# Best Approximation in Real Linear 2-Normed Spaces 

R.Vijayaragavan<br>Applied Analysis Division, School of Advanced Sciences, VIT University, Vellore - 632 014, Tamilnadu, India.

```
Abstract: This paper delineates existence, characterizations and strong unicity of best uniform
approximations in real linear 2-normed spaces.
AMS Suject Classfication: 41A50, 41A52, 41A99, 41A28.
Key Words and Phrases: Best approximation, existence, 2-normed linear spaces.
```


## I. Introduction

The concepts of linear 2-normed spaces were initially introduced by Gahler [5] in 1964. Since then many researchers (see also $[2,4]$ ) have studied the geometric structure of 2-normed spaces and obtained various results. This paper mainly deals with existence, characterizations and unicity of best uniform approximation with respect to 2 -norm. Section 2 provides some important definitions and results that are used in the sequel. Some main results of the set of best uniform approximation in the context of linear 2-normed spaces are established in Section 3.

## II. Preliminaries

Definition 2.1. Let $X$ be a linear space over real numbers with dimension greater than one and let || , be a real-valued function on $\mathrm{X} \times \mathrm{X}$ satisfying the following properties for all $\mathrm{x}, \mathrm{y}, \mathrm{z}$ in X .
(i) $\|x, y\|=0$ if and only if $x$ and $y$ are linearly dependent,
(ii) $\|x, y\|=\|y, x\|$,
(iii) $\|\alpha x, y\|=|\alpha|\|x, y\|$, where $\alpha$ is a real number,
(iv) $\|x, y+z\| \leq\|x, y\|+\|x, z\|$.

Then $\|, \cdot\|$ is called a 2-norm and the linear space $X$ equipped with 2-norm is called a linear 2normed space. It is clear that 2-norm is non-negative

Example 2.2. Let $X=R^{3}$ with usual component wise vector additions and scalar multiplications. For $x=\left(a_{1}, b_{1}, c_{1}\right)$ and $y=\left(a_{2}, b_{2}, c_{2}\right)$ in $X$, define
$\|x, y\|=\max \left\{\left|a_{1} b_{2}-a_{2} b_{1}\right|,\left|b_{1} c_{2}-b_{2} c_{1}\right|,\left|a_{1} c_{2}-a_{2} c_{1}\right|\right\}$.
Then clearly $\|\cdot$,$\| is a 2$-norm on $X$.
Definition 2.3. Let $G$ be a subset of a real linear 2-normed space $X$ and $x \in X$. Then $g_{0} \in G$ is said to be a best approximation to x from the elements of G if

$$
\left.\left\|x-g_{0}, \mathrm{z}\right\|=\inf \|\mathrm{x}-\mathrm{g}, \mathrm{z}\|, \mathrm{z} \in \mathrm{X} \mid \mathrm{V}, \mathrm{G}\right)
$$

$\mathrm{g} \in \mathrm{G}$
where $\mathrm{V}(\mathrm{x}, \mathrm{G})$ is the subspace generated by x and G .

The set of all elements of best approximation to $x \in X$ from $G$ with respect to the set $z$ is denoted by $P_{G, Z}(x)$.

Definition 2.4. A linear 2-normed space ( $\mathrm{X},\|, \cdot\|$ ) is said to be strictly convex if

```
|a+b,c|=|a,c|+|b,c|,|a,c|=|b,c|=1 and c\not\inV (a,b) =>a=b.
or
```

A linear 2-normed space $(X,\|, \cdot\|)$ is said to be strictly convex if and only if
$\|\mathrm{x}, \mathrm{z}\|=\|\mathrm{y}, \mathrm{z}\|=1, \mathrm{x} \neq \mathrm{y}$ and $\mathrm{z} \in \mathrm{X} \left\lvert\, \mathrm{V}(\mathrm{x}, \mathrm{y}) \Rightarrow\left\|\frac{1}{2}(x+y), z\right\|<1\right.$
Example 2.5. Let $X=R^{3}$ with 2-norm defined as follows: For $x=\left(a_{1}, b_{1}, c_{1}\right)$
and $y=\left(a_{2}, b_{2}, c_{2}\right)$ in $X$, let

$$
\|x, y\|=\left\{\left(a_{1} b_{2}-a_{2} b_{1}\right)^{2}+\left(b_{1} c_{2}-b_{2} c_{1}\right)^{2}+\left(a_{1} c_{2}-a_{2} c_{1}\right)^{2}\right\}^{\frac{1}{2}}
$$

Then the space ( $\mathrm{X},\|.,$.$\| ) is strictly convex linear 2$-normed space.
Definition 2.6. For all functions $\mathrm{h} \in \mathrm{C}([\mathrm{a}, \mathrm{b}] \times[\mathrm{c}, \mathrm{d}])$
$\|\mathrm{h}\| \infty=\left\{\sup \left|\mathrm{h}\left(\mathrm{t}, \mathrm{t}^{\prime}\right)\right|: \mathrm{t} \in[\mathrm{a}, \mathrm{b}], \mathrm{t}^{\prime} \in[\mathrm{c}, \mathrm{d}]\right\}$.
The set of extreme points of a function $h \in C([a, b] \times[c, d])$ is defined by $E(h)=\{x \in[a, b], y$ $\in[\mathrm{c}, \mathrm{d}]:|\mathrm{h}(\mathrm{x}, \mathrm{y})|=\|\mathrm{h}\| \infty\}$. Best approximation with respect to this norm is called best uniform approximation.

