CR- Submanifoldsof a Nearly Hyperbolic Cosymplectic Manifold

Mobin Ahmad and Kashif Ali
Department of Mathematics, Integral University, Kursi Road, Lucknow-226026, India.

Abstract

In the present paper, we study some properties of $C R$-submanifolds of a nearly hyperbolic cosymplectic manifold. We also obtain some results on ξ-horizontal and ξ-vertical CR-submanifolds of a nearly hyperboliccosymplectic manifold.

Keywords: CR-submanifolds, nearlyhyperbolic cosymplectic manifold, totally geodesic,parallel distribution.

I. Introduction

The notion of CR-submanifolds of Kaehler manifold was introduced and studied by A. Bejancu in ([1], [2]). Since then, several papers on Kaehler manifolds were published. CR-submanifolds of Sasakian manifold was studied by C.J. Hsu in [3] and M. Kobayashi in [4].Later, several geometers (see, [5], [6] [7], [8] [9], [10]) enriched the study of CR-submanifolds of almost contact manifolds. On the other hand,almost hyperbolic (f, g, η, ξ)-structure was defined and studied by Upadhyay and Dube in [11]. Dube and Bhatt studied CRsubmanifolds of trans-hyperbolic Sasakian manifold in [12]. In this paper, we study some properties of CRsubmanifolds of a nearly hyperbolic cosymplectic manifold.

The paper is organized as follows. In section 2, we give a brief description of nearly hyperbolic cosymplectic manifold.In section 3, some properties of CR-submanifolds of nearly hyperbolic cosymplectic manifold are investigated. In section 4 , some results on parallel distribution on ξ-horizontal and ξ-vertical CR- submanifolds of a nearly cosymplectic manifold are obtained.

II. Nearly Hyperbolic Cosymplectic manifold

Let \bar{M} be an n-dimensional almost hyperbolic contact metric manifold with the almost hyperbolic contact metric (ϕ, ξ, η, g) - structure, where a tensor ϕ of type $(1,1)$ a vector field ξ, called structure vector field and η, the dual 1-form of ξ satisfying the followings:

$$
\begin{aligned}
& \phi^{2} X=X+\eta(X) \xi, \quad g(X, \xi)=\eta(X),(2.1) \\
& \eta(\xi)=-1, \quad \phi(\xi)=0, \quad \eta O \phi=0,(2.2) \\
& g(\phi X, \phi Y)=-g(X, Y)-\eta(X) \eta(Y)(2.3)
\end{aligned}
$$

for any X, Y tangent to \bar{M} [11]. In this case

$$
g(\phi X, Y)=-g(X, \phi Y) .(2.4)
$$

An almost hyperbolic contact metric (ϕ, ξ, η, g)-structure on \bar{M} is called nearly hyperbolic cosymplecticstructure if and only if
$\left(\bar{\nabla}_{X} \phi\right) Y+\left(\bar{\nabla}_{Y} \phi\right) X=0,(2.5)$
$\bar{\nabla}_{X} \xi=0(2.6)$
for all X, Y tangent to \bar{M} and Riemannian Connection $\bar{\nabla}$.

III. CR-Submanifolds of Nearly Hyperbolic Cosymplectic Manifold

Let M be a submanifold immersed in \bar{M}. We assume that the vector field ξ is tangent to M. Then M is called a CR-submanifold [13] of \bar{M} if there exist two orthogonal differentiable distributions D and D^{\perp} on M satisfying
(i) $T M=D \oplus D^{\perp}$,
(ii) the distribution D is invariant by ϕ, that is, $\phi D_{X}=D_{X}$ for each $X \in M$,
(iii) the distribution D^{\perp} is anti-invariant by ϕ, that is, $\phi D_{X}^{\perp} \subset T_{X} M^{\perp}$ for each $X \epsilon M$,
whereTMand $T^{\perp} M$ be the Lie algebra of vector fields tangential to M and normal to M respectively. If $\operatorname{dim} D_{x}^{\perp}=0$ (resp., $\operatorname{dim} D_{x}=0$), then the CR-submanifold is called an invariant (resp., anti-invariant) submanifold. The distribution $D\left(\right.$ resp., $\left.D^{\perp}\right)$ is called the horizontal (resp., vertical)distribution. Also, the pair $\left(D, D^{\perp}\right)$ is called $\xi-$ horizontal(resp., vertical)if $\xi_{X} \in D_{X}$ (resp., $\left.\xi_{X} \in D_{X}^{\perp}\right)$.

