Cordial Labelling Of K-Regular Bipartite Graphs for $K=1,2$, N, N-1 Where K Is Cardinality of Each Bipartition

Pranali Sapre
JJT University, Jhunjhunu, Rajasthan, India
Assistant Professor,Vidyavardhini's College of Engineering \& Technology
Vasai Road Dist. Thane. Maharashtra

Abstract

In the labelling of graphs one of the types is cordial labelling. In this we label the vertices 0 or 1 and then every edge will have a label 0 or 1 if the end vertices of the edge have same or different labellings respectively. Here we are going find whether a k-regular bipartite graph can be cordial for different values of k.

I. Introduction :

- Regular graph: A graph G is said to be a regular graph if degree of each vertex a same. It is called k-regular if degree of each vertex is k.
- Bipartite graph: Let G be a graph. If the vertex of G is divided into two subsets A and B such that there is no edge 'ab' with $a, b \in A$ or $a, b \in B$ then G is said to be bipartite that is, Every edge of G joins a vertex in A to a vertex in B. The sets A and B are called partite sets of G.
- Complete graph: A graph in which every vertex is adjacent to every other vertex is a complete graph. For a complete graph on n vertices degree of each vertex is $n-1$.
- Complete bipartite graph: A bipartite graph G with bipartition (A, B) is said to be complete bipartite if every vertex in A is adjacent to every vertex in B and vice versa.
- Cycle: A closed path is called a cycle.
- Labelling of a graph:

Vertex labelling :It is a mapping from set of vertices to set of natural numbers .
Edge labelling :It is a mapping from set of edges to set of natural numbers .

- Cordial labelling: For a given graph G label the vertices of G ' 0 ' or ' 1 '. And every edge ' $a b$ ' of G will be labeled as ' 0 ' if the labeling of the vertices ' a ' and ' b ' are same and will be labeled as ' 1 ' if the labeling of the vertices ' a ' and ' b ' are different. Then this labeling is called a "cordial labeling" or the graph G is called a "cordial graph" iff,
\mid number of vertices labeled '0'- number of vertives labeled '1| ≤ 1
|number of edges labeled '0'-number of edges labeled ' 1 ' ≤ 1

Theorem 1. If G is a 1-regular bipartite graph with partite sets A and B with
$|\mathrm{A}|=|\mathrm{B}|=\mathrm{n} \quad$ Then G is cordial iff $\mathrm{n}=0,1,3 \bmod 4$.

Case I. $n=4 m$

$$
\text { Let } m=1 \text { i.e. } n=4 \text { then } G \text { looks }
$$

like,

This can be labeled as shown is figure. This is CORDIAL.
Now for $\mathrm{n}=4 \mathrm{~m}$ for $\mathrm{m}>1$ ' G ' can be considered as combination of graph shown above and hence can be labeled repeatedly as above which is CORDIAL.
Hence,

$$
\text { G IS CORDIAL FOR } \mathrm{n}=4 \mathrm{~m}
$$

Case II. $n=4 \mathrm{~m}+1$

Consider $\quad n=4 m+1 \quad$ for $m \in Z$

Consider any edge 'uv' $\in \mathrm{E}(\mathrm{G})$, for $u \in A, v \in B$
Then $\mathrm{G}-\{\mathrm{uv}\}$ is a bipartite graph with $\mathrm{n}=4 \mathrm{~m}$. Hence it has a cordial labeling as given in case (i) which gives,
|\# of edges labeled ' 0 '- \# of edges labeled ' 1 ' $\mid=0$ hence along with the same labeling if we label " u " as ' 0 ' and " v " as ' 1 ' we get,
| \# of vertices labeled ' 0 '- \# of vertices labeled ' 1 '| = 0 and
|\# of edges labeled ' 0 '- \# of edges labeled ' 1 ' $\mid=1$
Hence it is cordial.