Definition 2.7. Let $G$ be a subspace of $C([a, b] \times[c, d])=\{f:[a, b] \times[c, d \nrightarrow \mathbf{R}$
A function $\mathrm{g}_{0} \in \mathrm{G}$ is called a strongly unique best uniform approximation of $\mathbf{f} \in \mathrm{C}([\mathrm{a}, \mathrm{b}] \times[\mathrm{c}, \mathrm{d}])$ if there exists a constant $\mathrm{k}_{\mathbf{f}}>0$ such that for all $\mathrm{g} \in \mathrm{G}$, $\|\mathbf{f}-\mathrm{g}\| \infty \geq\left\|\mathbf{f}-\mathrm{g}_{0}\right\| \infty+\mathrm{k}_{\mathbf{f}}\left\|\mathrm{g}-\mathrm{g}_{0}\right\| \infty$.

Example 2.8. Consider the space $G=\operatorname{span}\left\{g_{1}\right\}$ of $C([-1,1] \times[-1,1])$, where $g_{1}\left(t, t^{*}\right)=t \in[-1$, $1]$ and $\mathrm{f} \in(\mathrm{C}[-1,1] \times[-1,1])$. Then $(0,1)$ is the best approximation of $[1,1]$.

Definition 2.9. Let $G$ be a subset of $C([a, b] \times[c, d])$ and let $f \in C([a, b] \times[c, d])$ have a unique best uniform approximation $g_{0} \in G$. Then the projection $P_{G}: C([a, b] \times[c, d]) \rightarrow P O W(G)$ is called Lipchitz-continuous at $\mathbf{f}$ if there exists a const $\mathrm{kf}_{\mathbf{f}}>0$ such that for all $\overline{\mathbf{f}} \in \mathrm{C}([a, b] \times[\mathrm{c}, \mathrm{d}])$ and all $\mathrm{g}_{\mathbf{f}} \in$ $\mathrm{P}_{\mathrm{G}}(\overline{\mathbf{f}}),\left\|\mathrm{g}_{\mathbf{f}}-\mathrm{g} \overline{\mathbf{f}}\right\| \infty \leq \mathrm{k}_{\mathbf{f}}\|\mathbf{f}-\overline{\mathbf{f}}\| \infty$.

## III. Main Results

Theorem 3.1. Let $G$ be a finite-dimensional subspace of a real linear 2-normed space $X$. Then for every $x \in X$, there exists a best approximation from G. Proof.

$$
\left\|g_{n}, z\right\|-\|x, z\| \leq\left\|x-g_{n}, z\right\| \leq \inf _{g \in G}\|x-g, z\|+k
$$

$$
\leq\|x, z\|+k
$$

Hence for all $n,\|g n, z\| \leq 2\|x, z\|+k$.
$\Rightarrow\left\{g_{n}\right\}$ is bounded sequence. Thenthere exists a subsequence $\left\{g_{n k}\right\}$ of $\left\{g_{n}\right\}$ converging to $\mathrm{g}_{0} \in \mathrm{G}$.

$$
\begin{aligned}
\therefore & \left\|x-g_{0}, z\right\|=\lim _{k \rightarrow \infty}\left\|x-g_{n_{k}}\right\|=\inf _{g \in G}\|x-g, z\|, z \in X \backslash V(x, G) \\
& \Rightarrow \mathrm{g}_{0} \in \mathrm{P}_{\mathrm{G}, \mathrm{Z}}(\mathrm{x}), \text { which completes the proof. }
\end{aligned}
$$

Theorem 3.2. Let $G$ be a finite-dimensional subspace of a strictly convex linear 2- normed space $X$. Then for every $x \in X$,there exists a unique best approximation from G .

Proof. Let $x \in X$. Since $G$ is a finite-dimensional, by Theorem 3.1 there exists an element $g_{0} \in G$
Such that, $\mathrm{g}_{0} \in \mathrm{P}_{\mathrm{G}, \mathrm{Z}}(\mathrm{x}), z \in X \backslash V(x, G)$.
Now we show that, $\mathrm{P}_{\mathrm{G}, \mathrm{Z}}(\mathrm{x})=\left\{\mathrm{g}_{0}\right\}$. For that first we prove that $\mathrm{P}_{\mathrm{G}, \mathrm{Z}}(\mathrm{x})$ is convex. Let $\mathrm{g}_{1}, \mathrm{~g}_{2} \in$ $\mathrm{P}_{\mathrm{G}, \mathrm{Z}}(\mathrm{x})$ and $0 \leq \alpha \leq 1$. Then,

$$
\begin{aligned}
& \left\|\mathrm{x}-\left(\alpha \mathrm{g}_{1}+(1-\alpha) \mathrm{g}_{2}\right), \mathrm{z}\right\|=\left\|\alpha\left(\mathrm{x}-\mathrm{g}_{1}\right)+(1-\alpha)\left(\mathrm{x}-\mathrm{g}_{2}\right), \mathrm{z}\right\| \\
& \begin{array}{l}
\leq \alpha\left\|\mathrm{x}-\mathrm{g}_{1}, \mathrm{z}\right\|+(1-\alpha)\left\|\mathrm{x}-\mathrm{g}_{2}, \mathrm{z}\right\| \\
\quad= \\
\quad \alpha \inf _{g \in G}\|x-g, z\|+(1-\alpha) \inf _{g \in G}\|x-g, z\| \\
\quad=\inf _{g \in G}\|x-g, z\| \\
\quad \leq\|x-g, z\|, \text { for all } g \in G .
\end{array}
\end{aligned}
$$

