On α-characteristic Equations and α-minimal Polynomial of Rectangular Matrices

P. Rajkhowa ${ }^{1}$ and Md. Shahidul Islam Khan ${ }^{2}$
${ }^{1}$ Department of Mathematics, Gauhati University, Guwahati-781014
${ }^{2}$ Department of Mathematics, Gauhati University, Guwahati-781014

Abstract

In this paper, we study rectangular matrices which satisfy the criteria of the Cayley-Hamilton theorem for a square matrix.Various results on α-characteristic polynomials, α-characteristic equations, $\alpha-$ eigenvalues and α-minimal polynomial of rectangular matrices are proved. AMS SUBJECT CLASSIFICATION CODE: 17D20($\gamma, \delta)$.

Keywords: Rectangular matrix, α-characteristic polynomial, α-characteristic equation, α - eigenvalues and α-minimal polynomial.

I. Definitions and introduction:

In [2], define the product of rectangular matrices A and B of order $m \times n$ by $A \cdot B=A \alpha B$, for a fixed rectangular matrix $\alpha_{n \times m}$. With this product, we have $A^{2}=A \alpha A, A^{3}=A^{2}(\alpha A), A^{4}=A^{3}(\alpha A), \ldots \ldots \ldots$, $A^{n}=A^{n-1}(\alpha A)$. Let us consider a rectangular matrix $A_{m \times n}$. Then we consider a fixed rectangular matrix $\alpha_{n \times m}$ of the opposite order of A . Then αA and $A \alpha$ are both square matrices of order n and m respectively. If $m \leq n$, then αA is the highest $n^{\text {th }}$ order singular square matrix and $A \alpha$ is the lowest $m^{\text {th }}$ order square matrix forming their product. Then the matrix $\alpha A-\lambda I_{n}$ and $A \alpha-\lambda I_{m}$ are called the left α-characteristic matrix and right α-characteristic matrix of A respectively, where λ is an indeterminate. Also the determinant $|\alpha A-\lambda I|$ is a polynomial in λ of degree n , called the left α - characteristic polynomial of A and $|A \alpha-\lambda I|$ is a polynomial in λ of degree m , called the right α-characteristic polynomial of A . That is, the characteristic polynomial of singular square matrix αA is called the left $\alpha-$ characteristic polynomial of A and the characteristic polynomial the square matrix $A \alpha$ is called the right α-characteristic polynomial of A.

The equations $|\alpha A-\lambda I|=0$ and $|A \alpha-\lambda I|=0$ are called the left α-characteristic equation and right α-characteristicequation of A respectively. Then the rectangular matrix A satisfies the left α-characteristic equation, and the left α-characteristic equation of A is called the α-characteristic equation of A .

For $m \geq n$, the rectangular matrix $A_{m \times n}$ satisfies the right α-characteristic equation of A. So, in this case, the equation $|A \alpha-\lambda I|=0$ is called the α-characteristic equation of A . The roots of the α-characteristic equation of a rectangular matrix A are called the α-eigenvalues of A .
If λ is an α-eigenvalue of A , the matrix $\alpha A-\lambda I_{n}$ is singular. The equation $\left(\alpha A-\lambda I_{n}\right) X=0$ then possesses a non-zero solution i.e. there exists a non-zero column vector X such that $\alpha A X=\lambda X$. A non-zero vector X satisfying this equation is called a α-characteristic vector or α-eigenvector of A corresponding to the α-eigenvalue λ.

For a rectangular matrix $A_{m \times n}$ over a field K , let $J(A)$ denote the collection of all polynomial $f(\lambda)$ for which $f(A)=0$ (Note that $J(A)$ is nonempty, since the α-characteristic polynomial of A belongs to $J(A)$).Let $m_{\alpha}(\lambda)$ be the monic polynomial of minimal degree in $J(A)$. Then $m_{\alpha}(\lambda)$ is called the minimal polynomial of A .

II. Main results:

Theorem 2.1: If A is a rectangular matrix of order $m \times n$ and α is a rectangular matrix of order $n \times m$ then the left α - characteristic polynomial of a A and right $\alpha^{\prime}-$ characteristic polynomial of a A^{\prime} are same, where A^{\prime} and α^{\prime} are the transpose of A and α respectively.