G IS CORDIAL FOR $\mathrm{n}=4 \mathrm{~m}+1$

Case III. Let $\mathrm{n}=\mathbf{4 m}+2$

Consider $\quad n=4 m+2 \quad$ for $m \in Z$
$|\mathrm{A}|=|\mathrm{B}|=4 \mathrm{~m}+2$
Assume G is cordial.
Let α_{0} be the number of vertices in A labeled ' 0 '
Let α_{1} be the number of vertices in A labeled ' 1 '
Let β_{0} be the number of vertices in B labeled ' 0 '
Let β_{1} be the number of vertices in B labeled ' 1 '
\therefore Total number of edges ' $a b$ ' where ' a ' is labeled 0 and $b \in B=\alpha_{0}$
Total number of edges 'ab' where ' b ' is labeled 0 and $a \in A=\beta_{0}-------*$
Total number of edges ' $a b$ ' where ' a ' is labeled 1 and $b \in B=\alpha_{1}$
Total number of edges ' $a b$ ' where ' b ' is labeled 1 and $a \in A=\beta_{1}$
Let number of edges of type $0-0$ (i.e. edge 'ab' where ' a ' and ' b ' both are labeled ' 0 ') be ' x '
And Let number of edges of type $1-1$ be ' y '
From *
Number of edges of type $0-1$ and $1-0$ are, $\alpha_{0}+\beta_{0}-2 x$
Number of edges of type $0-1$ and $1-0$ are, $\alpha_{1}+\beta_{1}-2 y$
$\Rightarrow \alpha_{0}+\beta_{0}-2 x=\alpha_{1}+\beta_{1}-2 y$
But $\alpha_{0}+\beta_{0}=\alpha_{1}+\beta_{1} \quad$ By assumption G is cordial
$\Rightarrow \mathrm{x}=\mathrm{y}$
But total number of edges $=4 \mathrm{~m}+2$
\Rightarrow Number of edges labeled ' 0 ' = Number of edges labeled ' 1 ' $\quad \because G$ is cordial
$\Rightarrow \mathrm{x}+\mathrm{y}=2 \mathrm{~m}+1$
$\Rightarrow x=m+\frac{1}{2}$ and $y=m+\frac{1}{2}$
Contradiction.
Hence ' G ' is not cordial for $\mathrm{n}=4 \mathrm{~m}+2$
G IS NOT CORDIAL FOR $\mathrm{n}=4 \mathrm{~m}+2$

Case IV Let $\mathrm{n}=\mathbf{4 m}+\mathbf{3}$

Consider $n=4 m+3 \quad$ for $m \in Z$
$|\mathrm{A}|=|\mathrm{B}|=4 \mathrm{~m}+3$
Let ' G ' be a graph $\mathrm{n}=4 \mathrm{~m}+3$
Consider any three edges $\left(u_{1}, v_{1}\right),\left(u_{2}, v_{2}\right),\left(u_{3}, v_{3}\right)$ with $u_{i} \in A$ and $v_{i} \in B$ for $\mathrm{i}=1,2,3$
Then $\mathrm{G}-u_{1}, v_{1}, u_{2}, v_{2}, u_{3}, v_{3}$ is a graph with $\mathrm{n}=4 \mathrm{~m}$
\therefore By case it has a cordial labeling with
|\# of vertices labeled ' 0 '- \# of vertices labeled ' 1 ' $\mid=0$ and
|\# of edges labeled ' 0 '- \# of edges labeled ' 1 ' $\mid=0$

Along with the same labeling label $u_{1}, v_{1}, u_{2}, v_{2}, u_{3}, v_{3}$ as follows,
u_{1} as o, v aso, u_{2} as o, vas $1, u_{3}$ as $1, v_{3}$ as 1
Then number of vertices labeled $0=$ Then number of vertices labeled 1
And labeling of $\left(u_{1}, v_{1}\right)$ is $0,\left(u_{2}, v_{2}\right)$ is $1,\left(u_{3}, v_{3}\right)$ is 0
Then number of vertices labeled $0=$ Then number of vertices labeled ' 1 ' +1
|\# of vertices labeled ' 0 '- \# of vertices labeled ' 1 ' $=0$ and
| \# of edges labeled ' 0 '- \# of edges labeled ' 1 ' $\mid=1$
\therefore ' G^{\prime} is cordial

