CR- Submanifoldsof a Nearly Hyperbolic Cosymplectic Manifold

Mobin Ahmad and Kashif Ali

Department of Mathematics, Integral University, Kursi Road, Lucknow-226026, India.

Abstract: In the present paper, we study some properties of CR-submanifolds of a nearly hyperbolic cosymplectic manifold. We also obtain some results on ξ –horizontal and ξ –vertical CR- submanifolds of a nearly hyperbolic cosymplectic manifold.

Keywords: CR-submanifolds, nearlyhyperbolic cosymplectic manifold, totally geodesic, parallel distribution.

I. Introduction

The notion of CR-submanifolds of Kaehler manifold was introduced and studied by A. Bejancu in ([1], [2]). Since then, several papers on Kaehler manifolds were published. CR-submanifolds of Sasakian manifold was studied by C.J. Hsu in [3] and M. Kobayashi in [4].Later, several geometers (see, [5], [6] [7], [8] [9], [10]) enriched the study of CR-submanifolds of almost contact manifolds. On the other hand, almost hyperbolic (f, g, η, ξ) -structure was defined and studied by Upadhyay and Dube in [11]. Dube and Bhatt studied CR-submanifolds of trans-hyperbolic Sasakian manifold in [12]. In this paper, we study some properties of CR-submanifolds of a nearly hyperbolic cosymplectic manifold.

The paper is organized as follows. In section 2, we give a brief description of nearly hyperbolic cosymplectic manifold. In section 3, some properties of CR-submanifolds of nearly hyperbolic cosymplectic manifold are investigated. In section 4, some results on parallel distribution on ξ -horizontal and ξ -vertical CR-submanifolds of a nearly cosymplectic manifold are obtained.

II. Nearly Hyperbolic Cosymplectic manifold

Let \overline{M} be an *n*-dimensional almost hyperbolic contact metric manifold with the almost hyperbolic contact metric (ϕ, ξ, η, g) - structure, where a tensor ϕ of type (1,1) a vector field ξ , called structure vector field and η , the dual 1-form of ξ satisfying the followings:

 $\phi^{2}X = X + \eta(X)\xi, \qquad g(X,\xi) = \eta(X),(2.1)$ $\eta(\xi) = -1, \qquad \phi(\xi) = 0, \qquad \eta o \phi = 0, (2.2)$ $g(\phi X, \phi Y) = -g(X, Y) - \eta(X)\eta(Y) (2.3)$ for any X, Y tangent to \overline{M} [11]. In this case $g(\phi X, Y) = -g(X, \phi Y).(2.4)$

An almost hyperbolic contact metric (ϕ, ξ, η, g) -structure on \overline{M} is called nearly hyperbolic cosymplectic structure if and only if

 $(\overline{\nabla}_X \phi) Y + (\overline{\nabla}_Y \phi) X = 0, (2.5)$

 $\overline{\nabla}_X \xi = 0(2.6)$

for all *X*, *Y* tangent to \overline{M} and Riemannian Connection $\overline{\nabla}$.

III. CR-Submanifolds of Nearly Hyperbolic Cosymplectic Manifold

Let *M* be a submanifold immersed in \overline{M} . We assume that the vector field ξ is tangent to *M*. Then *M* is called a CR-submanifold [13] of \overline{M} if there exist two orthogonal differentiable distributions *D* and D^{\perp} on *M* satisfying

(i) $TM = D \oplus D^{\perp}$,

(ii) the distribution *D* is invariant by ϕ , that is, $\phi D_X = D_X$ for each $X \in M$,

(iii) the distribution D^{\perp} is anti-invariant by ϕ , that is, $\phi D_X^{\perp} \subset T_X M^{\perp}$ for each $X \in M$,

where $TMandT^{\perp}M$ be the Lie algebra of vector fields tangential to M and normal to M respectively. If $\dim D_x^{\perp} = 0$ (*resp.*, $\dim D_x = 0$), then the CR-submanifold is called an invariant (resp., anti-invariant) submanifold. The distribution $D(resp., D^{\perp})$ is called the horizontal (resp., vertical) distribution. Also, the pair (D, D^{\perp}) is called $\xi - horizontal(resp., vertical) if \xi_{\chi} \in D_{\chi}(resp., \xi_{\chi} \in D_{\chi}^{\perp})$.