Since $\alpha g_{1}+(1-\alpha) g_{2} \in G, \alpha g_{1}+(1-\alpha) g_{2} \in P_{G, Z}(x)$. We shall suppose that $\mathrm{g}^{*} \in \mathrm{P}_{\mathrm{G}, \mathrm{Z}}(\mathrm{x})$. Then $\underline{1}_{\left(\mathrm{g} 0+2 \mathrm{~g}^{*}\right) \in \mathrm{P}_{\mathrm{G}, \mathrm{Z}}(\mathrm{x}) \text {, which implies that }, ~}^{\text {in }}$

$$
\begin{gathered}
\left\|\frac{1}{2}\left\{\left(x-g_{0}\right)+\left(x-g^{*}\right)\right\}, z\right\|=\left\|x-\frac{1}{2}\left(g_{0}-g^{*}\right), z\right\| \\
=\inf _{g \in G}\|x-g, z\|_{1}
\end{gathered}
$$

Since $\left\|x-g_{0}, \mathrm{z}\right\|=\left\|x-g^{*}, \mathrm{z}\right\|=\inf \|\mathrm{x}-\mathrm{g}, \mathrm{z}\|$ and X is strictly convex, we $\mathrm{g} \in \mathrm{G}$
obtain
$\mathrm{x}-\mathrm{g}_{0}=\mathrm{x}-\mathrm{g}^{*} \Rightarrow \mathrm{~g}_{0}=\mathrm{g}^{*}$. This proves that $\mathrm{P}_{\mathrm{G}, \mathrm{Z}}(\mathrm{x})=\left\{\mathrm{g}_{0}\right\}$.
Theorem 3.3. Let $G$ be a finite-dimensional subspace of a real linear 2-normed space $X$ with the property that every function with domain $\mathrm{X} \times \mathrm{X}$ has a unique best approximation from G . Then for all $\mathrm{f}_{1}, \mathrm{f}_{2} \in \mathrm{X} \times \mathrm{X}$,

$$
\mid \inf _{g \in G}\left\|f_{1}-g, z\right\|-\inf _{g \in G}\left\|f_{2}-g, z\right\| \leq\left\|f_{1}-f_{2}, z\right\|, z \in X \backslash G \text { and } \quad P_{G}: X \times X \rightarrow G \text { is continuous.Proof. }
$$

Suppose that $P_{G}$ is not continuous. Then there exists an element $\mathrm{f} \in \mathrm{X} \times \mathrm{X}$ and a sequence $\left\{f_{n}\right\} \in X \times X$ such that $\left\{f_{n} \times g_{n}\right\}$.
$P_{G, Z}\left(f_{n}\right)$ does not converge to $P_{G}(f)$. Since $G$ is finite dimensional, there ex- ists a subsequence $\quad\left\{\mathrm{f}_{\mathrm{nk}}\right\} \quad$ of $\quad\left\{\mathrm{f}_{\mathrm{n}}\right\}$ such that $\mathrm{P}_{\mathrm{G}, \mathrm{Z}}\left(\mathrm{f}_{\mathrm{nk}}\right) \rightarrow g_{0} \in \mathrm{G}, \mathrm{g}_{0} \neq$
$\mathrm{P}_{\mathrm{G}}(\mathbf{f})$ and we shall show that the mapping

$$
f \rightarrow \inf _{g \in G}\|f-g, z\| \text { is continuous }(f \in X \times X)
$$

Let $f_{1}, f_{2} \in X \times X$. Then there exists a $g_{2} \in G$ such that

$$
\left\|\mathrm{f}_{2}-\mathrm{g}_{2}, \mathrm{z}\right\|=\inf \left\|\mathrm{f}_{2}-\mathrm{g}, \mathrm{z}\right\|
$$

$$
\begin{aligned}
& \Rightarrow \inf \mathrm{g} \in \mathrm{G}\left\|\mathbf{f}_{1}-\mathrm{g}, \mathrm{z}\right\| \leq\left\|\mathbf{f}_{1}-\mathrm{g}_{2}, \mathrm{z}\right\| \\
& \leq\left\|\mathbf{f}_{1}-\mathbf{f}_{2}, \mathrm{z}\right\|+\left\|\mathbf{f}_{2}-\mathrm{g} 2, \mathrm{z}\right\| \\
& =\left\|f_{1}-f_{2}, z\right\|+\inf _{g \in G}\left\|f_{2}-g, z\right\| \\
& \Rightarrow \inf \left\|\mathbf{f}_{1}-\mathrm{g}, \mathrm{z}\right\|-\inf \left\|\mathbf{f}_{2}-\mathrm{g}, \mathrm{z}\right\| \leq\left\|\mathbf{f}_{1}-\mathbf{f}_{2}, \mathrm{z}\right\|, \mathrm{z} \in \mathrm{X} \backslash \mathrm{G} .
\end{aligned}
$$

$\mathrm{g} \in \mathrm{G}$
This proves that

$$
\begin{aligned}
& \mathrm{g} \in \mathrm{G} \\
& \left|\inf _{g \in G}\left\|f_{1}-g, z\right\|-\inf _{g \in G}\left\|f_{2}-g, z\right\|\right| \leq\left\|f_{1}-f_{2}, z\right\|, z \in X \backslash G
\end{aligned}
$$