G IS CORDIAL FOR $\mathrm{n}=4 \mathrm{~m}+3$

Hence the result.
Theorem 2. If G is a 2-regular bipartite graph with partite sets A and B with

$$
|\mathrm{A}|=|\mathrm{B}|=\mathrm{n}
$$

Then G is cordial iff every component of G can be written as cycle of length 4 m
Let ' G ' be a bipartite regular graph of degree ' 2 '.
We know that, "If ' G ' is a regular bipartite graph of degree ' 2 ' then it can always be written as disjoint union of even cycles.

Let ' G ' be the graph which is the cycle of length ' $2 n$ '
Claim : Cycle of length $2 n$ is cordial iff n is even.
Part (a) : To prove: n is even $\Rightarrow \mathrm{G}$ is cordial.
Part (b) : To prove: G is cordial $\Rightarrow \mathrm{n}$ is even.
i.e. To prove: n is odd $\Rightarrow \mathrm{G}$ is not cordial.

Proof of (a): Consider a cycle of length $m=2 n$ where n is even.
Let $\mathrm{n}=2 \mathrm{p} \Rightarrow \mathrm{m}=4 \mathrm{p}$
Let $a_{1}, a_{2}, a_{3}, a_{4}, a_{5}, \cdots \ldots a_{4 p}, a_{1}$, be the given cycle where $a_{i,}$ is adjacent to a_{i+1},
For $i=1,2,3 \ldots \ldots \ldots .4 p-1$ and $a_{4 p}$, is adjacent to a_{1},

Label $a_{1}, a_{2}, a_{3}, a_{4}, a_{5,} \ldots . . a_{4 p}$, as
$0,1,1,0,0,1,1,0,0,1,1, \ldots 0,1,1,0$
As $m=4 p$, we can have repeatedly p times the labeling of vertices as $0,1,1,0$
Which gives edges labeling as, $1,0,1,0,1,0,1, \ldots 0$ [last edge will be labeled ' 0 ' as
$a_{4 p}$, and a_{1}, both labeled 0 .
We can see that the labeling is cordial.
Hence cycle of length ' $2 n$ ' where n is even is always cordial.
Proof of (b) : Consider a cycle of length $\mathrm{m}=2 \mathrm{n}$ where n is odd.
Let $n=2 p+1 \Rightarrow m=4 p+2$
We can write this graph as a bipartite graph with partite sets A and B where

$$
|\mathrm{A}|=|\mathrm{B}|=2 \mathrm{p}+1
$$

Let number vertices of ' A ' labeled ' 0 ' be α_{0}
Let number vertices of ' A ' labeled ' 1 ' be α_{1}
Let number vertices of ' B ' labeled ' 0 ' be β_{0}
Let number vertices of ' B ' labeled ' 1 ' be β_{1}

Notation: $\alpha_{i j}$--- number of edges 'ab' where
' a ' is a vertex in A labeled ' i ' and
' b ' is a vertex in B labeled ' j '
With this notation we have,

$$
\begin{aligned}
& a_{11}+a_{10}=2 \alpha_{1} \quad-----------\quad 1 \\
& a_{00}+a_{01}=2 \alpha_{0} \quad \text {--------------- } 2 \\
& a_{10}+a_{00}=2 \beta_{0} \quad \text {-------------- } 3 \\
& a_{01}+a_{11}=2 \beta_{1} \\
& 4
\end{aligned}
$$