Proof: Since $|\alpha A-\lambda I|=\left|(\alpha A-\lambda I)^{\prime}\right|$

$$
\begin{aligned}
& \Rightarrow|\alpha A-\lambda I|=\left|(\alpha A)^{\prime}-(\lambda I)^{\prime}\right| \\
& \Rightarrow|\alpha A-\lambda I|=\left|A^{\prime} \alpha^{\prime}-\lambda I\right|
\end{aligned}
$$

Which shows that the left α - characteristic polynomial of a A and right α^{\prime} - characteristic polynomial of a A^{\prime} are same.

Similarly we can show that If A is a rectangular matrix of order $m \times n$ and α is a rectangular matrix of order $n \times m$ then the right α - characteristic polynomial of a A and left α^{\prime} - characteristic polynomial of a A^{\prime} are same.

Theorem 2.2: Let $A_{m \times n}, m \leq n$ be a rectangular matrix. If $\lambda_{1}, \lambda_{2}, \lambda_{3}, \ldots, \lambda_{n}$ are $\alpha-$ characteristic roots of A then the α - characteristic roots A^{2} are $\lambda_{1}{ }^{2}, \lambda_{2}{ }^{2}, \lambda_{3}{ }^{2}, \ldots, \lambda_{n}{ }^{2}$.

Proof: Let λ be a α - characteristic root of the rectangular matrix $A_{m \times n}, m \leq n$.Then there exists at least a nonzero column matrix $X_{n \times 1}$ such that

$$
\begin{aligned}
& \alpha A X=\lambda X \\
& \Rightarrow \alpha A(\alpha A X)=\alpha A(\lambda X) \\
& \Rightarrow \alpha(A \alpha A) X=\lambda(\alpha A X) \\
& \Rightarrow \alpha A^{2} X=\lambda(\lambda X) \\
& \Rightarrow \alpha A^{2} X=\lambda^{2} X
\end{aligned}
$$

Therefore λ^{2} is a $\alpha-$ characteristic root of A^{2}.
Thus we can conclude that if $\lambda_{1}, \lambda_{2}, \lambda_{3}, \ldots \ldots, \lambda_{n}$ are $\alpha-$ characteristic roots of A then $, \lambda_{1}{ }^{2}, \lambda_{2}{ }^{2}, \lambda_{3}{ }^{2}, \ldots$, $\lambda_{n}{ }^{2}$ are the α - characteristic roots of A^{2}.

Theorem 2.3: Let A be a $m \times n(m \leq n)$ rectangular matrix and α be a nonzero $n \times m$ rectangular matrix. If $a_{m} \lambda^{m}+a_{m-1} \lambda^{m-1}+a_{m-2} \lambda^{m-2}+\ldots . .+a_{1}=0$ is the right $\alpha-$ characteristic equation of A then $a_{m} \lambda^{n}+a_{m-1} \lambda^{n-1}+a_{m-2} \lambda^{n-2}+\ldots \ldots+a_{1} \lambda^{n-m}=0$ is the left $\alpha-$ characteristic equation of A.