By continuity it follows that

$$
\left\|f_{n k}-P_{G}\left(f_{n k}\right), \mathrm{z}\right\|=\inf \left\|f_{n k}-\mathrm{g}, \mathrm{z}\right\|
$$

$$
\begin{aligned}
& \rightarrow \inf _{g \in G} \lim _{k \rightarrow \infty}\left\|f_{n_{k}}-g, z\right\| \\
= & \inf _{g \in G}\|f-g, z\|
\end{aligned}
$$

and $\quad \lim \left\|f_{n_{k}}-P_{G}\left(f_{n_{k}}\right), z\right\| \rightarrow\left\|f-g_{0}, z\right\|$
$\Rightarrow \| \lim \left(f_{n_{k}}-P_{G}\left(f_{n_{k}}\right), z\|=\| f-P_{G}(f), z \|\right.$
$\Rightarrow g_{0}$ and $P_{G}(f)$ are two distinct best approximation of $f$ and G which contradicts the uniqueness of best approximation.

Therefore $P_{G}: X \times X \rightarrow G$ is continuous.

A 2 -functional is a real valued mapping with domain $A \times C$ with A and C are linear manifolds of a 2 - normed space X .

A linear 2-functionals is 2- functional such that
(i) $F(a+c, b+d)=F(a, b)+F(a, d)+F(c, b)+F(c, d)$
(ii) $F(\alpha a, \beta b)=\alpha \beta F(a, b)$.

F is called a bounded 2-functional if there is a real constant $k \geq 0$ such that $|F(a, b)| \leq k\|a, b\|$ for all a,b in the domain of F and

$$
\begin{aligned}
\|F\| & =\inf \{k:|f(a, b)| \leq k\|a, b\|,(a, b \in D(F)\} \\
& =\sup \{f(a, b):\|a, b\|=1,(a, b) \in D(F)\}
\end{aligned}
$$

$$
=\sup \left\{\frac{|f(a, b)|}{\|a, b\|}:\|a, b\| \neq 0,(a, b) \in D(F)\right\}
$$

Theorem 3.4. Let $G$ be a subspace of $C([a, b] \times[a, b]), f \in C([a, b] \times[a, b])$ and $\mathrm{g}_{0} \in \mathrm{G}$. Then the following statements are equivalent:
(i) The function $g_{0}$ is a best uniform approximation of $f$ from $G$. (ii) For every function $g \in G$, min
$\left.\mathrm{t}, \mathrm{t}^{*} \in \mathrm{E}(\mathbf{f}-\mathrm{g} 0) \mathbf{f}\left(\mathrm{t}, \mathrm{t}^{*}\right)-\mathrm{g}_{0}\left(\mathrm{t}, \mathrm{t}^{*}\right)\right)\left(\mathrm{g}\left(\mathrm{t}, \mathrm{t}^{*}\right)\right) \leq 0$
Proof. (ii) $\Rightarrow$ (i). Suppose that (ii) holds and let $\mathrm{g} \in \mathrm{G}$. Then by (ii) there exist the points $\mathrm{t}, \mathrm{t}^{\prime} \in \mathrm{E}$ ( $\mathrm{f}-\mathrm{g}_{0}$ ) such that
$\left(f\left(t, t^{*}\right)-g_{0}\left(t, t^{*}\right)\right)\left(g\left(t, t^{*}\right)-g_{0}\left(t, t^{*}\right)\right) \leq 0$.Then we have
$\|\mathbf{f}-\mathbf{g}\| \infty \geq\left|\mathbf{f}\left(\mathrm{t}, \mathrm{t}^{*}\right)-\mathbf{g}\left(\mathrm{t}, \mathrm{t}^{*}\right)\right|$
$=\left|\mathbf{f}\left(\mathrm{t}, \mathrm{t}^{*}\right)-\mathrm{g}_{0}\left(\mathrm{t}, \mathrm{t}^{*}\right)+\mathrm{g}_{0}\left(\mathrm{t}, \mathrm{t}^{*}\right)-\mathrm{g}\left(\mathrm{t}, \mathrm{t}^{*}\right)\right|$
$=\left|\mathrm{f}\left(\mathrm{t}, \mathrm{t}^{*}\right)-\mathrm{g}_{0}\left(\mathrm{t}, \mathrm{t}^{*}\right)\right|+\left|\mathrm{g}\left(\mathrm{t}, \mathrm{t}^{*}\right)-\mathrm{g}_{0}\left(\mathrm{t}, \mathrm{t}^{*}\right)\right|$
$\geq\left\|f\left(t, t^{*}\right)-g_{0}\left(t, t^{*}\right)\right\| \infty$
which shows that (i) holds.
(i) $\Rightarrow$ (ii). Suppose that (i) holds and assume that (ii) fails. Then there exists a function $g_{1} \in G$ such that for all $t, t^{*} \in E\left(f-g_{0}\right),\left(f\left(t, t^{*}\right)-g_{0}\left(t, t^{*}\right)\right) g_{1}\left(t, t^{*}\right)>0$. Since $E\left(f-g_{0}\right)$ is compact, there exists a real number $\mathrm{c}>0$ such that for all $\mathrm{t}, \mathrm{t}^{*} \in \mathrm{E}\left(\mathrm{f}-\mathrm{g}_{0}\right)$
$\left(f\left(t, t^{*}\right)-g_{0}\left(t, t^{*}\right)\right) g_{1}\left(t, t^{*}\right)>c$.
Further, there exists an open neighborhood $U$ of $E\left(f-g_{0}\right)$ such that for all
$\mathrm{t}, \mathrm{t}^{*} \in \mathrm{U}, \operatorname{and}_{\mathrm{c}}\left(\mathrm{f}\left(\mathrm{t}, \mathrm{t}^{*}\right)-\mathrm{g}_{0}\left(\mathrm{t}, \mathrm{t}^{*}\right)\right) \mathrm{g}_{1}\left(\mathrm{t}, \mathrm{t}^{*}\right)>2$
$\left|f\left(t, t^{*}\right)-g_{0}\left(t, t^{*}\right)\right| \geq_{2}\left\|\mathbf{f}-\mathrm{g}_{0}\right\| \infty$
Since $[a, b] \backslash U$ is compact, there exists a real number $d>0$ such that for all
$\mathrm{t}, \mathrm{t}^{*} \in[\mathrm{a}, \mathrm{b}] \backslash \mathrm{U}$,
$\left|\mathbf{f}\left(\mathrm{t}, \mathrm{t}^{*}\right)-\mathrm{g}_{0}\left(\mathrm{t}, \mathrm{t}^{*}\right)\right|<\left\|\mathbf{f}-\mathrm{g}_{0}\right\| \infty_{\infty}-\mathrm{d}$
(4) Now we shall assume that
$\left\|\mathrm{g}_{1}\right\| \infty \leq \min \left\{\mathrm{d},\left\|\mathrm{f}-\mathrm{g}_{0}\right\|\right\}$.
Let $\mathrm{g}_{2}=\mathrm{g}_{0}+\mathrm{g}_{1}$. Then by (4) and (5) for all $\mathrm{t}, \mathrm{t}^{*} \in[\mathrm{a}, \mathrm{b}] \backslash \mathrm{U}$,