Assuming ' G ' is cordial we get,
$a_{11}+a_{00}=a_{10}+a_{01}$ \qquad *

But, $a_{11}+a_{00}+a_{10}+a_{01}=4 p+2$
$\therefore\left(a_{11}+a_{00}\right)+\left(a_{10}+a_{01}\right)=4 p+2$ \qquad .**
From *and *
$\left(a_{11}+a_{00}\right)=2 p+1$
$\left(a_{10}+a_{01}\right)=2 p+1$
1 and $3 \Rightarrow a_{11}+a_{00}=2 \alpha_{1}+2 \beta_{0}-2 a_{10}$

$$
\Rightarrow 2 p+1=2 \alpha_{1}+2 \beta_{0}-2 a_{10}
$$

Which is a contradiction as L.H.S. is $1 \bmod 2$ and R.H.S. is $0 \bmod 2$
Hence this cycle cannot be cordial.
Hence a cycle of length 2 n is not cordial if n is odd.
Thus we have proved: Cycle of length 2 n is cordial iff n is even.
\therefore A regular bipartite graph of degree 2 is cordial iff its every component can be written as a cycle of length 4 n .
Hence the proof.

Theorem 3. If G is a n - regular bipartite graph with partite sets A and B with
Then G is cordial
Let $\begin{aligned} & A=\left\{a_{1}, a_{2}, \ldots a_{n}\right\} \\ & B=\left\{b_{1}, b_{2}, \ldots b_{n}\right\}\end{aligned}$
Case I: n is even

$$
\text { Let } \mathrm{n}=2 \mathrm{~m}
$$

Label $a_{1}, a_{2}, \ldots a_{n}$ as ' 0 ' and $a_{m+1}, a_{m+2}, \ldots a_{2 m}$ as ' 1 '.
For set B label any ' m ' vertices as ' 0 ' any ' m ' as ' 1 '
W.l.g. let $b_{1}, b_{2}, \ldots b_{n}$ are ' 0 ' and $b_{m+1}, b_{m+2}, \ldots b_{2 m}$ are ' 1 '

For the vertex a_{1} :The edges incident on a_{1} are,
$a_{1} b_{1}, a_{1} b_{2}, \ldots a_{1} b_{m,} a_{1} b_{m+1}, a_{1} b_{m+2}, \ldots a_{1} b_{2 m}$, out of which,
$a_{1} b_{1}, a_{1} b_{2}, \ldots a_{1} b_{m}$ are labeled ' 0 ' and $a_{1} b_{m+1}, a_{1} b_{m+2}, \ldots a_{1} b_{2 m}$, are labeled ' 1 '.
Which gives equal number of edges labeled 0 and 1 each equal to ' m '
Similarly for remaining vertices.
Hence we have in all $2 m^{2}$ edges labeled o and $2 m^{2}$ edges labeled 1.
$\therefore \mid \#$ of edges labeled ' 0 '- \# of edges labeled ' 1 ' $\mid=1$
\therefore ' ${ }^{\prime}$ ' is cordial
Case II : n is odd
Let $\mathrm{n}=2 \mathrm{~m}+1$
Consider $A-\{u\}$ and $B-\{v\}$ for some $u v \in V(G)$
Then by case (i) it has a cordial labeling with
$2 m^{2}$ edges labeled 0 and $2 m^{2}$ edges labeled 1
Now label u as 0 and v as 1
As it is complete bipartite we have edges,
$u b_{1}, u b_{2}, \ldots u b_{m}, u b_{m+1}, u b_{m+2}, \ldots u b_{2 m}, u v$ which are labeled as
$0,0, \ldots 0,1, \quad 1, \ldots 1,1$ respectively giving m edges labeled 0 and $m+1$ edges labeled 1.
Also, $a_{1} v, a_{2} v, \ldots a_{m} v, a_{m+1} v, a_{m+2} v, \ldots ., a_{2 m} v$ which are labeled as
$1,1, \ldots \quad 1, \quad 0, \quad 0, \ldots . \quad 0$ respectively giving m edges labeled 0 and m edges labeled 1.
\therefore In all we get, Number of edges labeled $0=2 m^{2}+2 m$ and
Number of edges labeled $1=2 m^{2}+2 m+1$
$\mid \#$ of edges labeled ' 0 '- \# of edges labeled ' 1 ' $\mid=1$
\therefore ' G ' is cordial
Hence the proof.
Theorem 4. If G is a n - regular bipartite graph with partite sets A and B with
Then G is cordial iff $\mathrm{n}=0,1 \bmod 4$.
Case (i): $\mathrm{n}=4 \mathrm{~m}$
Let $\mathrm{A}=\left\{a_{1}, a_{2}, \ldots, a_{n}\right\}$ and $\mathrm{B}=\left\{b_{1}, b_{2}, \ldots b_{n}\right\}$
And G is a ($\mathrm{k}-1$) bipartite graph with partite sets A, B.
\therefore It can be obtained by removing one and only one edge of every vertex of a complete graph.
Label $a_{1}, a_{2}, \ldots a_{2 m}$ as 0 and $a_{2 m+1}, a_{2 m+2}, \ldots a_{4 m}$ as 1
Then we can have ' G ' is a graph obtained by removing
$a_{1} b_{i_{1}}, a_{2} b_{i_{2}}, \ldots ., a_{4 m} b_{i_{4 m}}$ where $b_{i_{j}} \neq b_{i_{k}}$ for $i_{j} \neq i_{k}$ from the complete bipartite graph.
We will rename the vertices in the set ' B ' such that the edges removes are,
$a_{1} b_{1}, a_{2} b_{2}, \ldots a_{4 m} b_{4 m}$

