Stability Analysis 
The jacobian matrix of (20) is represented by: 

 
The linearization of equation (20) at  is: 

 
where  

 

 
The eigenvalue relation of (26) is: 

 

 
Thus, 

 

 

 
 

Table 2.1  Stability properties of linear systems 

Eigenvalue Type of critical point Stability 

 
Improper node Unstable 

 
Improper node Asymptotically stable 

 
Saddle point Unstable 

 
Proper or improper node Unstable 

 
Proper or improper node Asymptotically stable 

 
Spiral point  

 
 Unstable 

 
 Asymptotically stable 

 
Centre Stable 

 

Table 2.1 provides information on the type of stability that could result based on the nature of the eigenvalues of 

a linear system. By definition, all parameters are non-negative. Thus,  

1. If  and  the eigenvalues are real, unequal and negative. Hence, the 

critical point  is an asymptotically stable improper node of the system. 

2. If  the eigenvalues are negative. Hence, the critical point  is globally 

asymptotically stable. 

3. If  and  we have one negative root and two complex roots whose real 

parts are equal and negative. Hence, the critical point  is globally asymptotically stable. 

      The linearization of equation (20) at  is: 
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where  

 

 

 

 
The eigenvalue equation of (34) is therefore: 

 

 
Which leads to: 

 

 

 
Thus, 

1. If  and  the eigenvalues are real, unequal and negative. Hence, the 

critical point  is an asymptotically stable improper node of the system. 

2. If  the eigenvalues are negative. Hence, the critical point  is globally 

asymptotically stable. 

3. If  and  we have one negative root and two complex roots whose 

real parts are equal and negative. Hence, the critical point  is globally asymptotically stable 

 

III. Results and Discussion 
System (20) is solved numerically using Runge-Kutta integration scheme with a modified version of 

Newton-Raphson shooting method with  as prescribed parameters. The computations were effected 

with the aid of MAPLE software package.  

 

Table 3.1 The numbers of infected mosquitoes  at time  for different values of  when 

 and  

         

0 10 10 10      

0.1 6.307438 7.028782 7.505982  1.1 0.680533 1.324564 1.74744 

0.2 4.461663 5.688294 6.374458  1.2 0.600122 1.155204 1.533901 

0.3 3.31832 4.727512 5.466857  1.3 0.535898 1.012702 1.350544 

0.4 2.544652 3.964324 4.701035  1.4 0.484005 0.89233 1.192761 

0.5 1.997105 3.342174 4.051184  1.5 0.441587 0.790231 1.056664 

0.6 1.598968 2.830669 3.498951  1.6 0.406512 0.703259 0.938978 

0.7 1.303937 2.408395 3.02918  1.7 0.377173 0.628842 0.836943 

0.8 1.082003 2.058739 2.62911  1.8 0.352354 0.564877 0.748233 

0.9 0.912858 1.768393 2.287961  1.9 0.331126 0.509642 0.670887 

1 0.782375 1.526586 1.996632  2 0.312777 0.461721 0.603251 

 

It is observed that the population of infected mosquitoes, y(t), increases as per capita biting rate of 

mosquitoes on human, β, decreases.  
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Table 3.2 The numbers of infected human  at time  for different values of  when  

and  

         

0 5 5 5      

0.1 3.096693 1.537987 0.851371  1.1 1.22183 0.632655 0.445965 

0.2 2.433385 1.01735 0.60548  1.2 1.154859 0.603486 0.427726 

0.3 2.106858 0.888508 0.572797  1.3 1.092208 0.574555 0.409282 

0.4 1.905678 0.837103 0.557788  1.4 1.033643 0.546068 0.390767 

0.5 1.760408 0.804022 0.543965  1.5 0.978959 0.518206 0.372313 

0.6 1.643581 0.775415 0.529506  1.6 0.927963 0.491123 0.354039 

0.7 1.543002 0.747561 0.514207  1.7 0.880461 0.464943 0.336055 

0.8 1.45284 0.719433 0.498103  1.8 0.836257 0.43976 0.318458 

0.9 1.370161 0.690833 0.481284  1.9 0.795153 0.415644 0.30133 

1 1.293436 0.661844 0.463863  2 0.756952 0.392638 0.28474 

 

The population of infected human, x(t), increases as per capita biting rate of mosquitoes on human, β, 

increases. 

