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Abstract :   In this paper, the terms chained ternary semigroup, cancellable clement ,  cancellative ternary 

semigroup, A-regular element, π- regular element, π- invertible element, noetherian ternary semigroup are 

introduced. It is proved that in a commutative chained ternary semigroup T, i) if P is a prime ideal of T and 

 x ∉ P then n

n 1

x PT




  = P for all odd natural numbers n . ii) T is a semiprimary ternary semigroup. iii) If a ∊ T is 

a semisimple element of T, then < a > w ≠  .   iv)  If < a >w = 𝜙 for all a ∊ T, then T has no semisimple 

elements.  v)  T has no regular elements, then for any a ∊ T,  < a >w = 𝜙 or < a >w  is a prime ideal. vi) If T is a 

commutative chained cancellative ternary semigroup then for every non π-invertible element a, < a >w is either 

empty or a prime ideal of T.  Further it is proved that if  T is a chained ternary semigroup with T\T3= { x } for 

some  x ∊ T, then  i) T\ { x } is an ideal of T. ii)  T = xT1T1 = T1xT1 = T1T1x and T 3 = xTT = TxT = TTx is the 

unique maximal ideal of T. iii)  If  a  T and a  < x >w then a = xn for some odd natural number n > 1. 

iv) T\ < x >w  = { x, x 3, x5, . . . . .} or T\< x >w ={x, x 3, . . . , xr} for some odd natural number r.  v) If  a  T 

and a  < x >w   then a = xr for some odd natural number  r  or a = xn  sn tn  and sn < x >w  or tn   < x >w  

for every odd natural number n. vi) If T contains cancellable elements then x is cancellable element  and < x >w 

is either empty or a prime ideal of T.  It is also prove that, in a commutative chained ternary semigroup T,   

T is archemedian ternary semigroup without idempotent elements if and only if < a >w =  for every a T.  
Further it is proved that if T is a commutative chained ternary semigroup containing cancellable elements and  

< a >w =   for every a  T , then T is a cancellative ternary semigroup.  It is proved that if T is a noetherian 
ternary semigroup containing proper ideals then T has a maximal ideal.  Finally it is proved that if T is a 

commutative ternary semigroup such that T = < x >  for some x  T, then the following are equivalent.  

1) T = {x, x2, x3, ............} is infinite.  2) T is a noetherian cancellative ternary semigroup with  x   xTT.  

3) T is a noetherian cancellative ternary semigroup without  idempotents. 4) < a >w =  for all  a  T.  

5)  < x >w = . and if T is a commutative chained ternary semigroup with  T ≠ T 3 , then the following are 

equivalent. (1) T={x, x 3, x5, . . . . . . .}, where x  T\ T 3 (2) T is Noetherian cancellative ternary semigroup 

without idempotents. (3) < a >w =  for all  a  T. Finally, it is proved that If T is a commutative chained 

noetherian cancellative ternary semigroup without regular elements, then < a >w =  for all a T. 

Keywords  - chained ternary semigroup, cancellable clement ,  cancellative ternary semigroup, noetherian 

ternary semigroup and ternary group. 

 

I. Introduction : 
The algebraic theory of  semigroups was widely studied by CLIFFORD and PRESTON [5], [6]; 

PETRICH [15].  The ideal theory in commutative semigroups was developed by BOURNE [4], HARBANS 
LAL [10], SATYANARAYANA [19], [20], MANNEPALLI and NAGORE [14]. The ideal theory in duo 

semigroups was developed by ANJANEYULU [1], [2], HOEHNKE [11] and KAR.S and MAITY. B. K[12], 

[13]. SANTIAGO [18] developed the theory of ternary semigroups. SARALA. Y, ANJANEYULU. A and 

MADHUSUDHANA RAO.D [16], [17] introduced the ideal theory in ternary semigroups and characterize the 

properties of ideals. GIRI and WAZALWAR[7] initiated the study of prime radicals in semigroups.  

ANJANEYULU. A[1], [2], [3] initiated the study of primary and semiprimary ideals in semigroups. He also 

introduced chained duo semigroups.   HANUMANTHA RAO.G,  ANJANEYULU. A and GANGADHARA 

RAO. A[8], [9] introduced the study of primary and semiprimary ideals in ternary semigroups.  In this paper we 

introduce the notions of chained commutative ternary semigroups, noetherian ternary semigroups and 

characterize chained commutative ternary semigroups, noetherian ternary semigroups.     
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II. Priliminaries : 
DEFINITION 2.1 : Let T be a non-empty set. Then T is said to be a ternary semigroup if there exist a mapping 

from T×T×T to T which maps   ( 1 2 3,  ,  x x x )   1 2 3x x x satisfying the condition :

     1 2 3 4 5 1 2 3 4 5 1 2 3 4 5x x x x x x x x x x x x x x x              ix    T, 1 5i  . 

NOTE 2.2 : For the convenience we write 1 2 3x x x  instead of  1 2 3x x x  

NOTE 2.3 : Let T be a ternary semigroup. If A,B and C are three subsets of T , we shall denote the set ABC = 

 : , ,abc a A b B c C   . 