Let the Riemannian metric induced on M is denoted by the same symbol g and ∇ be the induced LeviCivita connection on N, then the Gauss and Weingarten formulas are given respectively by [14]

$$
\begin{aligned}
& \bar{\nabla}_{X} Y=\nabla_{X} Y+h(X, Y), \\
& \bar{\nabla}_{X} N=-A_{N} X+\nabla_{X}^{\frac{1}{X}} N(3.2)
\end{aligned}
$$

for any $X, Y \in T M a n d N \in T^{\perp} M$, where ∇^{\perp} is a connection on the normal bundle $T^{\perp} M, h$ is the second fundamental form and A_{N} is the Weingarten map associated with N as

$$
g\left(A_{N} X, Y\right)=g(h(X, Y), N)
$$

for any $x \in \operatorname{Mand} X \in T_{x} M$. We write

$$
X=P X+Q X,(3.4)
$$

where $P X \in \operatorname{Dand} Q X \in D^{\perp}$.
Similarly, for N normal to M, we have

$$
\phi N=B N+C N,(3.5)
$$

where $B N($ resp. CN) is the tangential component (resp.normalcomponent) of ϕN.
Lemma 3.1.Let M be a CR- submanifold of a nearly hyperbolic cosymplectic manifold \bar{M}. Then $\phi P\left(\nabla_{X} Y\right)+\phi P\left(\nabla_{Y} X\right)=P \nabla_{X}(\phi P Y)+P \nabla_{Y}(\phi P X)-P A_{\phi Q Y} X-P A_{\phi Q X} Y$,(3.6) $2 B h(X, Y)=Q \nabla_{X}(\phi P Y)+Q \nabla_{Y}(\phi P X)-Q A_{\phi Q X} Y-Q A_{\phi Q Y} X$,(3.7)
$\phi Q \nabla_{X} Y+\phi Q \nabla_{Y} X+2 C h(X, Y)=h(X, \phi P Y)+h(Y, \phi P X)+\nabla_{X}^{\perp} \phi Q Y+\nabla_{Y}^{\perp} \phi Q X(3.8)$
forany $X, Y \in T M$.
Proof.Using (2.4), (2.5) and (2.6), we get

$$
\left(\bar{\nabla}_{X} \phi\right) Y+\phi\left(\nabla_{X} Y\right)+\phi h(X, Y)=\nabla_{X}(\phi P Y)+h(X, \phi P Y)-A_{\phi Q Y} X+\nabla_{X}^{\frac{1}{X}} \phi Q Y
$$

Interchanging $X \& Y$ and adding, we have

$$
\begin{aligned}
\left(\bar{\nabla}_{X} \phi\right) Y+\left(\bar{\nabla}_{Y} \phi\right) X & +\phi\left(\nabla_{X} Y\right)+\phi\left(\nabla_{Y} X\right)+2 \phi h(X, Y) \\
& =\nabla_{X}(\phi P Y)+\nabla_{Y}(\phi P X)+h(X, \phi P Y)+h(Y, \phi P X)
\end{aligned}
$$

$-A_{\phi Q Y} X-A_{\phi Q X} Y+\nabla_{X}^{\frac{1}{X}} \phi Q Y+\nabla_{Y}^{\frac{1}{Y}} \phi Q X$.
Using (2.5) in above equation, we have

$$
\begin{array}{r}
\phi P\left(\nabla_{X} Y\right)+\phi Q\left(\nabla_{X} Y\right)+\phi P\left(\nabla_{Y} X\right)+\phi Q\left(\nabla_{Y} X\right)+2 B h(X, Y) \\
+2 C h(X, Y)=P \nabla_{X}(\phi P Y)+Q \nabla_{Y}(\phi P X)+h(X, \phi P Y) \\
+h(Y, \phi P X)-P A_{\phi Q Y} X-Q A_{\phi Q Y} X-P A_{\phi Q X} Y
\end{array}
$$