Let the Riemannian metric induced on M is denoted by the same symbol g and ∇ be the induced Levi-Civita connection on N, then the Gauss and Weingarten formulas are given respectively by [14]

 $\overline{\nabla}_X Y = \nabla_X Y + h(X, Y), \quad (3.1)$

 $\overline{\nabla}_X N = -A_N X + \nabla^{\perp}_X N(3.2)$

for any $X, Y \in TM$ and $N \in T^{\perp}M$, where ∇^{\perp} is a connection on the normal bundle $T^{\perp}M$, *h* is the second fundamental form and A_N is the Weingarten map associated with N as

 $g(A_N X, Y) = g(h(X, Y), N) (3.3)$ for any $x \in MandX \in T_x M$. We write X = PX + QX,(3.4)where $PX \in DandQX \in D^{\perp}$. Similarly, for N normal to M, we have $\phi N = BN + CN_{\rm I}(3.5)$ where BN(resp. CN) is the tangential component (resp. normal component) of ϕN . **Lemma 3.1.**Let M be a CR- submanifold of a nearly hyperbolic cosymplectic manifold \overline{M} . Then $\phi P(\nabla_X Y) + \phi P(\nabla_Y X) = P \nabla_X (\phi P Y) + P \nabla_Y (\phi P X) - P A_{\phi O Y} X - P A_{\phi O X} Y, (3.6)$ $2Bh(X,Y) = Q\nabla_X(\phi PY) + Q\nabla_Y(\phi PX) - QA_{\phi 0X}Y - QA_{\phi 0Y}X,(3.7)$ $\phi Q \nabla_X Y + \phi Q \nabla_Y X + 2Ch(X,Y) = h(X,\phi PY) + h(Y,\phi PX) + \nabla_X^{\perp} \phi QY + \nabla_Y^{\perp} \phi QX(3.8)$ for any $X, Y \in TM$. **Proof.**Using (2.4), (2.5) and (2.6), we get $(\overline{\nabla}_{X}\phi)Y + \phi(\nabla_{X}Y) + \phi h(X,Y) = \nabla_{X}(\phi PY) + h(X,\phi PY) - A_{\phi OY}X + \nabla_{X}^{\perp}\phi QY.$ Interchanging X&Y and adding, we have $(\overline{\nabla}_{X}\phi)Y + (\overline{\nabla}_{Y}\phi)X + \phi(\nabla_{X}Y) + \phi(\nabla_{Y}X) + 2\phi h(X,Y)$ $= \nabla_X(\phi PY) + \nabla_Y(\phi PX) + h(X, \phi PY) + h(Y, \phi PX)$

 $-A_{\phi QY}X - A_{\phi QX}Y + \nabla_X^{\perp}\phi QY + \nabla_Y^{\perp}\phi QX.$ Using (2.5) in above equation, we have

 $\phi P(\nabla_X Y) + \phi Q(\nabla_X Y) + \phi P(\nabla_Y X) + \phi Q(\nabla_Y X) + 2Bh(X,Y)$ $+ 2Ch(X,Y) = P\nabla_X(\phi PY) + Q\nabla_Y(\phi PX) + h(X,\phi PY)$ $+ h(Y,\phi PX) - PA_{\phi QY}X - QA_{\phi QY}X - PA_{\phi QX}Y$

 $-QA_{\phi QX}Y + \nabla_X^{\perp}\phi QY + \nabla_Y^{\perp}\phi QX.(3.9)$

Comparing the horizontal, vertical and normal components, we get (3.6) - (3.8). Hence the Lemma is proved. \Box