DEFINITION 2.4 : A ternary semigroup T is said to be commutative provided  

abc = bca = cab = bac = cba = acb for all a,b,c  T.  

DEFINITION 2.5 : A nonempty subset A of a ternary semigroup T is said to be left ternary ideal or left ideal 

of T if b, c   T, a   A implies bca   A. 

NOTE 2.6 : A  nonempty subset A of a ternary semigroup T is a left ideal of T if and only if TTA   A.  

DEFINITION 2.7 : A nonempty subset of a ternary semigroup T is said to be a lateral ternary ideal or simply 

lateral ideal of T if b, c   T , a   A implies bac   A. 

NOTE 2.8 : A nonempty subset of A of a ternary semigroup T is a lateral ideal of T if and only if TAT   A. 

 DEFINITION 2.9 : A nonempty subset A of a ternary semigroup T is a right ternary ideal or simply right 

ideal of T if b, c   T , a   A implies abc   A  

NOTE 2.10 : A nonempty subset A of a ternary semigroup T is a right ideal of T if and only if ATT   A. 

 DEFINITION 2.11 : A nonempty subset A of a ternary semigroup T is a two sided ternary ideal or simply two 

sided ideal of T if  b, c   T , a   A implies bca   A,  

abc A. 

NOTE 2.12 : A nonempty subset A of a ternary semigroup T is a two sided ideal of T if and only if it is both a 

left ideal and a right ideal of T .  

DEFINITION 2.13 : A nonempty subset A of a ternary semigroup T is said to be ternary  ideal or simply an 

ideal of T if  b, c   T , a   A implies bca   A, bac A, abc A. 

NOTE 2.14 : A nonempty subset A of a ternary semigroup T is an ideal of T if and only if it is left ideal, lateral 

ideal and right ideal of T .  

DEFINITION 2.15 : An ideal A of a ternary semigroup T is said to be a proper ideal of T if A ≠ T. 
DEFINITION 2.16 : An ideal A of a ternary semigroup T is said to be a trivial ideal provided T\ A is singleton. 

DEFINITION 2.17 : An ideal A of a ternary semigroup T is said to be a maximal ideal provided A is a proper 

ideal of T and is not properly contained in any proper ideal of T.  

DEFINITION 2.18 : An ideal A of a ternary semigroup T is said to be a principal ideal provided A is an ideal 

generated by  a  for some a T. It is denoted by J (a) (or) < a >. 

DEFINITION 2.19 : An ideal A of a ternary semigroup T is said to be a completely prime ideal of T provided 

x, y, z   T and xyz  A implies either x  A or y A or z A. 

DEFINITION 2.20 : An ideal A of a ternary semigroup T is said to be a prime ideal of T provided X,Y,Z are 

ideals of T and XYZ   A   X A or Y A or Z A. 

THEOREM 2.21 : Every completely prime ideal of a ternary semigroup T is a prime ideal of T. 

THEOREM 2.22 : Let T be a commutative ternary semigroup . An ideal P of T is a prime ideal if and 

only if P is a completely prime ideal. 

DEFINITION 2.23 : An ideal A of a ternary semigroup T is said to be a completely semiprime ideal  provided 

x T, 
nx A for some odd natural number n >1 implies x A. 

THEOREM 2.24 : An ideal A of a ternary semigroup T is semiprime if and only if X is an ideal of T,  

X
3
 ⊆ A implies X ⊆ A. 

THEOREM 2.25 : Every prime ideal of a ternary semigroup T is semiprime. 

NOTATION 2.26 : If A is an ideal of a ternary semigroup T, then we associate the following four types of sets. 

1A  = The intersection of all completely prime ideals of T containing A. 

2A  = {xT: xn A for some odd natural numbers n} 

3A  = The intersection of all prime ideals of T containing A. 

4A  = {xT:
nx  A for some odd natural number n} 

THEOREM 2.27 : If A is an ideal of a ternary semigroup T, then A   
4A 

3A 
2A 

1A . 
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THEOREM 2.28 : If A is an ideal of a commutative ternary semigroup T, then 1A = 2A = 3A = 4A . 

DEFINITION 2.29 : If A is an ideal of a ternary semigroup T , then the intersection of all prime ideals of T 

containing A is called prime radical or simply radical of A and it is denoted by A or rad A. 

DEFINITION 2.30 : If A is an ideal of a ternary semigroup T , then the intersection of all completely prime 

ideals of T containing A is called completely prime radical or simply complete radical of A and it is denoted by 

c.rad A. 

COROLLARY 2.31 : If a A , then there exist an odd positive integer n such that 
na A. 

COROLLARY 2.32 : If A is an ideal of a commutative ternary semigroup T, then  

rad A = c.rad A. 

DEFINITION 2.33 : An element a of a ternary semigroup T is said to be regular if there exist x, y ∈ T such 

that axaya = a. 

DEFINITION 2.34 : A ternary semigroup T is said to be regular ternary semigroup provided every element is 

regular. 