$-Q A_{\phi Q X} Y+\nabla_{X}^{\frac{1}{X}} \phi Q Y+\nabla_{Y}^{\perp} \phi Q X$.(3.9)
Comparing the horizontal, vertical and normal components, we get (3.6) - (3.8).
Hence the Lemma is proved.
Lemma 3.2.Let M be a CR- submanifold of a nearly hyperbolic cosymplectic manifold \bar{M}. Then $2\left(\bar{\nabla}_{X} \phi\right) Y=\nabla_{X} \phi Y-\bar{\nabla}_{Y} \phi X+h(X, \phi Y)-\nabla_{Y} \phi X-\phi[X, Y](3.10)$ forany $X, Y \in D$.
Proof.From Gauss formula (3.1), we have

$$
\bar{\nabla}_{X} \phi Y-\bar{\nabla}_{Y} \phi X=\nabla_{X} \phi Y+h(X, \phi Y)-\nabla_{Y} \phi X-h(Y, \phi X) .(3.11)
$$

Also, we have

$$
\begin{equation*}
\bar{\nabla}_{X} \phi Y-\bar{\nabla}_{Y} \phi X=\left(\bar{\nabla}_{X} \phi\right) Y-\left(\bar{\nabla}_{Y} \phi\right) X+\phi[X, Y] \tag{3.13}
\end{equation*}
$$

From (3.11) and (3.12), we get
$\left(\bar{\nabla}_{X} \phi\right) Y-\left(\bar{\nabla}_{Y} \phi\right) X=\nabla_{X} \phi Y+h(X, \phi Y)-\nabla_{Y} \phi X-h(Y, \phi X)-\phi[X, Y]$.
Adding (3.15) and (2.5), we obtain

$$
2\left(\bar{\nabla}_{X} \phi\right) Y=\nabla_{X} \phi Y+h(X, \phi Y)-\nabla_{Y} \phi X-h(Y, \phi X)-\phi[X, Y] .
$$

Hence the Lemma is proved.
Lemma 3.3.Let M be a CR- submanifold of a nearly hyperbolic cosymplectic manifold \bar{M}. Then

$$
\begin{array}{r}
2\left(\bar{\nabla}_{X} \phi\right) Y=A_{\phi X} Y-A_{\phi Y} X+\nabla_{X}^{\frac{1}{X}} \phi Y-\nabla_{Y}^{\perp} \phi X-\phi[X, Y](3.14) \\
\text { forany } X, Y \in D^{\perp} .
\end{array}
$$

Proof.From Weingarten formula (3.2), we have

$$
\bar{\nabla}_{X} \phi Y-\bar{\nabla}_{Y} \phi X=A_{\phi X} Y-A_{\phi Y} X+\nabla_{X}^{\frac{1}{X}} \phi Y-\nabla_{Y}^{\frac{1}{Y}} \phi X .(3.15)
$$

Also,

$$
\bar{\nabla}_{X} \phi Y-\bar{\nabla}_{Y} \phi X=\left(\bar{\nabla}_{X} \phi\right) Y-\left(\bar{\nabla}_{Y} \phi\right) X+\phi[X, Y] .(3.16)
$$

From (3.15) and (3.16), we get
$\left(\bar{\nabla}_{X} \phi\right) Y-\left(\bar{\nabla}_{Y} \phi\right) X=A_{\phi X} Y-A_{\phi Y} X+\nabla_{X}^{\frac{1}{X}} \phi Y-\nabla_{Y}^{\frac{1}{Y}} \phi X-\phi[X, Y]$. (3.17)
Adding (3.17) and (2.5), we obtain

$$
2\left(\bar{\nabla}_{X} \phi\right) Y=A_{\phi X} Y-A_{\phi Y} X+\nabla_{X}^{\frac{1}{X}} \phi Y-\nabla_{Y}^{\frac{1}{Y}} \phi X-\phi[X, Y] .
$$

Hence the Lemma is proved.
Lemma 3.4.Let M be a CR- submanifold of a nearly hyperbolic cosymplectic manifold \bar{M}. Then $2\left(\bar{\nabla}_{X} \phi\right) Y=-A_{\phi Y} X+\nabla_{X}^{\perp} \phi Y-\nabla_{Y} \phi X-h(Y, \phi X)-\phi[X, Y]$ (3.18)
forany $X \in$ Dand $Y \in D^{\perp}$.