$$
\begin{aligned}
& \left|\mathbf{f}\left(\mathrm{t}, \mathrm{t}^{*}\right)-\mathrm{g}_{2}\left(\mathrm{t}, \mathrm{t}^{*}\right)\right|=\left|\left(\mathbf{f}\left(\mathrm{t}, \mathrm{t}^{*}\right)-\mathrm{g}_{0}\left(\mathrm{t}, \mathrm{t}^{*}\right)\right)-\mathrm{g}_{1}\left(\mathrm{t}, \mathrm{t}^{*}\right)\right| \\
& \leq\left|\mathbf{f}\left(\mathrm{t}, \mathrm{t}^{*}\right)-\mathrm{g}_{0}\left(\mathrm{t}, \mathrm{t}^{*}\right)\right|+\left|\mathrm{g}_{1}\left(\mathrm{t}, \mathrm{t}^{*}\right)\right| \\
& \leq\left\|\mathbf{f}\left(\mathrm{t}, \mathrm{t}^{*}\right)-\mathrm{g}_{0}\left(\mathrm{t}, \mathrm{t}^{*}\right)\right\| \infty-\mathrm{d}+\left\|\mathrm{g}_{1}\left(\mathrm{t}, \mathrm{t}^{*}\right)\right\| \\
& \quad \leq\left\|\mathbf{f}\left(\mathrm{t}, \mathrm{t}^{*}\right)-\mathrm{g}_{0}\left(\mathrm{t}, \mathrm{t}^{*}\right)\right\| \infty .
\end{aligned}
$$

For all $t \in U$, by (2), (3) and (5),

$$
\begin{aligned}
& \left|\mathbf{f}\left(\mathrm{t}, \mathrm{t}^{*}\right)-\mathrm{g}_{2}\left(\mathrm{t}, \mathrm{t}^{*}\right)\right|=\left|\left(\mathbf{f}\left(\mathrm{t}, \mathrm{t}^{*}\right)-\mathrm{g}_{0}\left(\mathrm{t}, \mathrm{t}^{*}\right)\right)-\mathrm{g}_{1}\left(\mathrm{t}, \mathrm{t}^{*}\right)\right| \\
& \leq\left|\mathbf{f}\left(\mathrm{t}, \mathrm{t}^{*}\right)-\mathrm{g}_{0}\left(\mathrm{t}, \mathrm{t}^{*}\right)\right|-\left|\mathrm{g}_{1}\left(\mathrm{t}, \mathrm{t}^{*}\right)\right| \\
& \leq\left\|\mathbf{f}-\mathrm{g}_{0}\right\| \infty \\
& \Rightarrow\left\|\mathbf{f}-\mathrm{g}_{2}\right\| \infty \leq\left\|\mathbf{f}-\mathrm{g}_{0}\right\| \infty
\end{aligned}
$$

$\Rightarrow \mathrm{g}_{0}$ is not the best uniform approximation of f which is a contradiction. Hence the proof.

Theorem 3.5. Let $G$ be a subset of $C([a, b] \times[c, d])$ and $f$ has a strongly unique best uniform approximation from $G$, then
$\mathrm{P}_{\mathrm{G}}: \mathrm{C}([\mathrm{a}, \mathrm{b}] \times[\mathrm{c}, \mathrm{b}])$ POW $(\mathrm{G})$ is Lipschitz-continuous at f .
Proof. Let $f \in X=C([a, b] \times[c, b])$ have a strongly unique best uniform approximation $g f \in G$ . Then there exists $\mathrm{kf}_{\mathbf{f}}>0$ such that for all $\mathrm{g} \in \mathrm{G}$.
$\|\mathbf{f}-\mathbf{g}\| \infty \geq\|\mathbf{f}-\mathrm{g} \mathbf{f}\| \infty+\mathrm{k} \mathbf{f}\|\mathrm{g}-\mathrm{g} \mathbf{f}\| \infty$.
Then for all
$\tilde{\mathbf{f}} \in X$ and for all $\mathrm{g}_{\tilde{\mathbf{f}}} \in \mathrm{P}_{\mathrm{G}}(\tilde{\mathbf{f}})$