DEFINITION 2.35 : An element a of a ternary semigroup T is said to be left regular if  there exist x, y ∈ T 
such that a = a3xy. 

DEFINITION 2.36 : An element a of a ternary semigroup T is said to be lateral regular if  there exist x, y ∈ T 

such that a = xa3y. 

DEFINITION 2.37 : An element a of a ternary semigroup T is said to be right regular if  there exist x, y ∈ T 

such that a = xya3. 

DEFINITION 2.38 : An element a of a ternary semigroup T is said to be intra regular if  there exist x, y ∈ T 

such that a = xa5y. 

DEFINITION 2.39 : An element a of a ternary semigroup T is said to be semisimple if a  3a   

 i.e. 
3a  =  < a >. 

THEOREM 2.40 : An element a of a ternary semigroup T is said to be semisimple if  

a  na   i.e. 
na   =  < a > for all odd natural number n. 

DEFINITION 2.41 : A ternary semigroup T is called semisimple  ternary semigroup provided every element in 

T is semisimple. 

DEFINITION 2.42 : An element a of a ternary semigroup T is said to be an idempotent element provided 
3a a . 

THEOREM 2.43 : Let T be a ternary semigroup and a ∊ T.  If a is idempotent, then a is semisimple.   

THEOREM 2.44 : Let T be a ternary semigroup.  If  T has no semisimple elements, then  T has no 

idempotent elements. 
DEFINITION 2.45 : A ternary semigroup T is said to be an idempotent ternary semigroup or ternary band 

provided every element of T is an idempotent. 

THEOREM 2.46 : If T is a ternary semigroup with unity 1 then the union of all proper ideals of T is the 

unique maximal ideal of T. 

THEOREM 2.47 : If T is a commutative ternary semigroup and A is an ideal of T, then abc A if and 

only if <a> <b><c> A. 

COROLLARY 2.48 : If T is a commutative ternary semigroup and a, b, c ∊ T, then  < abc > = <a> 

<b><c>.   

DEFINITION 2.49 : An ideal A of a ternary semigroup T is said to be a completely semiprime ideal  provided  

x T, 
nx A for some odd natural number n >1 implies x A. 

DEFINITION 2.50 : An ideal A of a ternary semigroup T is said to be semiprime ideal provided X is an ideal 

of T and Xn  A for some odd natural number n implies X ⊆ A. 

DEFINITION 2.51 : A ternary semigroup T is said to be an archimedean ternary semigroup provided for any 

a, b T there exists an odd natural number n such that anTbT. 
DEFINITION 2.52 : A ternary semigroup T is said to be a strongly archimedean ternary semigroup provided 

for any a, b ∈ T, there exist an odd natural number n such that <a>n ⊆ <b>. 

THEOREM 2.53 : Every strongly archimedean ternary semigroup is an archimedean ternary semigroup.  

THEOREM 2.54 : If T is a commutative ternary semigroup, then the following are equivalent. 

  1) T is a strongly archimedean semigroup. 

  2) T is an archimedean semigroup. 

  3) T has no proper completely prime ideals. 

  4) T has no proper prime ideals. 

THEOREM 2.55 : An ideal Q of ternary semigroup T is a semiprime ideal of T if and only if Q    =Q. 
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DEFINITION 2.56 :  An ideal A of a ternary semigroup T is said to be semiprimary if  A   is a prime ideal 

DEFINITION 2.57 : A ternary semigroup T is said to be semiprimary ternary semigroup if every ideal of T is  

a semi primary ideal. 
DEFINITION 2.58 : A ternary semigroup T is said to be simple ternary semigroup if T is its only ideal. 

THEOREM 2.59 : If T is a left simple ternary semigroup (or) a lateral simple ternary semigroup (or) a 

right simple ternary semigroup then T is a simple ternary semigroup. 

THEOREM 2.60 : If T is a commutative ternary semigroup such that T
3
 = T, then every maximal ideal of 

T is a prime ideal of T. 

THEOREM 2.61 : T is a commutative ternary semigroup such that T
3
 = Tand T having maximal ideals 

then T contains regular elements. 

 

III. Chained Commutative Ternary Semigroups 
DEFINITION 3.1 : A  ternary semigroup T is said to be a chained ternary semigroup if  the ideals in T are 

linearly ordered by set inclusion. 

NOTE 3.2 : An ideal P of a commutative ternary semigroup T is prime if and only if it is completely prime. i.e.,  

P is prime  if and only if x, y, z  ∊ T , xyz ∊ P ⇒ either x ∊P  or  y ∊ P or  z ∊ P. 

NOTATION 3.3 : If A is any ideal of a ternary semigroup T, then denote  
wA = 

n

n 1
A






 
where n is odd natural number.

 

THEOREM 3.4 : Let T be a commutative chained ternary semigroup and P is a prime ideal of T and  

x ∉ P then 
n

n 1

x




 PT= P for all odd natural numbers n . 

Proof :  Since x ∉ P and P is prime , xn ∉P for all odd natural numbers n.  Since xn ∊ T and P is an ideal of T, 

xnPT   P  for all odd natural numbers n.    