Proof.Using Gauss and Weingarten formula for $\in \operatorname{Dand} Y \in D^{\perp}$, we have

$$
\bar{\nabla}_{X} \phi Y-\bar{\nabla}_{Y} \phi X=-A_{\phi Y} X+\nabla_{X}^{\perp} \phi Y-\nabla_{Y} \phi X+h(Y, \phi X)
$$

Also, we have

$$
\bar{\nabla}_{X} \phi Y-\bar{\nabla}_{Y} \phi X=\left(\bar{\nabla}_{X} \phi\right) Y-\left(\bar{\nabla}_{Y} \phi\right) X+\phi[X, Y] .(3.20)
$$

By virtue of (3.19) and (3.20), we get

$$
\left(\bar{\nabla}_{X} \phi\right) Y-\left(\bar{\nabla}_{Y} \phi\right) X=-A_{\phi Y} X+\nabla_{X}^{\frac{1}{X}} \phi Y-\nabla_{Y} \phi X+h(Y, \phi X)-\phi[X, Y] .(3.21)
$$

Adding (3.21) and (2.5), we obtain

$$
2\left(\bar{\nabla}_{X} \phi\right) Y=-A_{\phi Y} X+\nabla_{X}^{\perp} \phi Y-\nabla_{Y} \phi X+h(Y, \phi X)-\phi[X, Y] .
$$

Hence the Lemma is proved.

IV. Parallel Distribution

Definition4.1.The horizontal (resp., vertical) distribution $D\left(\right.$ resp., D^{\perp}) is said to be parallel [13] with respect to the connectionon $\operatorname{Mif}_{\nabla_{X}} Y \in D\left(r e s p ., \nabla_{Z} W \in D^{\perp}\right)$ for any vector field $X, Y \in D\left(r e s p ., W, Z \in D^{\perp}\right)$.
Theorem 4.2.Let M be a ξ - vertical CR-submanifold of a nearly hyperbolic cosymplecticmanifold \bar{M}. If the horizontal distribution D is parallel,then

$$
h(X, \phi Y)=h(Y, \phi X)
$$

Proof.Using parallelism of horizontal distribution D , we have $\nabla_{X}(\phi Y) \in \operatorname{Dand}_{Y} \phi X \in \operatorname{Dforany} X, Y \in D .(4.2)$
Now, by virtue of (3.7), we have

$$
B h(X, Y)=0 .(4.3)
$$

From (3.5) and (4.3), we get

$$
\phi h(X, Y)=\operatorname{Ch}(X, Y)(4.4)
$$

forany $X, Y \in D$.
From (3.8), we have

$$
\begin{equation*}
h(X, \phi Y)+h(Y, \phi X)=2 \operatorname{Ch}(X, Y)(4.5 \tag{4.5}
\end{equation*}
$$

forany $X, Y \in D$.
Replacing Xby ϕ Xin (4.5) and using (4.4), we have

$$
h(\phi X, \phi Y)+h(Y, X)=\phi h(\phi X, Y)
$$

Now, replacing $Y b y \phi Y$ in (4.6), we get

$$
\begin{aligned}
& h(X, Y)+h(\phi Y, \phi X)=\phi h(X, \phi Y) .(4.7) \\
&
\end{aligned}
$$

Thus from (4.6) and (4.7), we find

$$
h(X, \phi Y)=h(Y, \phi X)
$$

Hence the Theorem is proved.
Theorem 4.3.Let M be aCR-submanifold of a nearly hyperbolic cosymplecticmanifold \bar{M}. If the distribution D^{\perp} is parallel with respect to the connection on M , then

$$
\begin{aligned}
& A_{\phi Y} Z+A_{\phi Z} Y \in D^{\perp} \\
& \text { forany } Y, Z \in D^{\perp}
\end{aligned}
$$