We obtain $\mathrm{k} \mathbf{f}\|\mathrm{g} \mathbf{f}-\mathrm{g} \tilde{\mathbf{f}}\| \infty \leq\left\|\mathbf{f}-\mathrm{g}_{\tilde{\mathbf{f}}}\right\| \infty-\|\mathbf{f}-\mathrm{g} \mathbf{f}\| \infty$
$\leq\|\mathbf{f}-\tilde{\mathbf{f}}\| \infty+\left\|\tilde{\mathbf{f}}-\mathrm{g}_{\mathbf{f}}\right\| \infty-\|\mathbf{f}-\mathrm{g} \mathbf{f}\| \infty$
$\leq\|\mathbf{f}-\tilde{\mathbf{f}}\| \infty+\|\mathbf{f}-\tilde{\mathbf{f}}\| \infty=2\|\mathbf{f}-\tilde{\mathbf{f}}\| \infty . \Rightarrow L_{f}=\frac{2}{k_{f}}$ is the desired constant.
Theorem 3.6. Let $G$ be a finite dimensional subspace of $X=C([a, b] \times[c, d])$, $f \in X \backslash G$ and $g_{0} \in G$. Then the following statements are equivalent:
(i) The function $\mathrm{g}_{0}$ is a strongly unique best uniform approximation of f from

G
(ii) For every nontrivial function $g \in G$,
min
$\mathrm{x}, \mathrm{y} \in \mathrm{E}(\mathrm{f}-\mathrm{g} 0)(\mathrm{f}(\mathrm{x}, \mathrm{y})-\mathrm{g} 0(\mathrm{x}, \mathrm{y})) \mathrm{g}(\mathrm{x}, \mathrm{y})<0$
(iii) There exists a constant $\mathrm{k}_{\mathbf{f}}>0$ such that for every function $\mathrm{g} \in \mathrm{G}$, min
$x, y \in E\left(f-g_{0}\right)\left(f(x, y)-g_{0}(x, y)\right) g(x, y) \leq-k_{f}\left\|f-g_{0}\right\| \infty\|g\| \infty$.

Proof. (iii) $\Rightarrow$ (i). We shall suppose that (iii) holds and let $g \in G$. Then by (iii) there exist the points $x, y \in E\left(f-g_{0}\right)$ such that
$\left(f(x, y)-g_{0}(x, y)\right)\left(g(x, y)-g_{0}(x, y)\right) \leq-k_{f}\left\|f-g_{0}\right\| \infty\left\|g-g_{0}\right\| \infty$. This implies that
$\|f-\mathrm{g}\| \quad \infty \geq|\mathbf{f}(\mathrm{x}, \mathrm{y})-\mathrm{g}(\mathrm{x}, \mathrm{y})|$
$=\left|f(x, y)-g_{0}(x, y)-\left(g(x, y)-g_{0}(x, y)\right)\right|$
$=\left|\mathbf{f}(\mathrm{x}, \mathrm{y})-\mathrm{g}_{0}(\mathrm{x}, \mathrm{y})\right|+\left|\mathrm{g}(\mathrm{x}, \mathrm{y})-\mathrm{g}_{0}(\mathrm{x}, \mathrm{y})\right| \geq\left\|\mathbf{f}-\mathrm{g}_{0}\right\| \infty+\frac{k_{f}\left\|f-g_{0}\right\|_{\infty}\left\|g-g_{0}\right\|_{\infty}}{\left|f(x, y)-g_{0}(x, y)\right|}$
$=\left\|\mathbf{f}-\mathrm{g}_{0}\right\| \infty+\mathrm{k}_{\mathbf{f}}\left\|\mathrm{g}-\mathrm{g}_{0}\right\| \infty$.
(i) $\Rightarrow$ (iii). Suppose that (iii) fails, i.e. there exists a function $g_{1} \in G$ such that for all $x, y \in E\left(f-g_{0}\right.$ ),
$\left(f(x, y)-g_{0}(x, y)\right) g_{1}(x, y)>-\mathrm{k}_{\mathbf{f}}\left\|f-\mathrm{g}_{0}\right\| \infty\left\|\mathrm{g}_{1}\right\| \infty$.
Since $E\left(f-g_{0}\right)$ is compact, there exists an open neighborhood $U$ of $E\left(f-g_{0}\right)$
such that for all $x, y \in U$
$\left(f(x, y)-g_{0}(x, y)\right) g_{1}(x, y)>-\mathrm{k}_{\mathbf{f}}\left\|\mathbf{f}-\mathrm{g}_{0}\right\| \infty\left\|\mathrm{g}_{1}\right\| \infty$
and
1
$\left|f(x, y)-g_{0}(x, y)\right| \geq_{2 \|} f-g_{0} \|{ }^{\infty}$
Further, we can choose $U$ sufficiently small such that for all $x, y \in U$ with (f(x, y) $\left.\mathrm{g}_{0}(\mathrm{x}, \mathrm{y})\right)_{1}(\mathrm{x}, \mathrm{y})<0$
$\left|g_{1}(x, y)\right|<k_{f}\left\|g_{1}\right\| \infty$. (7) Since $[a, b] \times[c, d] \backslash U$ is compact, there exists a real number $\mathrm{c}>0$ such that for all $x, y \in[a, b] \times[c, d] \backslash U$,
$\left|f(x, y)-g_{0}(x, y)\right| \leq\left\|f-g_{0}\right\| \infty^{-c}$.