Now label $b_{1}, b_{2}, \ldots b_{4 m}$ as,
$b_{1}, b_{2}, \ldots b_{m}$ as ' 0 ', $b_{m+1}, b_{m+2}, \ldots . b_{2 m}$ as ' 1 ', $b_{2 m+1}, b_{2 m+2}, \ldots . b_{3 m}$ as ' 0 ', $b_{3 m+1}, b_{3 m+2}, \ldots b_{4 m}$ as ' 1 ',
Then the edges removed from the complete graph are labeled as,
$a_{1} b_{1}, a_{2} b_{2}, \ldots a_{m} b_{m} \quad 0,0, \ldots 0 \quad$ total ' m ' edges
$a_{m+1} b_{m+1}, a_{m+2} b_{m+2}, \ldots a_{2 m} b_{2 m} \quad 1,1, \ldots 1 _$total ' m ' edges
$a_{2 m+1} b_{2 m+1}, a_{2 m+2} b_{2 m+2}, \ldots a_{3 m} b_{3 m} \quad 0,0, \ldots 0 \ldots$ total ' m ' edges
$a_{3 m+1} b_{3 m+1}, a_{3 m+2} b_{3 m+2}, \ldots a_{4 m} b_{4 m} \quad 1,1, \ldots 1 \quad$ total ' m ' edges
\therefore For ' G ' Number of vertices labeled $0=$ number of vertices labeled $1=4 \mathrm{~m}$
And Number of edges labeled $0=$ number of edges labeled $1=8 m^{2}-2 m$
(from the case $\mathrm{k}=\mathrm{n}$)
$\therefore \mid \#$ of vertices labeled ' 0 '- \# of vertices labeled ' 1 ' $\mid=0$
and
| \# of edges labeled ' 0 '- \# of edges labeled ' 1 ' $\mid=0$
\therefore ' G^{\prime} is cordial
Case (ii) : $\mathrm{n}=4 \mathrm{~m}+1$
As G is a ($\mathrm{n}-1$)-regular bipartite graph, with the partitions A and B
Where $\mathrm{A}=\left\{a_{1}, a_{2}, \ldots, a_{n}\right\}$ and $\mathrm{B}=\left\{b_{1}, b_{2}, \ldots b_{n}\right\}$
By case (i) with the similar arguments let G is obtained from the complete bipartite graph by deleting the edges,
$a_{1} b_{1}, a_{2} b_{2}, \ldots a_{4 m} b_{4 m}, a_{4 m+1} b_{4 m+1}$ Where,
$a_{1}, a_{2}, \ldots a_{2 m}, a_{2 m+1}$ are labeled as 0 and $a_{2 m+2}, a_{2 m+2}, \ldots a_{4 m+1}$ as 1 .
Now label the vertices of B as follows.
$b_{1}, b_{2}, \ldots b_{m}$ as ' 0 ', $b_{m+1}, b_{m+2}, \ldots b_{2 m}, b_{2 m+1}$ as ' 1 ', $b_{2 m+2}, b_{2 m+2}, \ldots b_{3 m+1}$ as ' 0 ', $b_{3 m+2}, b_{3 m+2}, . . b_{4 m+1}$ as ' 1 ',
The edges removed from the complete graph and there labelings are as follows :
$a_{1} b_{1}, a_{2} b_{2}, \ldots a_{m} b_{m} \quad 0,0, \ldots 0 \ldots$ total ' m ' edges
$a_{m+1} b_{m+1}, a_{m+2} b_{m+2}, \ldots a_{2 m} b_{2 m}, a_{2 m+1} b_{2 m+1} \ldots 1,1, \ldots 1 _$total ' $\mathrm{m}+1$ ' edges
$a_{2 m+2} b_{2 m+2}, a_{2 m+3} b_{2 m+3}, . ., a_{3 m+1} b_{3 m+1} \quad 1,1, \ldots 1 \quad$ total 'm' edges
$a_{3 m+2} b_{3 m+2}, a_{3 m+3} b_{3 m+3}, \ldots a_{4 m+1} b_{4 m+1} \quad 0,0, \ldots 0 \quad$ total 'm' edges
\therefore Number of edges labeled 1 are $8 m^{2}+4 m+1-(m+1)-m$

