On α-characteristic Equations and α-minimal Polynomial of Rectangular Matrices

P. Rajkhowa¹ and Md. Shahidul Islam Khan²

¹Department of Mathematics, Gauhati University, Guwahati-781014 ²Department of Mathematics, Gauhati University, Guwahati-781014

Abstract: In this paper, we study rectangular matrices which satisfy the criteria of the Cayley-Hamilton theorem for a square matrix. Various results on α – characteristic polynomials, α – characteristic equations, α – eigenvalues and α -minimal polynomial of rectangular matrices are proved. AMS SUBJECT CLASSIFICATION CODE: 17D20(γ, δ).

Keywords: Rectangular matrix, α – characteristic polynomial, α – characteristic equation, α – eigenvalues and α -minimal polynomial.

I. Definitions and introduction:

In [2], define the product of rectangular matrices A and B of order $m \times n$ by $A.B = A\alpha B$, for a fixed rectangular matrix $\alpha_{n\times m}$. With this product, we have $A^2 = A\alpha A$, $A^3 = A^2(\alpha A)$, $A^4 = A^3(\alpha A)$,....., $A^n = A^{n-1}(\alpha A)$. Let us consider a rectangular matrix $A_{m\times n}$. Then we consider a fixed rectangular matrix $\alpha_{n\times m}$ of the opposite order of A. Then αA and $A\alpha$ are both square matrices of order n and m respectively. If $m \leq n$, then αA is the highest n^{th} order singular square matrix and $A\alpha$ is the lowest m^{th} order square matrix forming their product. Then the matrix $\alpha A - \lambda I_n$ and $A\alpha - \lambda I_m$ are called the left α - characteristic matrix and right α - characteristic matrix of A respectively, where λ is an indeterminate. Also the determinant $|\alpha A - \lambda I|$ is a polynomial in λ of degree n, called the left α - characteristic polynomial of A and $|A\alpha - \lambda I|$ is a polynomial in λ of degree matrix αA is called the left α - characteristic polynomial of A and the characteristic polynomial of A and the characteristic polynomial of A.

The equations $|\alpha A - \lambda I| = 0$ and $|A\alpha - \lambda I| = 0$ are called the left α - characteristic equation and right α - characteristic equation of A respectively. Then the rectangular matrix A satisfies the left α - characteristic equation, and the left α - characteristic equation of A is called the α - characteristic equation of A.

For $m \ge n$, the rectangular matrix $A_{m \times n}$ satisfies the right α – characteristic equation of A. So, in this case, the equation $|A\alpha - \lambda I| = 0$ is called the α – characteristic equation of A. The roots of the α – characteristic equation of a rectangular matrix A are called the α – eigenvalues of A. If λ is an α – eigenvalue of A, the matrix $\alpha A - \lambda I_n$ is singular. The equation $(\alpha A - \lambda I_n)X = 0$ then possesses a non-zero solution i.e. there exists a non-zero column vector X such that $\alpha AX = \lambda X$. A non-zero vector X satisfying this equation is called a α – characteristic vector or α – eigenvector of A corresponding to

the α -eigenvalue λ . For a rectangular matrix $A_{m \times n}$ over a field K, let J(A) denote the collection of all polynomial $f(\lambda)$ for which f(A) = 0 (Note that J(A) is nonempty, since the α -characteristic polynomial of A belongs to J(A)).Let $m_{\alpha}(\lambda)$ be the monic polynomial of minimal degree in J(A). Then $m_{\alpha}(\lambda)$ is called the minimal polynomial of A.

II. Main results:

Theorem 2.1: If A is a rectangular matrix of order $m \times n$ and α is a rectangular matrix of order $n \times m$ then the left α – characteristic polynomial of a A and right α' – characteristic polynomial of a A' are same, where A' and α' are the transpose of A and α respectively.

Proof: Since $|\alpha A - \lambda I| = |(\alpha A - \lambda I)'|$ $\Rightarrow |\alpha A - \lambda I| = |(\alpha A)' - (\lambda I)'|$ $\Rightarrow |\alpha A - \lambda I| = |A'\alpha' - \lambda I|$

Which shows that the left α – characteristic polynomial of a A and right α' – characteristic polynomial of a A' are same.

Similarly we can show that If A is a rectangular matrix of order $m \times n$ and α is a rectangular matrix of order $n \times m$ then the right α – characteristic polynomial of a A and left α' – characteristic polynomial of a A' are same.

Theorem 2.2: Let $A_{m \times n}$, $m \le n$ be a rectangular matrix. If $\lambda_1, \lambda_2, \lambda_3, \dots, \lambda_n$ are α – characteristic roots of A then the α – characteristic roots A^2 are $\lambda_1^2, \lambda_2^2, \lambda_3^2, \dots, \lambda_n^2$.