Therefore n

n 1

x




 PT   P for all x ∊ T. Since T is a commutative ternary semigroup, xnT1T1 is an ideal of T.  

Since  xn ∉ P, xnT1T1 ⊈ P.  Since T is a chained ternary semigroup, P   xnT1T1 for all odd natural numbers n.   

Let y ∊ P.  Then y ∊ xnT1T1 ⇒ y =  xn st  for some s, t ∊ T1.  Now xnst ∊ P, xn ∉ P.  Since P is prime, s ∊P or  

t ∊P.  Therefore y =  xn st ∊ xnPT for all odd natural number n and hence P ⊆ xnPT for all odd natural number n.   

Hence P ⊆ 
n

n 1

x




 PT for all odd natural numbers n ∊ N.   Therefore P = 
n

n 1

x




 PT. 

THEOREM 3.5 : If T is a commutative chained ternary semigroup, then T is a semiprimary ternary 

semigroup. 

Proof :   Let A be an ideal of T.   We have A  = 
n 1

P





  = Intersection of all prime ideals of T containing A.   

Since T is commutative chained terinary semigroup, we have { Pα : α ∊ △ } forms a chain.   By Zorns Lemma,  

{ Pα : α ∊ △ } has minimal element say P𝜷.  Therefore A
 = P𝜷 and P𝜷 is a prime ideal of T, and hence  

A  is prime.   Therefore A is a semiprimary ideal of T and hence T is a semiprimary ternary semigroup. 

THEOREM 3.6 : Let T be a commutative chained ternary semigroup.  If a ∊ T is a semisimple element of 

T, then < a > 
w ≠  . 

Proof : Suppose that a is a semisimple element of T. Therefore a ∊ <  a >
3

, implies that < a > = < a >
3

.  

Therefore a ∊ < a > = < a >n for all odd natural numbers n and  hence a ∊
n 1





 < a >n  = < a >w and hence  

< a >w ≠ 𝜙 . 

COROLLARY 3.7 : Let T be a commutative chained ternary semigroup.  If < a >
w 

= 𝜙 for all a ∊ T, then 

T has no semisimple elements.  

Proof : Suppose that < a >w 
= 𝜙 for all  a ∊ T.  Suppose if possible T has a semisimple element x.  By theorem 

3.6, < x >w≠   .  It is a contradiction. Therefore T has no semisimple elements.  

COROLLARY 3.8 : Let T be a commutative chained ternary semigroup.  If < a >
w 

= 𝜙 for all a ∊ T, then 

T has no idempotent elements.  

Proof : Suppose that < a >w 
= 𝜙 for all  a ∊ T.  By theorem 3.7, T has no semisimple elements.  By theorem 

2.44, T has no idempotent elements. 

THEOREM 3.9 : Let T be a commutative ternary semigroup and a ∊ T.  Then a is semisimple if and only 

if a is left, right, lateral regular and regular. 
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Proof : Suppose that a is semisimple in T.  Therefore a ∊
 

< a >3 .  Since T is commutative,  

a ∊
 

< a >3 =
 

< a3 >.  Therefore  a = a3st for some s, t ∊ T.  Hence  a is left regular.   

Since T is commutative, a = a3st = sa3t = st a3 = asata.  Therefore a is left, right, lateral regular and regular. 

Conversely suppose that a is left, right, lateral regular and regular.   

Therefore a = a3st = sa3t = sta3 = asata for some s, t ∊ T. Now a = a3st ∊
 

< a3 >= < a >3.   

Hence a is semisimple.  

THEOREM 3.10 : Let T be a chained commutative ternary semigroup. If T has no regular elements, then 

for any a ∊ T,  < a >
w 

= 𝜙 or < a >
w 

 is a prime ideal.  

Proof  : Suppose that T has no idempotent elements and a ∊ T.  

We have < a >w = 
n 1






< a >n . 

Assume that < a >w ≠ 𝜙. If possible, suppose that < a >w  is not prime. Then there exist x, y, z ∊ T such that  

xyz ∊ < a >w   and x, y, z ∉ < a >w. By theorem 2.47,  < x > < y >< z > = < xyz > ⊆ < a >w.   

Now x, y, z ∉< a >w, implies that there exists odd natural numbers  n, m, p such that x ∉ < a >n , y ∉ < a >m and 

z ∉ < a >p.    

Consider k = min {n, m, p}.  Then x, y, z ∉ < a >k .  Since T is commutative chained ternary semigroup,   

we have < a >k ⊆ < x >,  < a >k ⊆ < y > and < a >k ⊆ < z >.  

Therefore < a > 3k = < a >k< a >k< a >k ⊆  < x > < y >< z > = < xyz > ⊆< a >w ⊆< a >9k. 

Then   < a > 3k ⊆< a >9k = < a > 3k < a > 3k< a > 3k   and hence a3k  ∊ 
33ka  .  

Therefore a3k is a semisimple element of T.  By theorem  3.9,  a3k  is a regular element of T.   
It is a contradiction.  Hence < a >w is a prime ideal of T.   