Proof: Since right α - characteristic equation of A is the characteristic equation of the square matrix $A \alpha$. So $A \alpha$ satisfies the right α-characteristic equation of A. That is $a_{m}(A \alpha)^{m}+a_{m-1}(A \alpha)^{m-1}+a_{m-2}(A \alpha)^{m-2}+\ldots \ldots+a_{1} I=0$
$\Rightarrow a_{m} A^{m} \alpha+a_{m-1} A^{m-1} \alpha+a_{m-2} A^{m-2} \alpha+\ldots \ldots+a_{1} I=0$
$\Rightarrow a_{m} A^{m} \alpha A^{n-m}+a_{m-1} A^{m-1} \alpha A^{n-m}+a_{m-2} A^{m-2} \alpha A^{n-m}+\ldots \ldots .+a_{1} I A^{n-m}=0$
$\Rightarrow a_{m} A^{n}+a_{m-1} A^{n-1}+a_{m-2} A^{n-2}+\ldots \ldots .+a_{1} A^{n-m}=0$
$\Rightarrow \alpha\left(a_{m} A^{n}+a_{m-1} A^{n-1}+a_{m-2} A^{n-2}+\ldots \ldots .+a_{1} A^{n-m}\right)=\alpha .0$
$\Rightarrow a_{m} \alpha A^{n}+a_{m-1} \alpha A^{n-1}+a_{m-2} \alpha A^{n-2}+\ldots \ldots+a_{1} \alpha A^{n-m}=0$
$\Rightarrow a_{m}(\alpha A)^{n}+a_{m-1}(\alpha A)^{n-1}+a_{m-2}(\alpha A)^{n-2}+\ldots \ldots+a_{1}(\alpha A)^{n-m}=0$
Therefore $a_{m} \lambda^{n}+a_{m-1} \lambda^{n-1}+a_{m-2} \lambda^{n-2}+\ldots \ldots+a_{1} \lambda^{n-m}=0$ is the characteristic equation of the singular square matrix αA. Since the characteristic equation of the singular square matrix αA is the left $\alpha-$ characteristic equation of A. Hence the result.

Corollary 2.4: Let A be a $m \times n(m \leq n)$ rectangular matrix and α be a nonzero $n \times m$ rectangular matrix. If $\lambda_{1}, \lambda_{2}, \lambda_{3}, \ldots \ldots, \lambda_{m}$ are right $\alpha-$ characteristic roots of A then $\lambda_{1}, \lambda_{2}, \lambda_{3}, \ldots \ldots, \lambda_{m}$, $\underbrace{0,0, \ldots \ldots .0}_{(n-m) \text { copies }}$ are the left $\alpha-$ characteristic roots of A. That is, if A is a $m \times n(m \leq n)$ rectangular matrix and
α is a nonzero $n \times m$ rectangular matrix then A has at most m number of nonzero left $\alpha-$ characteristic roots of A.

Corollary 2.5: Let A be a $m \times n(m \geq n)$ rectangular matrix and α be a nonzero $n \times m$ rectangular matrix. If $a_{n} \lambda^{n}+a_{n-1} \lambda^{n-1}+a_{n-2} \lambda^{n-2}+\ldots . .+a_{1}=0$ is the left $\alpha-$ characteristic equation of A then $a_{n} \lambda^{m}+a_{n-1} \lambda^{m-1}+a_{n-2} \lambda^{m-2}+\ldots \ldots+a_{1} \lambda^{m-n}=0$ is the right $\alpha-$ characteristic equation of A.
nd α is a nonzero $n \times m$ rectangular matrix then A satisfies its $\alpha-$ characteristic equation.
Corollary 2.6: If A is a rectangular matrix of order $m \times n$ and α is a rectangular matrix of order $n \times m$ such that $\mathrm{n}=\mathrm{m}+1$ then α-characteristic equation of A is $a_{n} \lambda^{n}+a_{n-1} \lambda^{n-1}+a_{n-2} \lambda^{n-2}+\ldots \ldots+a_{1} \lambda=0$ and the rectangular matrix A satisfies it.

Theorem 2.7: If $m_{\alpha}(\lambda)$ be a α-minimal polynomial of a rectangular matrix A of order $m \times n(m \leq n)$, then the $\alpha-$ characteristic equation of A divides $\left[m_{\alpha}(\lambda)\right]^{n}$.

Proof: Suppose $m_{\alpha}(\lambda)=\lambda^{r}+c_{1} \lambda^{r-1}+c_{2} \lambda^{r-2}+\ldots \ldots+c_{r-1} \lambda$. Consider the following matrices:

$$
\begin{aligned}
& B_{0}=I \\
& B_{1}=\alpha A+c_{1} I \\
& B_{2}=(\alpha A)^{2}+c_{1} \alpha A+c_{2} I \\
& B_{3}=(\alpha A)^{3}+c_{1}(\alpha A)^{2}+c_{2} \alpha A+c_{3} I
\end{aligned}
$$

$$
B_{r-1}=(\alpha A)^{r-1}+c_{1}(\alpha A)^{r-2}+c_{2}(\alpha A)^{r-3}+\ldots .+c_{r-1} I
$$

$$
B_{r}=(\alpha A)^{r}+c_{1}(\alpha A)^{r-1}+c_{2}(\alpha A)^{r-2}+c_{3}(\alpha A)^{r-3}+\ldots . .+c_{r} I
$$