Proof: Let λ be a α - characteristic root of the rectangular matrix $A_{m \times n}$, $m \le n$. Then there exists at least a nonzero column matrix $X_{m \times n}$ such that

$$\alpha AX = \lambda X$$

$$\Rightarrow \alpha A(\alpha AX) = \alpha A(\lambda X)$$

$$\Rightarrow \alpha (A \alpha A)X = \lambda (\alpha AX)$$

$$\Rightarrow \alpha A^{2}X = \lambda (\lambda X)$$

$$\Rightarrow \alpha A^{2}X = \lambda^{2}X$$

Therefore λ^2 is a α – characteristic root of A^2 .

Thus we can conclude that if $\lambda_1, \lambda_2, \lambda_3, \dots, \lambda_n$ are α - characteristic roots of A then, $\lambda_1^2, \lambda_2^2, \lambda_3^2, \dots, \lambda_n^2$ are the α - characteristic roots of A^2 .

Theorem 2.3: Let A be a $m \times n$ $(m \le n)$ rectangular matrix and α be a nonzero $n \times m$ rectangular matrix. If $a_m \lambda^m + a_{m-1} \lambda^{m-1} + a_{m-2} \lambda^{m-2} + \dots + a_1 = 0$ is the right α – characteristic equation of A then $a_m \lambda^n + a_{m-1} \lambda^{n-1} + a_{m-2} \lambda^{n-2} + \dots + a_1 \lambda^{n-m} = 0$ is the left α – characteristic equation of A.

Proof: Since right α - characteristic equation of A is the characteristic equation of the square matrix $A\alpha$. So $A\alpha$ satisfies the right α – characteristic equation of A. That is $a_m(A\alpha)^m + a_{m-1}(A\alpha)^{m-1} + a_{m-2}(A\alpha)^{m-2} + \dots + a_1I = 0$ $\Rightarrow a_{m}A^{m}\alpha + a_{m-1}A^{m-1}\alpha + a_{m-2}A^{m-2}\alpha + \dots + a_{1}I = 0$ $\Rightarrow a_m A^m \alpha A^{n-m} + a_{m-1} A^{m-1} \alpha A^{n-m} + a_{m-2} A^{m-2} \alpha A^{n-m} + \dots + a_1 I A^{n-m} = 0$ $\Rightarrow a_m A^n + a_{m-1} A^{n-1} + a_{m-2} A^{n-2} + \dots + a_1 A^{n-m} = 0$ $\Rightarrow \alpha(a_m A^n + a_{m-1} A^{n-1} + a_{m-2} A^{n-2} + \dots + a_1 A^{n-m}) = \alpha.0$ $\Rightarrow a_m \alpha A^n + a_{m-1} \alpha A^{n-1} + a_{m-2} \alpha A^{n-2} + \dots + a_n \alpha A^{n-m} = 0$ $\Rightarrow a_m (\alpha A)^n + a_{m-1} (\alpha A)^{n-1} + a_{m-2} (\alpha A)^{n-2} + \dots + a_1 (\alpha A)^{n-m} = 0$ Therefore $a_m \lambda^n + a_{m-1} \lambda^{n-1} + a_{m-2} \lambda^{n-2} + \dots + a_1 \lambda^{n-m} = 0$ is the characteristic equation of the singular

Therefore $a_m \lambda^n + a_{m-1} \lambda^{n-1} + a_{m-2} \lambda^{n-2} + \dots + a_1 \lambda^{n-m} = 0$ is the characteristic equation of the singular square matrix αA is the left α - characteristic equation of A. Hence the result.

Corollary 2.4: Let A be a $m \times n$ $(m \le n)$ rectangular matrix and α be a nonzero $n \times m$ rectangular matrix. If λ_1 , λ_2 , λ_3 ,, λ_m are right α – characteristic roots of A then λ_1 , λ_2 , λ_3 ,, λ_m , $\underbrace{0,0,\ldots,0}_{(n-m)copies}$ are the left α – characteristic roots of A. That is, if A is a $m \times n$ $(m \le n)$ rectangular matrix and

 α is a nonzero $n \times m$ rectangular matrix then A has at most m number of nonzero left α – characteristic roots of A.

Corollary 2.5: Let A be a $m \times n$ $(m \ge n)$ rectangular matrix and α be a nonzero $n \times m$ rectangular matrix. If $a_n \lambda^n + a_{n-1} \lambda^{n-1} + a_{n-2} \lambda^{n-2} + \dots + a_1 = 0$ is the left α - characteristic equation of A then $a_n \lambda^m + a_{n-1} \lambda^{m-1} + a_{n-2} \lambda^{m-2} + \dots + a_1 \lambda^{m-n} = 0$ is the right α - characteristic equation of A. nd α is a nonzero $n \times m$ rectangular matrix then A satisfies its α - characteristic equation.