$$
=8 m^{2}+2 m
$$

Number of edges labeled 0 are

$$
8 m^{2}+4 m-m-m
$$

$$
=8 m^{2}+2 m
$$

\therefore Number of edges labeled $1=$ Number of edges labeled 0
Hence G is cordial.
(n-1) -regular graph is cordial for $n=4 m+1$
Case (iii) : $\mathrm{n}=4 \mathrm{~m}+2$
As G is a ($\mathrm{n}-1$)-regular bipartite graph, with the partitions A and B
Where $\mathrm{A}=\left\{a_{1}, a_{2}, \ldots, a_{n}\right\}$ and $\mathrm{B}=\left\{b_{1}, b_{2}, \ldots b_{n}\right\}$
\therefore Number of edges in G is $(4 m+2)(4 m+1)=16 m^{2}+12 m+2$
Let α_{0} be number of vertices in A labeled ' 0 '
α_{1} be number of vertices in A labeled ' 1 '
β_{0} be number of vertices in B labeled ' 0 '
β_{1} be number of vertices in B labeled ' 1 '
\therefore Total number of edges 'ab' where ' a ' is labeled 0 and $b \in B=\alpha_{0}(4 m+1)$
Total number of edges 'ab' where ' b ' is labeled 0 and $a \in A=\beta_{0}(4 m+1)$
Total number of edges 'ab' where ' a ' is labeled 1 and $b \in B=\alpha_{1}(4 m+1)$
Total number of edges 'ab' where ' b ' is labeled 1 and $a \in A=\beta_{1}(4 m+1)$
Let Total number of edges ' $a b$ ' where ' a ' and ' b ' both are labeled $0=x$
Total number of edges ' $a b$ ' where ' a ' and ' b ' both are labeled $1=y$
(i.e. 0-0 and 1-1 type)
\therefore The number of edged 'ab' of labeling $0 \& 1$ And $1 \& 0$ are
$\alpha_{0}(4 m+1)+\beta_{0}(4 m+1)-x \quad$ Also,
The number of edged 'ab' of labeling $1 \& 0$ And 0\&01are
$\alpha_{1}(4 m+1)+\beta_{1}(4 m+1)-y$
$\therefore \alpha_{0}(4 m+1)+\beta_{0}(4 m+1)-x=\alpha_{1}(4 m+1)+\beta_{1}(4 m+1)-y$
$\Rightarrow\left(\alpha_{0}+\beta_{0}\right)(4 m+1)-2 x=\left(\alpha_{1}+\beta_{1}\right)(4 m+1)-2 y$
But, $\left(\alpha_{0}+\beta_{0}\right)=\left(\alpha_{1}+\beta_{1}\right)$ as G is cordial
$\Rightarrow \quad \mathrm{x}=\mathrm{y}$