Then $B_{0}=I$
$B_{1}-\alpha A B_{0}=c_{1} I$
$B_{2}-\alpha A B_{1}=c_{2} I$
$B_{3}-\alpha A B_{2}=c_{3} I$

```
\(B_{r-1}-\alpha A B_{r-2}=c_{r-1} I\)
And \(\quad-\alpha A B_{r-1}=c_{r} I-B_{r}\)
\(=c_{r} I-\left[(\alpha A)^{r}+c_{1}(\alpha A)^{r-1}+c_{2}(\alpha A)^{r-2}+c_{3}(\alpha A)^{r-3}+\ldots \ldots+c_{r} I\right]\)
\(=-\left[\alpha A^{r}+c_{1} \alpha A^{r-1}+c_{2} \alpha A^{r-2}+c_{3} \alpha A^{r-3}+\ldots \ldots+c_{r-1} \alpha A\right]\)
\(=-\alpha\left(A^{r}+c_{1} A^{r-1}+c_{2} A^{r-2}+c_{3} A^{r-3}+\ldots \ldots+c_{r-1} A\right)\)
\(=-\alpha \cdot m_{\alpha}(A)\)
\(=-\alpha .0\)
\(=0\)
```

Set $\quad B(\lambda)=\lambda^{r-1} B_{0}+\lambda^{r-2} B_{1}+\lambda^{r-3} B_{2}+\ldots \ldots+\lambda B_{r-2}+B_{r-1}$
Then $(\lambda I-\alpha A) \cdot B(\lambda)=(\lambda I-\alpha A) \cdot\left(\lambda^{r-1} B_{0}+\lambda^{r-2} B_{1}+\lambda^{r-3} B_{2}+\ldots \ldots+\lambda B_{r-2}+B_{r-1}\right)$
$=\lambda^{r} B_{0}+\lambda^{r-1}\left(B_{1}-\alpha A B_{0}\right)+\lambda^{r-2}\left(B_{2}-\alpha A B_{1}\right)+\ldots \ldots . .+\lambda\left(B_{r-1}-\alpha A B_{r-2}\right)-\alpha A B_{r-1}$
$=\lambda^{r} I+c_{1} \lambda^{r-1} I+c_{2} \lambda^{r-2} I+\ldots \ldots+c_{r-1} \lambda I$
$=\left(\lambda^{r}+c_{1} \lambda^{r-1}+c_{2} \lambda^{r-2}+\ldots \ldots+c_{r-1} \lambda\right) I$
$=m_{\alpha}(\lambda) I$

The determinant on both sides gives
$|\lambda I-\alpha A| .|B(\lambda)|=\left|m_{\alpha}(\lambda) I\right|$
$=\left[m_{\alpha}(\lambda)\right]^{n}$.
Since $|B(\lambda)|$ is a polynomial, $|\lambda I-\alpha A|$ divides $\left[m_{\alpha}(\lambda)\right]^{n}$. That is the $\alpha-$ characteristic polynomial of A divides $\left[m_{\alpha}(\lambda)\right]^{n}$.

Example: Find the α-characteristic equation, $\alpha-$ eigenvalues, $\alpha-$ eigenvectors, $\alpha-$ minimal polynomial of the rectangular matrix $A=\left(\begin{array}{lll}9 & 0 & 0 \\ 0 & 4 & 5\end{array}\right)$, where $\alpha=\left(\begin{array}{ll}1 & 0 \\ 0 & 1 \\ 0 & 1\end{array}\right)$.