Corollary 2.6: If A is a rectangular matrix of order $m \times n$ and α is a rectangular matrix of order $n \times m$ such that n=m+1 then α - characteristic equation of A is $a_n \lambda^n + a_{n-1} \lambda^{n-1} + a_{n-2} \lambda^{n-2} + \dots + a_1 \lambda = 0$ and the rectangular matrix A satisfies it.

Theorem 2.7: If $m_{\alpha}(\lambda)$ be a α – minimal polynomial of a rectangular matrix A of order $m \times n$ ($m \le n$), then the α – characteristic equation of A divides $[m_{\alpha}(\lambda)]^n$.

Proof: Suppose $m_{\alpha}(\lambda) = \lambda^r + c_1 \lambda^{r-1} + c_2 \lambda^{r-2} + \dots + c_{r-1} \lambda$. Consider the following matrices:

$$\begin{array}{l} B_{0} = I \\ B_{1} = \alpha A + c_{1}I \\ B_{2} = (\alpha A)^{2} + c_{1}\alpha A + c_{2}I \\ B_{3} = (\alpha A)^{3} + c_{1}(\alpha A)^{2} + c_{2}\alpha A + c_{3}I \\ \hline \\ B_{r-1} = (\alpha A)^{r-1} + c_{1}(\alpha A)^{r-2} + c_{2}(\alpha A)^{r-3} + \dots + c_{r-1}I \\ B_{r} = (\alpha A)^{r} + c_{1}(\alpha A)^{r-1} + c_{2}(\alpha A)^{r-2} + c_{3}(\alpha A)^{r-3} + \dots + c_{r}I \\ \hline \\ \hline \\ Then B_{0} = I \\ B_{1} - \alpha AB_{0} = c_{1}I \\ B_{2} - \alpha AB_{1} = c_{2}I \\ B_{3} - \alpha AB_{2} = c_{3}I \\ \hline \\ B_{r-1} - \alpha AB_{r-2} = c_{r-1}I \\ \hline \\ And - \alpha AB_{r-1} = c_{r}I - B_{r} \\ = c_{r}I - [(\alpha A)^{r} + c_{1}(\alpha A)^{r-1} + c_{2}(\alpha A)^{r-2} + c_{3}(\alpha A)^{r-3} + \dots + c_{r}I] \\ = -[\alpha A^{r} + c_{1}\alpha A^{r-1} + c_{2}\alpha A^{r-2} + c_{3}\alpha A^{r-3} + \dots + c_{r-1}\alpha A] \\ = -\alpha (A^{r} + c_{1}A^{r-1} + c_{2}A^{r-2} + c_{3}A^{r-3} + \dots + c_{r-1}A) \\ = -\alpha m_{\alpha}(A) \\ = -\alpha .0 \\ = 0 \\ \text{Set} \qquad B(\lambda) = \lambda^{r-1}B_{0} + \lambda^{r-2}B_{1} + \lambda^{r-3}B_{2} + \dots + \lambda B_{r-2} + B_{r-1} \\ \text{Then} (\lambda I - \alpha A)B(\lambda) = (\lambda I - \alpha A)(\lambda^{r-1}B_{0} + \lambda^{r-2}B_{1} + \lambda^{r-3}B_{2} + \dots + \lambda B_{r-2} + B_{r-1}) \\ = \lambda^{r}B_{0} + \lambda^{r-1}(B_{1} - \alpha AB_{0}) + \lambda^{r-2}(B_{2} - \alpha AB_{1}) + \dots + \lambda (B_{r-1} - \alpha AB_{r-2}) - \alpha AB_{r-1} \\ = \lambda^{r}I + c_{1}\lambda^{r-1}I + c_{2}\lambda^{r-2}I + \dots + c_{r-1}\lambda I \\ = (\lambda^{r} + c_{1}\lambda^{r-1}I + c_{2}\lambda^{r-2}I + \dots + c_{r-1}\lambda)I \\ = m_{\alpha}(\lambda)I \\ \text{The determinant on both sides gives} \\ \end{array}$$

 $egin{aligned} &|\lambda I - lpha A| \cdot |B(\lambda)| = |m_lpha(\lambda)I| \ &= [m_lpha(\lambda)]^n. \end{aligned}$

Since $|B(\lambda)|$ is a polynomial, $|\lambda I - \alpha A|$ divides $[m_{\alpha}(\lambda)]^n$. That is the α - characteristic polynomial of A divides $[m_{\alpha}(\lambda)]^n$.