Proof.Let $Y, Z \in D^{\perp}$, then using (3.1) and (3.2), we have
$-A_{\phi Z} Y-A_{\phi Y} Z+\nabla_{Y}^{\perp} \phi Z+\nabla_{Z}^{\perp} \phi Y=\phi\left(\nabla_{Y} Z\right)+\phi \nabla_{Z} Y+2 \phi h(Y, Z) .(4.8)$
Taking inner product with $X \in \operatorname{Din}(4.8)$, we get

$$
g\left(A_{\phi Y} Z+A_{\phi Z} Y\right)=0
$$

which is equivalent to

$$
\left(A_{\phi Y} Z+A_{\phi Z} Y\right) \in D^{\perp}
$$

forany $Y, Z \in D^{\perp}$.
Definition 4.4.A CR-submanifold is said to be mixed-totally geodesic ifh $(X, Z)=0$ forall $X \in \operatorname{DandZ} \in D^{\perp}$.
Lemma 4.5.Let M be a CR-submanifold of a nearly hyperbolic cosymplecticmanifold \bar{M}. Then M is mixed totally geodesic if and only if $A_{N} X \in D$ for all $X \in D$.
Definition 4.6.A Normal vector field $N \neq 0$ is called D - parallel normal section if $\nabla_{X}^{1} N=0$ for all $X \in D$.
Theorem 4.7.Let M be a mixed totally geodesic CR-submanifold of a nearly hyperbolic cosymplecticmanifold \bar{M}. Then the normal section $N \in \phi D^{\perp}$ is D - parallel if and only if $\nabla_{X} \phi N \in D$ forallX \in D.

Proof.Let $N \in \phi D^{\perp}$, then from (3.7), we have
$Q \nabla_{Y} \phi X=0$.
In particular, we have $Q \nabla_{Y} \phi X=0$. Using it in (3.8), we have

$$
\phi Q \nabla_{X} \phi N=\nabla_{X}^{\frac{1}{X}} N . \text { (4.9) }
$$

Thus, if the normal section $N \neq 0$ is D-parallel, then using 'definition 4.6' and (4.9), we get

$$
\phi \nabla_{X}(\phi N)=0
$$

which is equivalent to $\nabla_{X}(\phi N) \in 0$ forall $X \in D$.
The converse part easily follows from (4.9). This completes the proof of the theorem.

References

[1]. A.Bejancu, CR- submanifolds of a Kaehler manifold I, Proc. Amer. Math. Soc. 69 (1978), 135-142.
[2]. CR- submanifolds of a Kaehler manifold II, Trans. Amer. Math. Soc. 250 (1979), 333-345.
[3]. C.J. Hsu, On CR-submanifolds of Sasakian manifolds I, Math. Research Center Reports, Symposium Summer 1983, 117-140.
[4]. M. Kobayash, CR-submanifolds of a Sasakian manifold, Tensor N.S. 35 (1981), 297-307.
[5]. A. Bejancuand N.Papaghuic, CR-submanifolds of Kenmotsu manifold, Rend. Mat. 7 (1984), 607-622.
[6]. Lovejoy S.K. Das and M. Ahmad, CR-submanifolds of LP-Sasakian manifolds with quarter symmetric non-metric connection, Math. Sci. Res. J. 13 (7), 2009, 161-169.
[7]. C. Ozgur, M. Ahmad and A. Haseeb, CR-submanifolds of LP-Sasakian manifolds with semi-symmetric metric connection, Hacettepe J. Math. And Stat. vol. 39 (4) (2010), 489-496.
[8]. K. Matsumoto, On CR-submsnifolds of locally conformal Kaehler manifolds, J. Korean Math. Soc. 21 (1984), 49-61.
[9]. M. Ahmad and J.P. Ojha, CR-submanifolds of LP-Sasakian manifolds with the canonical semi-symmetric semi-metric connection, Int. J. Contemp. Math. Science, vol. 5 (2010), no. 33, 1637-1643.
[10]. M. Ahmad, M.D. Siddiqi and S. Rizvi, CR-submanifolds of a nearly hyperbolic Sasakian manifold admitting semi-symmetric semimetric connection, International J. Math. Sci. \&Engg.Appls., Vol. 6 (2012), 145-155.
[11]. M.D. Upadhyayand K.K. Dube, Almost contact hyperbolic (ϕ, ξ, η, g)-structure, Acta. Math. Acad. Scient. Hung. Tomus 28 (1976), 1-4.
[12]. L. Bhatt and K.K. Dube, CR-submanifolds of trans-hyperbolic Sasakian manifold, ActaCienciaIndica 31 (2003), 91-96.
[13]. A. Bejancu,Geometry of CR- submanifolds, D. Reidel Publishing Company, Holland,1986.
[14]. D.E. Blair, Contact manifolds in Riemannian Geometry, Lecture Notes in Mathematics, Vol. 509, Springer-Verlag, Berlin, 1976.