We may assume that without loss of generality

1
$\left\|\mathrm{g}_{1}\right\|{ }^{\infty} \min \left\{c, \frac{1}{2}\left\|f-g_{0}\right\|_{\infty}\right\}$
Let $\mathrm{g}_{2}=\mathrm{g}_{0}+\mathrm{g}_{1}$. Then by (8) and (9) for all $\mathrm{x}, \mathrm{y} \in[\mathrm{a}, \mathrm{b}] \times[\mathrm{c}, \mathrm{d}] \backslash \mathrm{U}$,
$\left|f(\mathrm{x}, \mathrm{y})-\mathrm{g}_{2}(\mathrm{x}, \mathrm{y})\right|=\left|\mathrm{f}(\mathrm{x}, \mathrm{y})-\mathrm{g}_{0}(\mathrm{x}, \mathrm{y})-\mathrm{g}_{1}(\mathrm{x}, \mathrm{y})\right|$
$\leq\left\|f-\mathrm{g}_{0}\right\| \infty-\mathrm{c}+\left\|\mathrm{g}_{1}\right\| \infty$

$$
\leq\left\|\mathbf{f}-\mathrm{g}_{0}\right\| \infty .
$$

Again, by (6) and (7), for all $x, y \in U$ with
$\left(f(x, y)-g_{0}(x, y)\right) g_{1}(x, y)<0$,
$\left|f(x, y)-g_{2}(x, y)\right|=\left|\left(f(x, y)-g_{0}(x, y)\right)-g_{1}(x, y)\right|$
$=\left|f(x, y)-g_{0}(x, y)\right|+\left|g_{1}(x, y)\right|$
$\leq\left\|\mathbf{f}-\mathrm{g}_{0}\right\| \infty+\mathrm{k}_{\mathbf{f}}\left\|\mathrm{g}_{1}\right\| \infty$
$=\left\|\mathbf{f}-\mathrm{g}_{0}\right\| \infty+\mathrm{k}_{\mathbf{f}}\left\|\mathrm{g}_{2}-\mathrm{g}_{0}\right\| \infty$.

By (6) and (9) for all $x, y \in U$ with
(f(x, y) $\left.-\mathrm{g}_{0}(\mathrm{x}, \mathrm{y})\right) \mathrm{g}_{1}(\mathrm{x}, \mathrm{y}) \geq 0$,
$\left|f(x, y)-g_{2}(x, y)\right|=\left|\left(f(x, y)-g_{0}(x, y)\right)-g_{1}(x, y)\right|$
$=\left|f(x, y)-g_{0}(x, y)\right|-\left|g_{1}(x, y)\right|$

$$
\leq\left\|f-g_{0}\right\| \infty
$$

$$
\Rightarrow\left\|\mathbf{f}-\mathrm{g}_{2}\right\|_{\infty}<\left\|\mathbf{f}-\mathrm{g}_{0}\right\| \infty+\mathrm{k}_{\mathbf{f}}\left\|\mathrm{g}_{2}-\mathrm{g}_{0}\right\| \infty,
$$

$\Rightarrow$ (i) fails. (ii) $\Rightarrow$ (iii) suppose that (ii) holds.
Let $F$ : $\{g \in G:\|g\| \infty=1\} R \rightarrow$ Re the mapping, defined by

$$
F(g)=\min _{x, y \in E\left(f-g_{0}\right)} \frac{\left(f(x, y)-g_{0}(x, y)\right) g(x, y)}{\left\|f-g_{0}\right\|_{\infty}}
$$

Since $G$ is finite dimensional, the set $\{g \in G:\|g\| \infty=1\}$ is compact. Therefore, since by (ii) $F$ (g) $<0$ for all $\{\mathrm{g} \in \mathrm{G}:\|\mathrm{g}\| \infty=1\}$, there exists a constant $\mathrm{k}_{\mathrm{f}}>0$
Such that $F\left(\frac{g}{\|g\|_{\infty}}\right) \leq-\mathrm{k}_{\mathbf{f}}$ for all $\mathrm{g} \in \mathrm{G}$, which proves (iii)
$\therefore(i i i) \Rightarrow(i i)$ is obvious
Hence the proof of the theorem is complete.

Theorem 3.7. Let $G$ be a finite dimensional subspace of a real 2 -Hilbert space $X$. Then for every $x \in X$, there exists a unique best approximation from G .
Proof. Let $(X,\|, \cdot\|)$ be a 2-Hilbert space and let $G$ be a finite dimensional subspace of $X$.

Let $\mathrm{x}, \mathrm{y} \in \mathrm{X}$ and $\mathrm{x} \neq \mathrm{y}$ then by parallelogram law

$$
\begin{equation*}
\|x+y, z\|^{2}+\|x-y, z\|^{2}=2\left(\|x, z\|^{2}+\|y, z\|^{2}\right) \text {. } \tag{10}
\end{equation*}
$$