 

Table 3.2 The numbers of infected mosquitoes  at time  for different values of  when 

 and  

    

     
0 10 10 10      

0.1 6.307438 5.946536 5.612748  1.1 0.782375 0.508089 0.440167 

0.2 4.461663 3.784062 3.238716  1.2 0.600122 0.429714 0.403296 

0.3 3.31832 2.525192 1.976655  1.3 0.535898 0.404368 0.391487 

0.4 2.544652 1.76302 1.298392  1.4 0.484005 0.38454 0.382079 

0.5 1.997105 1.28908 0.925809  1.5 0.441587 0.368601 0.374285 

0.6 1.598968 0.987431 0.7153  1.6 0.406512 0.355452 0.367612 

0.7 1.303937 0.791019 0.592413  1.7 0.377173 0.344349 0.361751 

0.8 1.082003 0.660111 0.518003  1.8 0.352354 0.334774 0.356501 

0.9 0.912858 0.570714 0.471086  1.9 0.331126 0.326368 0.351732 

1 0.782375 0.508089 0.440167  2 0.312777 0.318873 0.347354 

 

The population of infected mosquitoes decreases as the human recovery rate, α, increases.  

 

Table 3.4 The numbers of infected human  at time  for different values of  when  

and  

    

     
0 5 5 5      

0.1 3.096693 4.141766 5.159287  1.1 1.22183 2.132455 2.943887 

0.2 2.433385 3.770204 5.030365  1.2 1.154859 2.011282 2.786302 

0.3 2.106858 3.515945 4.809043  1.3 1.092208 1.9009 2.645322 

0.4 1.905678 3.299549 4.55078  1.4 1.033643 1.800617 2.519376 

0.5 1.760408 3.099739 4.281572  1.5 0.978959 1.709667 2.406918 

0.6 1.643581 2.911027 4.016443  1.6 0.927963 1.627265 2.306491 

0.7 1.543002 2.732678 3.764196  1.7 0.880461 1.552639 2.216749 

0.8 1.45284 2.565212 3.529557  1.8 0.836257 1.485047 2.136476 

0.9 1.370161 2.409216 3.314567  1.9 0.795153 1.423795 2.064581 

1 1.293436 2.264983 3.119567  2 0.756952 1.368241 2.000098 

 

The population of infected human increases as the human recovery rate, α, increases. 
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Table 3.5 The numbers of infected mosquitoes  at time  for different values of  when 

 and  

    

     
0 5 5 5      

0.1 3.096693 3.086413 3.066167  1.1 1.22183 1.279857 1.379087 

0.2 2.433385 2.418203 2.389287  1.2 1.154859 1.224088 1.340409 

0.3 2.106858 2.093106 2.068181  1.3 1.092208 1.172619 1.305692 

0.4 1.905678 1.896816 1.882173  1.4 1.033643 1.125116 1.274505 

0.5 1.760408 1.758466 1.757298  1.5 0.978959 1.081292 1.246489 

0.6 1.643581 1.649905 1.663979  1.6 0.927963 1.040888 1.221329 

0.7 1.543002 1.558567 1.588933  1.7 0.880461 1.003657 1.198745 

0.8 1.45284 1.478374 1.52566  1.8 0.836257 0.969364 1.178484 

0.9 1.370161 1.406202 1.470748  1.9 0.795153 0.937786 1.160314 

1 1.293436 1.340357 1.422277  2 0.756952 0.908708 1.144024 

              

 The population of infected mosquitoes increases as the number of female mosquitoes per human host in an 

infection free steady state σ increases. 