Lemma 3.2.Let M be a CR- submanifold of a nearly hyperbolic cosymplectic manifold \overline{M} . Then $2(\overline{\nabla}_{X}\phi)Y = \nabla_{X}\phi Y - \overline{\nabla}_{Y}\phi X + h(X,\phi Y) - \nabla_{Y}\phi X - \phi[X,Y](3.10)$ for any $X, Y \in D$. **Proof.**From Gauss formula (3.1), we have $\overline{\nabla}_{X}\phi Y - \overline{\nabla}_{Y}\phi X = \nabla_{X}\phi Y + h(X,\phi Y) - \nabla_{Y}\phi X - h(Y,\phi X).(3.11)$ Also, we have $\overline{\nabla}_{X}\phi Y - \overline{\nabla}_{Y}\phi X = (\overline{\nabla}_{X}\phi)Y - (\overline{\nabla}_{Y}\phi)X + \phi[X,Y]. (3.12)$ From (3.11) and (3.12), we get $(\overline{\nabla}_X \phi)Y - (\overline{\nabla}_Y \phi)X = \nabla_X \phi Y + h(X, \phi Y) - \nabla_Y \phi X - h(Y, \phi X) - \phi[X, Y].$ (3.13)Adding (3.15) and (2.5), we obtain $2(\overline{\nabla}_{X}\phi)Y = \nabla_{X}\phi Y + h(X,\phi Y) - \nabla_{Y}\phi X - h(Y,\phi X) - \phi[X,Y].$ Hence the Lemma is proved. **Lemma 3.3.**Let *M* be a CR- submanifold of a nearly hyperbolic cosymplectic manifold \overline{M} . Then $2(\overline{\nabla}_X \phi)Y = A_{\phi X}Y - A_{\phi Y}X + \nabla^{\perp}_X \phi Y - \nabla^{\perp}_Y \phi X - \phi[X,Y](3.14)$ for any $X, Y \in D^{\perp}$. **Proof.**From Weingarten formula (3.2), we have $\overline{\nabla}_{X}\phi Y - \overline{\nabla}_{Y}\phi X = A_{\phi X}Y - A_{\phi Y}X + \nabla^{\perp}_{X}\phi Y - \nabla^{\perp}_{Y}\phi X.(3.15)$ Also. $\overline{\nabla}_{X}\phi Y - \overline{\nabla}_{Y}\phi X = (\overline{\nabla}_{X}\phi)Y - (\overline{\nabla}_{Y}\phi)X + \phi[X,Y].(3.16)$ From (3.15) and (3.16), we get $(\overline{\nabla}_X \phi) Y - (\overline{\nabla}_Y \phi) X = A_{\phi X} Y - A_{\phi Y} X + \nabla_X^{\perp} \phi Y - \nabla_Y^{\perp} \phi X - \phi[X, Y].$ (3.17) Adding (3.17) and (2.5), we obtain $2(\overline{\nabla}_X \phi)Y = A_{\phi X}Y - A_{\phi Y}X + \nabla^{\perp}_X \phi Y - \nabla^{\perp}_Y \phi X - \phi[X,Y].$ Hence the Lemma is proved. \Box

Lemma 3.4.Let *M* be a CR- submanifold of a nearly hyperbolic cosymplectic manifold \overline{M} . Then $2(\overline{\nabla}_X \phi)Y = -A_{\phi Y}X + \nabla_X^{\perp}\phi Y - \nabla_Y \phi X - h(Y, \phi X) - \phi[X, Y]$ (3.18) *for any* $X \in DandY \in D^{\perp}$.