DEFINITION 3.11 : Let T be ternary semigroup and a ∊ T.  Then a is said to be a  

left cancellable clement if aax = aay ⇒ x = y,  

lateral cancellable clement  if axa = aya ⇒ x = y,  

right cancellable clement if xaa = yaa  ⇒ x = y  holds for all x, y ∈ T. 

DEFINITION 3.12 : Let T be ternary semigroup and a ∊ T.  Then a is said to be  cancellable clement  if it is 

left,  lateral and right cancellable element. 

DEFINITION 3.13 : A ternary semigroup T is said to be a     

left cancellative if abx = aby ⇒ x = y for all a, b ∈ T  

lateral cancellative if axb = ayb ⇒ x = y for all a, b ∈ T  

right cancellative if xab = yab  ⇒ x = y  for all a, b ∈ T. 

DEFINITION 3.14 : A ternary semigroup T is said to be cancellative ternary semigroup if T is left, lateral and 

right cancellative.  

THEOREM 3.15 : In a ternary semigroup T, the following are equivalent.  

1. T is lateral cancellative.  

2. T is  left and right cancellative.  

3. T is cancellative 

 Proof : (1) ⇒ (2) : Suppose that  ternary semigroup T is lateral cancellative.   Therefore axb = ayb ⇒ x = y.  

Let a, b, x, y ∈ T such that xab = yab.   

Now ab[xab] = ab[yab]] ⇒ a[bxa]b = a[bya]b ⇒ bxa = bya  ⇒ x = y.   

Thus T is right cancellative. Similarly we can prove that T is left cancellative. 

(2) ⇒ (3) : Suppose that  ternary semigroup T is left and right cancellative.   

 Let a, b, x, y ∈ T such that axb  = ayb.      

Now axb  = ayb ⇒ a[axb]b = a[ayb]b ⇒ [aax]bb = [aay]bb⇒ aa[x]bb = aa[y]bb. Since T is left and right 

cancellative,  we get x = y. Thus T is lateral cancellative. 

(3) ⇒ (1) : Suppose that  ternary semigroup T is cancellative. By the definition 3.13, T is lateral cancellative. 

DEFINITION 3.16 : Let T be a ternary semigroup and a ∊ T.  Then a is said to be strongly regular element  if 

there exists x ∊ T such that axaxa = a. 

THEOREM 3.17: Let T be a ternary semigroup and a ∊ T.  Then a regular element in T if and only if a is 

strongly regular element in T.  

Proof : Suppose that a regular element in T. Therefore there exists x, y ∊ T such that axaya = a.   

Now axayaxaya = axaya = a ⇒  a(xay)a(xay)a = a. That is asasa = a where (xay) = s. Hence a is strongly 

regular.  

Conversely, suppose that a is strongly regular element in T. Therefore there exists x ∊ T such that axaxa = a. 

Hence a is regular in T. 

DEFINITION 3.18 : Let T be a ternary semigroup and a ∊ T.  Then a is said to be π- regular  if there exists x ∊ 

T such that anxanxan = an for some odd natural number n.   
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DEFINITION 3.19 : Let T be a ternary semigroup and a ∊ T.  Then a is said to be π- invertible element  if 

there exists x ∊ T such that anxanxan = an and xanxanx = x for some odd natural number n.   

THEOREM 3.20 : If T is a commutative chained cancellative ternary semigroup then for every  

non π-invertible element a, < a >
w
 is either empty or a prime ideal of T. 

Proof : Suppose that a is a non π-invertible element in  T. If  < a >w = 𝜙 then theorem is trivial.  Let < a >w ≠ . 
If possible, suppose that < a >w is not prime.    

Then there exist x, y, z ∊ T such thatxyz ∊ < a >w   and x, y, z ∉ < a >w .   

By theorem 2.48, < x > < y >< z >  = < xyz >.  Now x, y, z ∉ < a >w, implies that there exists odd natural 

numbers  n, m, p such that x ∉ < a >n , y ∉< a >m and  z ∉< a >p.  

Consider k = min { n , m, p }. Then x, y, z ∉ < a >k.  Since T is chained ternary semigroup,  we have   

< a >k⊆ < x >, < a >k⊆ < y > and < a >k⊆ < z >.    

Therefore < a > 3k  = < a >k < a >k< a >k ⊆  < x > < y >< z > = < xyz > ⊆< a >9k ⊆< a >w.  

 Then < a > 3k  ⊆< a >9k=< a > 3k< a > 3k< a > 3k  and hence a3k  ∊ 3k 3a  . Therefore a 3k is a  semisimple 

element of T.  By theorem 3.9, a 3k is a regular element of T.  By theorem 3.17,  

 a 3k  is a strogly regular element of T.  Therefore a 3k = a 3kxa 3kxa 3k for some x ∊ T.   

Now  a 3kxa 3kxa 3k  xa 3k= a 3kxa 3k  .  Since T is cancellative,   xa 3kx  a 3kx = x.  Hence a is a π-invertible 
element in T. It is  a contradiction.  Thus < a >w  is a prime ideal of T.     