 

Table 3.6 The numbers of infected human   at time  for different values of  when  and 

 

    

     
0 10 10 10      

0.1 6.307438 6.462039 6.770258  1.1 0.680533 0.971118 1.563502 

0.2 4.461663 4.686564 5.133346  1.2 0.600122 0.887358 1.477027 

0.3 3.31832 3.580747 4.101029  1.3 0.535898 0.819774 1.406901 

0.4 2.544652 2.827539 3.388144  1.4 0.484005 0.764596 1.349483 

0.5 1.997105 2.290648 2.872949  1.5 0.441587 0.719023 1.302033 

0.6 1.598968 1.897315 2.490474  1.6 0.406512 0.680951 1.262477 

0.7 1.303937 1.603549 2.201215  1.7 0.377173 0.648793 1.229229 

0.8 1.082003 1.38075 1.979249  1.8 0.352354 0.62134 1.201067 

0.9 0.912858 1.209481 1.806775  1.9 0.331126 0.597667 1.177043 

1 0.782375 1.076162 1.671212  2 0.312777 0.577058 1.156417 

 

The population of infected human increases as the number of female mosquitoes per human host in an 

infection free steady state σ increases. 
 

Table 3.7 The numbers of infected mosquitoes  at time  for different values of  when 

 and  

    

     
0 5 5 5      

0.1 3.096693 3.479679 3.746678  1.1 1.22183 1.208336 1.350807 

0.2 2.433385 2.989026 3.335254  1.2 1.154859 1.100999 1.226213 

0.3 2.106858 2.665655 3.005673  1.3 1.092208 1.004466 1.113951 

0.4 1.905678 2.399594 2.713186  1.4 1.033643 0.917558 1.012737 

0.5 1.760408 2.166862 2.450933  1.5 0.978959 0.839229 0.921423 

0.6 1.643581 1.959877 2.21546  1.6 0.927963 0.768551 0.838982 

0.7 1.543002 1.774897 2.003929  1.7 0.880461 0.704699 0.764497 

0.8 1.45284 1.609295 1.813829  1.8 0.836257 0.646943 0.69715 

0.9 1.370161 1.460897 1.642913  1.9 0.795153 0.594635 0.636208 

1 1.293436 1.327804 1.489172  2 0.756952 0.547201 0.581018 

 

         The population of infected mosquitoes decreases as per capita death rate of mosquitoes, v, increases.  
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Table 3.8 The numbers of infected human  at time  for different values of  when  

and  

    

     
0 10 10 10      

0.1 6.307438 2.310349 0.581018  1.1 0.680533 0.096826 0.059375 

0.2 4.461663 0.744322 0.155376  1.2 0.600122 0.093137 0.057117 

0.3 3.31832 0.320288 0.085613  1.3 0.535898 0.08951 0.054846 

0.4 2.544652 0.18891 0.075494  1.4 0.484005 0.085931 0.052573 

0.5 1.997105 0.142982 0.072395  1.5 0.441587 0.0824 0.050307 

0.6 1.598968 0.124335 0.070207  1.6 0.406512 0.078924 0.048057 

0.7 1.303937 0.115053 0.068112  1.7 0.377173 0.075509 0.045832 

0.8 1.082003 0.10919 0.065987  1.8 0.352354 0.072164 0.043639 

0.9 0.912858 0.104641 0.063819  1.9 0.331126 0.068896 0.041487 

1 0.782375 0.100621 0.061612  2 0.312777 0.065711 0.039381 

 

The population of infected human increases and later decreases as per capita death rate of mosquitoes v 

increases. 

 

IV. Conclusion 
A simple malaria model that captures the essential elements of malaria epidemiology has been 

analyzed and investigated, resulting in a system of ordinary differential equations (ODEs). The simulations were 

conducted using the Runge-Kutta integration scheme with a modified version of Newton-Raphson shooting 

method with  (the per capita biting rate of mosquitoes on human),  (the human recovery rate),  (the number 

of female mosquitoes per human host in an infection free steady state) and  (the per capita death rate of 

mosquitoes) as prescribed parameters. The results obtained showed that the parameters involved play a crucial 

role in the interaction between infected human and infected mosquito. The mathematical modeling of malaria 

epidemiology as carried out in this research work would go a long way in assisting governmental bodies and 
health administrators in establishing  curative and preventive control measures towards the eradication of 

malaria. 
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