Proof. Using Gauss and Weingarten formula for ∈ *DandY* ∈ *D*[⊥], we have $\overline{\nabla}_X \phi Y - \overline{\nabla}_Y \phi X = -A_{\phi Y} X + \nabla_X^{\perp} \phi Y - \nabla_Y \phi X + h(Y, \phi X)$. (3.19) Also, we have $\overline{\nabla}_X \phi Y - \overline{\nabla}_Y \phi X = (\overline{\nabla}_X \phi) Y - (\overline{\nabla}_Y \phi) X + \phi[X, Y]$.(3.20) By virtue of (3.19) and (3.20), we get $(\overline{\nabla}_X \phi) Y - (\overline{\nabla}_Y \phi) X = -A_{\phi Y} X + \nabla_X^{\perp} \phi Y - \nabla_Y \phi X + h(Y, \phi X) - \phi[X, Y]$.(3.21) Adding (3.21) and (2.5), we obtain $2(\overline{\nabla}_X \phi) Y = -A_{\phi Y} X + \nabla_X^{\perp} \phi Y - \nabla_Y \phi X + h(Y, \phi X) - \phi[X, Y]$. Hence the Lemma is proved. □

IV. Parallel Distribution

Definition 4.1. The horizontal (resp., vertical) distribution $D(resp., D^{\perp})$ is said to be parallel [13] with respect to the connection $Mif \nabla_X Y \in D$ ($resp., \nabla_Z W \in D^{\perp}$) for any vector field $X, Y \in D(resp., W, Z \in D^{\perp})$. **Theorem 4.2.** Let M be a ξ – *vertical* CR-submanifold of a nearly hyperbolic cosymplectic manifold \overline{M} . If the horizontal distribution D is parallel, then $h(X, \phi Y) = h(Y, \phi X)$. (4.1) **forany** $X, Y \in D$. **Proof.** Using parallelism of horizontal distribution D, we have $\nabla_X(\phi Y) \in Dand \nabla_Y \phi X \in Dforany X, Y \in D.$ (4.2)

Now, by virtue of (3.7), we have Bh(X,Y) = 0.(4.3)From (3.5) and (4.3), we get $\phi h(X,Y) = Ch(X,Y)(4.4)$ for any X, Y \in D. From (3.8), we have $h(X,\phi Y) + h(Y,\phi X) = 2Ch(X,Y)(4.5)$ for any X, Y \in D. Replacing Xby ϕ Xin (4.5) and using (4.4), we have $h(\phi X, \phi Y) + h(Y,X) = \phi h(\phi X,Y).$ (4.6) Now, replacing Yby ϕ Y in (4.6), we get $h(X,Y) + h(\phi Y,\phi X) = \phi h(X,\phi Y).$ (4.7) Thus from (4.6) and (4.7), we find $h(X,\phi Y) = h(Y,\phi X).$

Hence the Theorem is proved. \Box

Theorem 4.3.Let *M* be a CR-submanifold of a nearly hyperbolic cosymplectic manifold \overline{M} . If the distribution D^{\perp} is parallel with respect to the connection on M, then

$$A_{\phi Y}Z + A_{\phi Z}Y \in D^{\perp}$$

for any $Y, Z \in D^{\perp}$.

Proof.Let $Y, Z \in D^{\perp}$, then using (3.1) and (3.2), we have $-A_{\phi Z}Y - A_{\phi Y}Z + \nabla_Y^{\perp}\phi Z + \nabla_Z^{\perp}\phi Y = \phi(\nabla_Y Z) + \phi\nabla_Z Y + 2\phi h(Y, Z).$ (4.8) Taking inner product with $X \in Din(4.8)$, we get

 $g(A_{\phi Y}Z + A_{\phi Z}Y) = 0$ which is equivalent to $(A_{\phi Y}Z + A_{\phi Z}Y) \in D^{\perp}$

for any $Y, Z \in D^{\perp}$.

Definition 4.4. A CR-submanifold is said to be mixed-totally geodesic if h(X, Z) = 0 for all $X \in D$ and $Z \in D^{\perp}$. **Lemma 4.5.** Let M be a CR-submanifold of a nearly hyperbolic cosymplectic manifold \overline{M} . Then M is mixed totally geodesic if and only if $A_N X \in D$ for all $X \in D$.