Hence  < a >w = 𝜙 or < a >w  is prime ideal of T. 

THEOREM 3.21 : Let T be a chained ternary semigroup.  If  T≠T 3 then T\T 3 = { x } for some x ∊ T.   

 Proof :  Suppose if possible x, y  T\T 3 and x ≠ y.  Since T is a chained ternary semigroup,  

< x >   < y > or < y >  < x >.  If     < x >   < y >, then  x   < y > and hence x = yst for some  s, t T.  

Therefore  xT 3, which is not true.  If     < y >   < x >, then  y  < x > and hence y = xpq for some p, q T. 

Therefore y  T 3, which is not true.  It is a contradiction .  Therefore x = y . So there exists unique x  T such 

that x T 3.  Therefore T\T 3 = { x }. 

THEOREM 3.22 : Let  T be a chained ternary semigroup with T\T 3 = { x } for some  

x ∊ T.  Then T\ { x } is an ideal of T. 

Proof : Let a  T\{x}and s, t  T. we have ast  T3.  Since x  T 3, we have ast ≠ x and hence ast  T\{ x }.  

Hence T\{ x } is a right ideal of T. similarly, we can get sta, sat  T\{ x }.  Therefore T\ { x } is an ideal of T. 

THEOREM 3.23 : Let  T be a commutative chained ternary semigroup.  If  T≠T 3 such that T\T 3 = { x } 

for some x ∊ T, then T = xT
1
T

1 
= T

1
xT

1
 = T

1
T

1
x and T 3 = xTT = TxT = TTx is the unique maximal  

ideal of T. 

Proof :  Since T\T 3 ={ x }, T 3  = T\{x}. Now xT1T1 is an ideal of T  and T3 is an ideal of T.  Since x  T 3 and 

T is a chained ternary semigroup, T 3   x T1T1.  Clearly,  xTT   T3.   Hence T 3  = TTx = TxT =  xTT.   

Since T3 is trivial, T 3  = xTT = TxT = TTx is the unique maximal ideal of T. 

THEOREM 3.24 : Let T be a commutative chained ternary semigroup with T ≠  T3 such that T\T3  = { x 

} for some x  T.   If  a  T and a  < x >
w then a = xn for some odd natural number n > 1  

Proof : Since T is a commutative chained ternary semigroup with  T ≠ T3 such that T\T 3≠ { x }.   

By theorem 3.23, T3 = TTx = xTT = T\ { x }.  Since a < x >
w, there exists a odd natural number k such that  

a< x >
k.  Let n be the least odd positive integer such that  a < x >

n-2 and a < x >
n
 .    

Therefore a  x
n-2

 TT \  xn TT and hence  a = x
n-2 

st  for some s, t  T.     

If s, t  x TT then a = xn snsl

ntntl

n  xn TT = < x n >  = < x >n. It  is a contradiction. 

Hence s, t  x TT.  Therefore s = x and t = x.  Thus a = xn  for some odd natural number n.   

If n = 1 then a = x  < x >.  It is a contradiction.  Therefore n > 1. 

THEOREM 3.25 : Let T be a commutative chained ternary semigroup with T\T 3 =  { x }.  Then T\ < x >
w  

= { x, x 3, x5, . . . . .} or T\< x >
w
 ={x, x 3, . . . , xr} for some odd natural number r. 

Proof :   By theorem 3.24, T\< x >w   { x, x 3, x5, . . . ..}. If xn  T\< x >w  for all odd natural number n, then  

T \< x >w = { x, x 3, x5, . . . . } .  If  xn   T \< x >w  for some odd natural number n, then we can choose the least 

odd positive integer r is such that x
r+2 

  T \< x >w . Therefore x, x 3

, . . x
r 

  T \< x >w  for all n > r.  

Therefore T \< x >w ={ x, x 3, x5, . . . ., xr}. 
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THEOREM 3.26 : Let T be a commutative chained ternary semigroup with T ≠ T3 such that T\T 3 = { x 

}.  If  a  T and a  < x >
w
   then a = xr for some odd natural number  r  or a = xn  sn tn  and sn < x >

w
  

and tn  < x >
w
  for every odd natural number n or a = xmz where z  < x >

w 
 for some even natural 

number m. 

Proof : Since T is a commutative chained ternary semigroup with  T ≠ T 3  such that x  T\T 3.  By theorem 

3.23,  T3  = TTx = xTT = T\ { x }. 

Let  a  T.  Suppose that a  < x >
w .  Now  a  < x >

w implies that a  n

n

x 


1

 .  

Therefore a < x >
n = < x

 n
 > for every odd natural number n .  Therefore a = xnsn tn for some s

n
, t

n
 T for 

every odd natural number n.   

Case 1 : If s
n 

, t
n
  < x >

w for some odd natural number n.  By theorem 3.24, s
n 

= xr, t
n 

= xp for some odd natural 

number r, p >1 and hence a = xn+r+p for some odd natural number n+ r + p.  