Let $\|\mathrm{x}, \mathrm{z}\|=\|\mathrm{y}, \mathrm{z}\|=1$.
Then by (10)

$$
\|x+y, z\|^{2}=4\|x-y, z\|^{2}<4
$$

$\Rightarrow\left\|\frac{x+y}{2}, z\right\|^{2}<1$
$\Rightarrow \mathrm{X}$ is strictly convex. Therefore, by Theorem 3.2 there exists a unique best approximation to $\mathrm{x} \in$ $\mathrm{X} \backslash \mathrm{G}$ from G .
Theorem 3.8. Let $G$ be a subspace of a real 2-Hilbert space $X, x \in X \backslash G$ and $g_{0} \in G$. Then the following statements are equivalent:
(i) The element $g_{0}$ is a best approximation of $x$ from G. (ii) For all $g \in G,\left(x-g_{0}, g / z\right)=0 \quad z \in X$ IV (x, G) .
Proof. (ii) $\Rightarrow$ (i). Suppose that (ii) holds and let $g \in G$. Then by (ii) $\|x-g, z\|^{2}-\|x-g 0, z\|^{2}$
$=(x-g, x-g / z)-\left(x-g_{0}, x-g_{0} / z\right)$
$=(\mathrm{x}, \mathrm{x} / \mathrm{z})+(\mathrm{g}, \mathrm{g} / \mathrm{z})-2(\mathrm{x}, \mathrm{g} / \mathrm{z})-(\mathrm{x}-\mathrm{x} / \mathrm{z})-\left(\mathrm{g}_{0}, \mathrm{~g}_{0} / \mathrm{z}\right)+2\left(\mathrm{x}, \mathrm{g}_{0} / \mathrm{z}\right)$
$\geq 0$
$=\left(\mathrm{g}-\mathrm{g}_{0}, \mathrm{~g}-\mathrm{g}_{0} / \mathrm{z}\right)+2\left(\mathrm{x}-\mathrm{g}_{0}, \mathrm{~g}_{0}-\mathrm{g} / \mathrm{z}\right) \geq 0$
$=\left\|g-g_{0}, \mathrm{z}\right\|^{2} \geq 0$

That is $\|x-g, z\| \geq\left\|x-g_{0}, z\right\| \quad$ which proves (i)
(i) $\Rightarrow$ (ii). Suppose that (ii) fails, i.e., there exists a function $g^{\prime} \in G$ such that $\left(\mathrm{x}-\mathrm{g}_{0}, \mathrm{~g}^{\prime}\right) \neq 0$.

$$
\begin{aligned}
& \left\|x-\left(g_{0}+\frac{\left(x-g_{0}, g^{\prime} / z\right)}{\left(g^{\prime}, g^{\prime} / z\right)} g^{\prime} / z\right)\right\|^{2} \\
& =\left\|x-g_{0} / z\right\|^{2}-\frac{\left(x-g_{0}, g^{\prime} / z\right)^{2}}{\left(g^{\prime}, g^{\prime} / z\right)}
\end{aligned}
$$

$<\left\|x-g_{0} / z\right\|^{2}$ Which implies that $\mathrm{g}_{0}$ is not a best approximation of x .
Hence the proof.
Corollary 3.9. Let $G=\operatorname{span}\left(g_{1}, g_{2}, \cdots, g_{n}\right)$ be an $n$-dimensional subspace of a real 2-Hilbert space $X, x \in X \backslash G$ and $g_{0}=$
statements are equivalent: $\sum_{i=1}^{n} a_{i} g_{i} \in G$. Then the following
(i) The element $g_{0}$ is a best approximation of $x$ from $G$.
(ii) The coefficients $\mathrm{a}_{1}, \mathrm{a}_{2}, \cdots \mathrm{a}_{\mathrm{n}}$ satisfy the following system of linear equations
$\sum_{i=1}^{n} a_{i}\left(g_{\mathbf{i}}, \mathrm{g}_{\mathbf{j}} / \mathrm{z}\right)=\left(\mathrm{x}, \mathrm{g}_{\mathbf{j}} / \mathrm{z}\right), \mathbf{j}=1,2, \cdots, \mathrm{n}$.
Proof. The condition $\left(f-g_{0}, g / z\right)=0$ in Theorem 3.8 is equivalent to
$(f-\mathrm{g} 0, \mathrm{~g} / \mathrm{z})=0, \mathrm{j}=1,2, \ldots, \mathrm{n}$.
Since $g_{0}=\sum_{i=1}^{n} a_{i} g_{i}, \sum_{i=1}^{n} a_{i}\left(g_{i}, g_{j} / z\right)=\left(f, g_{j} / z\right)$ is equivalent to $\left(\mathrm{f}-\mathrm{g}_{0}, \mathrm{~g}_{\mathbf{j}}\right)=0, \mathrm{j}=1,2, \ldots, \mathrm{n}$.

## References

[1] M.W. Barelt, H.W. McLaughlin, Characterizations of strong unicity in approximation theory, Journal of Approximation Theory, 9 (1973), 255-266.
[2] C. Diminnie, S. Gahler, A. White, Strictly convex 2-normed space, Mathematische Nachrichten, 59 (1974), 319-324.
[3] C. Franchetti, M. Furi, Somecharacteristic properties of real Hilbert spaces,Romanian Journal of Pure and Applied Mathematics, 17 (1972), 1045-1048.
[4] R.W. Freese, Y.J. Cho, Geometry of linear 2 -normed spaces, Nova science publishers, Inc., New York, (2001).
[5] S.Gahler, Linear 2-normierte Raume, Mathematische Nachrichten, 28 (1964),1-43.
[6] I. Singer, On the set of best approximation of an element in a normed linear space, Romanian Journal of Pure and Applied Mathematics, 5 (1960), 383-402.
[7] D.E. Wulbert, Uniqemes and differential characterization of approximation from manifolds, American Journal of Mathematics, 18 (1971), 350-366.