Definition 4.6. A Normal vector field $N \neq 0$ is called D - parallel normal section if $\nabla_X^{\perp} N = 0$ for all $X \in D$. **Theorem 4.7.** Let M be a mixed totally geodesic CR-submanifold of a nearly hyperbolic cosymplectic manifold \overline{M} . Then the normal section $N \in \phi D^{\perp}$ is D - parallel if and only if $\nabla_X \phi N \in Df$ or all $X \in D$.

Proof.Let $N \in \phi D^{\perp}$, then from (3.7), we have $Q\nabla_V \phi X = 0$.

In particular, we have $Q\nabla_Y \phi X = 0$. Using it in (3.8), we have $\phi Q\nabla_X \phi N = \nabla_X^{\perp} N$. (4.9)

Thus, if the normal section $N \neq 0$ is D-parallel, then using 'definition 4.6' and (4.9), we get $\phi \nabla_x (\phi N) = 0$

which is equivalent to $\nabla_X(\phi N) \in 0$ for all $X \in D$.

The converse part easily follows from (4.9). This completes the proof of the theorem.

References

- [1]. A.Bejancu, CR- submanifolds of a Kaehler manifold I, Proc. Amer. Math. Soc. 69 (1978), 135-142.
- [2]. CR- submanifolds of a Kaehler manifold II, Trans. Amer. Math. Soc. 250 (1979), 333-345.
- [3]. C.J. Hsu, On CR-submanifolds of Sasakian manifolds I, Math. Research Center Reports, Symposium Summer 1983, 117-140.
- [4]. M. Kobayash, CR-submanifolds of a Sasakian manifold, Tensor N.S. 35 (1981), 297-307.
- [5]. A. Bejancuand N.Papaghuic, CR-submanifolds of Kenmotsu manifold, Rend. Mat.7 (1984), 607-622.
- [6]. Lovejoy S.K. Das and M. Ahmad, CR-submanifolds of LP-Sasakian manifolds with quarter symmetric non-metric connection, Math. Sci. Res. J. 13 (7), 2009, 161-169.
- [7]. C. Ozgur, M. Ahmad and A. Haseeb, CR-submanifolds of LP-Sasakian manifolds with semi-symmetric metric connection, Hacettepe J. Math. And Stat. vol. 39 (4) (2010), 489-496.
- [8]. K. Matsumoto, On CR-submsnifolds of locally conformal Kaehler manifolds, J. Korean Math. Soc. 21 (1984), 49-61.
- [9]. M. Ahmad and J.P. Ojha, CR-submanifolds of LP-Sasakian manifolds with the canonical semi-symmetric semi-metric connection, Int. J. Contemp. Math. Science, vol.5 (2010), no. 33, 1637-1643.
- [10]. M. Ahmad, M.D. Siddiqi and S. Rizvi, CR-submanifolds of a nearly hyperbolic Sasakian manifold admitting semi-symmetric semimetric connection, International J. Math. Sci. & Engg. Appls., Vol. 6 (2012), 145-155.
- [11]. M.D. Upadhyayand K.K. Dube, Almost contact hyperbolic (ϕ, ξ, η, g)-structure, Acta. Math. Acad. Scient. Hung. Tomus 28 (1976), 1-4.
- [12]. L. Bhatt and K.K. Dube, CR-submanifolds of trans-hyperbolic Sasakian manifold, ActaCienciaIndica 31 (2003), 91-96.
- [13]. A. Bejancu, Geometry of CR- submanifolds, D. Reidel Publishing Company, Holland, 1986.
- [14]. D.E. Blair, Contact manifolds in Riemannian Geometry, Lecture Notes in Mathematics, Vol. 509, Springer-Verlag, Berlin, 1976.