Case 2 : If   sn, tn   < x >
w , then  a = xnsn tn where  sn , tn  < x >

w.  

Case 3 : If  only one of the  sn or  tn   < x >
w.   Suppose that sn  < x >

w  and tn  < x >
w then tn = xp for some 

odd natural number p.  Therefore a = xnsn tn = a = xn+p sn where n + p is even.   

Hence a = xmz where z  < x >w  for some even natural number m. 

THEOREM 3.27 : Let T be a commutative chained ternary semigroup with  T\T 3 = { x }.  If T contains 

cancellable elements then x is cancellable element  and < x >
w
 is either empty or a prime ideal of T.  

Proof : Suppose , if possible x is not cancellable in T.  Let Z be the set of all non cancellable elements of T.  

Clearly x  Z.  So Z is non empty subset of T.  Let a  Z and s, t  T.    

Since a Z,  a is not cancellable in T. So there exists b, c  T such that aab = aac and  b ≠  c.   

Now  aab = aac  stst(aab)  = stst(aac)   (sta) (sta) b  = (sta) (sta)c and b ≠  c.   

Hence sta Z and hence Z is a left ideal of T.  Since T is a commutative ternary semigroup, Z is an ideal of T.   

Since T\ T 3 = { x }, by theorem 3.23, T = x T1 T1.  Since x  Z, Z is an ideal of T,  

x T1 T1   Z .  Thus T Z and hence T = Z.  Therefore every element of T is non cancellable.  It is a 

contradiction.  Therefore x is cancellable element in T.    

Suppose that < x >
w 
≠ .    Let a, b, c  T such that abc< x >

w.    

Suppose if possible a < x >
w , b < x >

w  and c < x >
w.  Now a, b, c < x >

w  , implies that by theorem 3.24,  

a = xn, b = xm and c = xp for some odd natural numbers n, m, p.   

Therefore xn+m+p = abc  < x >
w  < x >

n+m+p+2,  implies that xn+m+p = xn+m+p+2st  for some s, t ∊ T.  

Now xn+m+p = xn+m+p+2st and x is cancellative, implies that x = x3st for some s, t  T.   

Therefore x = x3st T 3. It is a contradiction. Therefore either a  < x >
w or b < x >

w
 or  

c < x >
w
 and hence < x >

w is a prime ideal.  Therefore < x >
w is either empty or a prime ideal of T. 

THEOREM 3.28 : Let T be a commutative chained ternary semigroup. Then T is archemedian ternary 

semigroup without idempotent elements if and only if < a >
w
 =  for every a T.  

Proof : Suppose that T is an archemedian ternary semigroup without idempotents. If possible, suppose that  

< a >
w
   for some a T.  By theorem 3.10, < a >

w is a prime ideal of T.  Since T is an archemedian 
commutative ternary semigroup, by theorem 2.54, T has no proper prime ideals.  Therefore < a >

w  = T.   

Now  a < a >
w < a >  3 and hence a is semisimple.  By theorem 3.9,   a is regular.  So T has idempotent 

elements. It is a contradiction.    Hence < a >
w
 =  for every a S.  Conversely suppose that < a >

w
 =  for every 

aS.  Since < a >
w
 =  for every a  T,    By corollary 3.7, T has no semisimple elements.  By theorem 2.44,  

T has no idempotent elements.  If possible, suppose that P is proper  prime ideal of T.     

Let x  T such that x  P. Since x  P, by theorem 3.3, P = 


1n

 xnPT  < x >
w. Therefore P  < x >

w
 = .   It is 

a contradiction. Hence T has no proper prime ideals. By theorem 2.54, T is an archemedian ternary semigroup. 

THEOREM 3.29 : If T is a commutative chained ternary semigroup containing cancellable elements and  

< a >
w
 =   for every a  T, then T is a cancellative ternary semigroup.  

Proof : Let T be a commutative chained ternary semigroup containing cancellable elements.  Suppose that  

< a >
w
 =  for every a T.      
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Let Z be the set of all noncancellative elements in T.  If possible, suppose that Z is a nonempty subset of T.    

If x  Z, then there exists y, z  T such that xxy = xxz and y  z.  Therefore for any s, t  T,  stst(xxy) = stst(xxz) 

implies that (stx) (stx)y  = (stx)(stx) z and y   z.  Hence (stx)  Z.  Therefore Z is a left ideal of T and T is 
commutative, implies that Z is an ideal of T.    

If possible, suppose that  Z is not prime.  Then there exists  a, b, c  T such that abc  Z and  a, b, c  Z.  Now 

abc  Z, implies that (abc)(abc)x = (abc) (abc)y for some x, y  T and x  y.   Hence aa(bc) (bc)x  = 

aa(bc)(bc)y  and a  Z, implies that  (bc)(bc)x = (bc)(bc)y.  Similarly b, c  Z,  x = y .  It is a contradiction.  

Therefore Z is a prime ideal of T.  Since  < a >
w
 =  for every a  T, by theorem3.28,  we have T is an 

archemedian ternary semigroup without idempotents.  Therefore by theorem 2.54, T has no proper prime ideals 

and hence Z = T.   