Now , as total number of edges are $16 m^{2}+12 m+2$
number of edges labeled $0=8 m^{2}+6 m+1$

$$
\begin{gathered}
\Rightarrow \mathrm{x}+\mathrm{y}=8 m^{2}+6 m+1 \Rightarrow 2 \mathrm{x}=8 m^{2}+6 m+1 \quad \because x=y \text { as } G \text { is cordial } \\
\text { Contradiction } \quad \because \text { L.H.S. is even \& R.H.S. is odd }
\end{gathered}
$$

Hence G is Not cordial.

($\mathrm{n}-1$) -regular graph is not cordial for $\mathrm{n}=4 \mathrm{~m}+2$

Case (iii) : $\mathrm{n}=4 \mathrm{~m}+3$

Total number of edges $=(4 m+3)(4 m+2)=16 m^{2}+20 m+6$
Using the same notations and the same arguments as in case (iii) we get,
$\therefore \alpha_{0}(4 m+2)+\beta_{0}(4 m+2)-x=\alpha_{1}(4 m+2)+\beta_{1}(4 m+2)-y$
$\Rightarrow\left(\alpha_{0}+\beta_{0}\right)(4 m+2)-2 x=\left(\alpha_{1}+\beta_{1}\right)(4 m+2)-2 y$
But, $\left(\alpha_{0}+\beta_{0}\right)=\left(\alpha_{1}+\beta_{1}\right)$ as G is cordial
$\Rightarrow \quad \mathrm{x}=\mathrm{y}$
Now ,as total number of edges are $16 m^{2}+20 m+6$
number of edges labeled $0=8 m^{2}+10 m+3$
$\Rightarrow \mathrm{x}+\mathrm{y}=8 m^{2}+10 m+3$
$\Rightarrow 2 \mathrm{x}=8 m^{2}+10 m+3 \quad \because x=y$ as Gis cordial
Contradiction $\quad \because$ L.H.S. is even \& R.H.S. is odd
Hence G is NOT cordial
($\mathrm{n}-1$) -regular graph is not cordial for $\mathrm{n}=4 \mathrm{~m}+3$
Hence the proof.

II. Conclusion

- If G is a 1-regular bipartite graph with partite sets ' A ' and ' B ' such that $|A|=|B|=n$ then ' G ' is cordial iff $\mathrm{n}=0,1,3 \bmod 4$
- If G is a 2-regular bipartite graph with partite sets ' A ' and ' B ' such that $|A|=|B|=n$ then ' G ' is cordial iff its every component is a cycle of length 4 m .
- If G is a n-regular $n \geq 3$ bipartite graph with partite sets ' A ' and ' B ' such that $|A|=|B|=n$ then ' G ' is cordial.
- If G is a $n-1$-regular bipartite graph with partite sets ' A ' and ' B ' such that $|A|=|B|=n$ then ' G ' is cordial iff $n=0,1 \bmod 4$.

References

[1] L.CAI,X.ZHU, (2001), "Gaming coloring index of graphs", Journal of graph theory, 36, 144-155
[2] XUDING ZHU, (1999), "The game coloring number of planar graphs", Journal of Combinatorial Theory Series B, 75, 245-258
[3] H. YEH, XUDING ZHUING, (2003), "4-colorable, 6-regular toroidal graphs", Discrete Mathematics, 273, 1-3, 261-274
[4] X.ZHU, (2006), "Recent development in circular coloring of graphs", Topics in discrete mathematics, spinger 5, 497-550
[5] H.CHANG, X.ZHU, (2008), "Coloring games on outerplanar graphs \& trees", Discrete mathematics,doi10.1016/j.disc, 9-15
[6] H. HAJIABLOHASSAN, X. ZHU, (2003),: The circular chromatic number and mycielski construction", Journal of graph theory,404, 106-115