Example: Find the α -characteristic equation, α - eigenvalues, α - eigenvectors, α - minimal

polynomial of the rectangular matrix $A = \begin{pmatrix} 9 & 0 & 0 \\ 0 & 4 & 5 \end{pmatrix}$, where $\alpha = \begin{pmatrix} 1 & 0 \\ 0 & 1 \\ 0 & 1 \end{pmatrix}$.

Solution: The α – characteristic equation of A is given $|\alpha A - \lambda I| = 0$, where *I* is the unit matrix of order three.

That is
$$\begin{vmatrix} 1 & 0 \\ 0 & 1 \\ 0 & 1 \end{vmatrix} \begin{pmatrix} 9 & 0 & 0 \\ 0 & 4 & 5 \end{pmatrix} - \lambda \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix} = 0$$

$$\Rightarrow \begin{vmatrix} 9 - \lambda & 0 & 0 \\ 0 & 4 - \lambda & 5 \\ 0 & 4 & 5 - \lambda \end{vmatrix} = 0$$

$$\Rightarrow \lambda (\lambda - 9)^2 = 0$$

$$\Rightarrow \lambda = 0,9,9$$

Thus the α – eigenvalues of A are 0, 9, 9.

Now, we find the α – eigenvectors of A corresponding to each α – eigenvalue in the real field.

The α – eigenvectors of A corresponding to the α – eigenvalue $\lambda = 0$ are nonzero column vector X given by the equation, $(\alpha A - 0.I)X = 0$

$$\Rightarrow \alpha A X = 0$$

$$\Rightarrow \begin{pmatrix} 9 & 0 & 0 \\ 0 & 4 & 5 \\ 0 & 4 & 5 \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \\ 0 \end{pmatrix}$$

$$\Rightarrow \begin{pmatrix} 9x_1 \\ 4x_2 + 5x_3 \\ 4x_2 + 5x_3 \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \\ 0 \\ 0 \end{pmatrix}$$

$$\Rightarrow 9x_1 = 0, 4x_2 + 5x_3 = 0$$

Therefore the α – eigenvectors corresponding to the α – eigenvalue $\lambda = 0$ are given by

$$X = \begin{pmatrix} o \\ -5k \\ 4k \end{pmatrix} \text{or} \begin{pmatrix} 0 \\ 5k \\ -4k \end{pmatrix}, \text{ where } k \text{ is a real number.}$$

Similarly, the α - eigenvectors of A corresponding to the α - eigenvalue $\lambda = 9$ can be calculated. The α - minimal polynomial $m_{\alpha}(\lambda)$ must divide $|\alpha A - \lambda I|$. Also each factor of $|\alpha A - \lambda I|$ that is λ and $\lambda - 9$ must also be a factor of $m_{\alpha}(\lambda)$. Thus $m_{\alpha}(\lambda)$ is exactly only one of the following:

$$f(\lambda) = \lambda(\lambda - 9)$$
 or $\lambda(\lambda - 9)^2$. Testing $f(\lambda)$ we have $f(A) = A^2 - 9A$

$$= \begin{pmatrix} 9 & 0 & 0 \\ 0 & 4 & 5 \end{pmatrix} \begin{pmatrix} 1 & 0 \\ 0 & 1 \\ 0 & 1 \end{pmatrix} \begin{pmatrix} 9 & 0 & 0 \\ 0 & 4 & 5 \end{pmatrix} - 9 \begin{pmatrix} 9 & 0 & 0 \\ 0 & 4 & 5 \end{pmatrix}$$
$$= \begin{pmatrix} 81 & 0 & 0 \\ 0 & 36 & 45 \end{pmatrix} - \begin{pmatrix} 81 & 0 & 0 \\ 0 & 36 & 45 \end{pmatrix}$$
$$= 0$$
Thus $f(\lambda) = m_{\alpha}(\lambda) = \lambda(\lambda - 9) = \lambda^{2} - 9\lambda$ is the α – minimal of A.

.

References:

- [1].
- G. L. Booth, Radicals of matrix Γ rings, Math. Japonica, 33(1988), 325-334. H.K. Nath, A study of Gamma-Banach algebras, Ph.D. Thesis, (Gauhati University), (2001). [2].
- Jinn Miao Chen, Von Neumann regularity of two matrix $\Gamma_{n,m}$ ring $M_{m,n}$ over Γ ring, M. J. Xinjiang Univ. Nat. Sci., [3]. 4(1987), 37-42.
- T. K. Dutta and H. K. Nath, On the Gamma ring of rectangular Matrices, Bulletinof Pure and Applied Science, 16E(1997), 207-216. [4].