Solution: The α-characteristic equation of A is given $|\alpha A-\lambda I|=0$, where I is the unit matrix of order three.
That is $\left.\left(\begin{array}{ll}1 & 0 \\ 0 & 1 \\ 0 & 1\end{array}\right)\left(\begin{array}{lll}9 & 0 & 0 \\ 0 & 4 & 5\end{array}\right)-\lambda\left(\begin{array}{lll}1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1\end{array}\right) \right\rvert\,=0$
$\Rightarrow\left|\begin{array}{ccc}9-\lambda & 0 & 0 \\ o & 4-\lambda & 5 \\ 0 & 4 & 5-\lambda\end{array}\right|=0$
$\Rightarrow \lambda(\lambda-9)^{2}=0$
$\Rightarrow \lambda=0,9,9$
Thus the α - eigenvalues of A are $0,9,9$.
Now, we find the α - eigenvectors of A corresponding to each α - eigenvalue in the real field.
The α - eigenvectors of A corresponding to the α - eigenvalue $\lambda=0$ are nonzero column vector X given by the equation, $(\alpha A-0 . I) X=0$
$\Rightarrow \alpha A X=0$
$\Rightarrow\left(\begin{array}{lll}9 & 0 & 0 \\ 0 & 4 & 5 \\ 0 & 4 & 5\end{array}\right)\left(\begin{array}{l}x_{1} \\ x_{2} \\ x_{3}\end{array}\right)=\left(\begin{array}{l}0 \\ 0 \\ 0\end{array}\right)$,
$\Rightarrow\left(\begin{array}{c}9 x_{1} \\ 4 x_{2}+5 x_{3} \\ 4 x_{2}+5 x_{3}\end{array}\right)=\left(\begin{array}{l}0 \\ 0 \\ 0\end{array}\right)$
$\Rightarrow 9 x_{1}=0,4 x_{2}+5 x_{3}=0$
Therefore the α - eigenvectors corresponding to the $\alpha-$ eigenvalue $\lambda=0$ are given by
$X=\left(\begin{array}{c}o \\ -5 k \\ 4 k\end{array}\right)$ or $\left(\begin{array}{c}0 \\ 5 k \\ -4 k\end{array}\right)$, where k is a real number.
Similarly, the α - eigenvectors of A corresponding to the α - eigenvalue $\lambda=9$ can be calculated.
The α-minimal polynomial $m_{\alpha}(\lambda)$ must divide $|\alpha A-\lambda I|$. Also each factor of $|\alpha A-\lambda I|$ that is λ and $\lambda-9$ must also be a factor of $m_{\alpha}(\lambda)$. Thus $m_{\alpha}(\lambda)$ is exactly only one of the following:
$f(\lambda)=\lambda(\lambda-9)$ or $\lambda(\lambda-9)^{2}$. Testing $f(\lambda)$ we have
$f(A)=A^{2}-9 A$

$$
\begin{aligned}
& =\left(\begin{array}{lll}
9 & 0 & 0 \\
0 & 4 & 5
\end{array}\right)\left(\begin{array}{ll}
1 & 0 \\
0 & 1 \\
0 & 1
\end{array}\right)\left(\begin{array}{lll}
9 & 0 & 0 \\
0 & 4 & 5
\end{array}\right)-9\left(\begin{array}{lll}
9 & 0 & 0 \\
0 & 4 & 5
\end{array}\right) \\
& =\left(\begin{array}{ccc}
81 & 0 & 0 \\
0 & 36 & 45
\end{array}\right)-\left(\begin{array}{ccc}
81 & 0 & 0 \\
0 & 36 & 45
\end{array}\right) \\
& =0 \\
& \text { Thus } f(\lambda)=m_{\alpha}(\lambda)=\lambda(\lambda-9)=\lambda^{2}-9 \lambda \text { is the } \alpha-\text { minimal of } \mathrm{A} .
\end{aligned}
$$

References:

[1]. G. L. Booth, Radicals of matrix $\quad \Gamma$ - rings, Math. Japonica, 33(1988), 325-334.
[2]. H.K. Nath, A study of Gamma-Banach algebras, Ph.D. Thesis, (Gauhati University), (2001)
[3]. Jinn Miao Chen, Von Neumann regularity of two matrix $\Gamma_{n, m}-\operatorname{ring} M_{m, . n}$ over Γ - ring, M. J. Xinjiang Univ. Nat. Sci., 4(1987), 37-42.
[4]. T. K. Dutta and H. K. Nath, On the Gamma ring of rectangular Matrices, Bulletinof Pure and Applied Science, 16E(1997), 207-216.