It is contradiction to T contains cancellable elements.  Hence Z = . Thus T is cancellative ternary semigroup. 

DEFINITION 3.30 : A ternary semigroup T is said to be ternary group if for all a, b, c ∊ T,  there exists  

x, y, z ∊ G such that [xab] = [ayb] = [abz] = c. 

THEOREM  3. 31 :If T is a ternary semigroup and a, b ∊ T, then abT = { abt : t ∊ T } is a right  ideal of T. 

Proof  :  Let x ∊ abT and  s, t ∊ T.  Now x ∊ abT, implies that x = abu for some u ∊T. 

Since  s, t, u ∊ T, we have  ust ∊ T.  Therefore   abust ∊ abT .  That is  xst ∊ abT.  Hence abT is a right ideal of 

T.  

COROLLARY 3.32 : If T is a ternary semigroup and a, b ∊ T, then Tab = { tab : t ∊ T } is a left ideal of T. 

Proof : The proof of the theorem follows the above theorem. 

COROLLARY 3.33 : If T is a commutative ternary semigroup and a, b ∊ T, then  

Tab = { tab : t ∊ T } is an ideal of T. 

COROLLARY 3.34 : If T is a commutative ternary semigroup and a, b ∊ T, then  

abT = { abt : t ∊ T } is an ideal of T. 

COROLLARY 3.35 : If T is a commutative ternary semigroup and a, b ∊ T, then  

aTb = { atb : t ∊ T } is an ideal of T. 

COROLLARY 3.36 : If T is a ternary group and a ∊ T, then Taa = { taa : t ∊ T } is a left ideal of T. 

COROLLARY 3.37 : If T is a ternary group and a ∊ T, then aaT = { aat : t ∊ T } is a left ideal of T. 

THEOREM 3.38 : Let  T be a commutative chained ternary semigroup. Then T is ternary group if and 

only if T is simple ternary semigroup. 

Proof  : Suppose that T is a ternary group.  Let A be an ideal of T.  Clearly, A ⊆ T.  Let t ∊ T and a ∊ A.   

Now t, a ∊ T and T is ternary group, implies that the equation axa = t has solution in T.   

Therefore there exists s ∊T, such that asa = t.  Hence  t = asa  ∊ < a > ⊆ A.  Therefore A = T.   

Thus T has no proper ideals.  Hence T is simple ternary group. 

Conversely, suppose that T is simple ternary semigroup.  Therefore T has no proper ideals.  Let a, b, c ∊ T.   

By theorem 3.31, we have abT = {abt : t ∊ T} is a right  ideal of T.  Since T is commutative, abT is an ideal of 

T.  Since T has no proper ideals, we have abT = T.  Therefore c ∊ T = abT.  Therefore, there exists s ∊ T, such 

that c = abs. Hence the equation abx = c has a solution in T.  Similarly, we can prove the equations axb = c and 

xab = c has solution in T.  Thus T is a ternery group. 

COROLLARY 3.39 : If T is a commutative ternary group, then  abT = Tab = aTb = T for all a, b ∊ T. 

COROLLARY 3.40 : If T is a commutative ternary group, then  aaT = Taa = aTa = T for all  a ∊ T. 

THEOREM 3.41 : If T is a ternary group, then  every element of T is regular element in T. 

Proof  : Suppose that T is a ternary group and a ∊ T.  By corollary 3.40, we have aTa = T. Now a ∊ T and aTa = 

T, implies that a ∊ aTa.  Therefore,  a = axa for some x ∊ T.   

Hence axaxa = axa = a.  Therefore a is strongly regular and hence regular in T.  Thus every element of T is 

regular element in T.  

THEOREM 3.42 : If T is a commutative cancellative archemedian chained ternary semigroup with  

< a >
w
   for some a T, then T is a ternary group. 

Proof :  Let T be a commutative cancelative archemedian chained ternary semigroup with  

< a >w   for some a T. If possible, suppose that T has no idempotent elements.   

Since < a >
w
  , then by theorem 3.10, < a >

w is a prime ideal of T. Since T is an archemedian commutative 
ternary semigroup by theorem 2.53, T has no proper prime ideals. It is a contradiction.  Hence T has idempotent 

elements.  Let e be an idempotent element in T.  Then  xe 3  =  xe  for every x  T.  Since T is cancellative ,  we 

have xee = x for every  x ∊ T.  Since T is commutative, eex = exe = xee = x for every x T.  Let a, b, c  T.   

Now e, b, a T and T is archemedian ternary semigroup,   implies that en   < a > and en   < b > for some odd 

natural number n.  Since T is commutative, e  aTT and e  TTb.  Therefore e = axy and e = pqb for some  

x, y, p, q  T. Now  c  = ece = (axy)c(pqb), implies that c  = a(xycpq)b.  Therefore s = xycpq is the solution of  
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c = asb.  Since T is commutative, the equations axb = abx = xab = c has solution in T.   

Therefore  T is a ternary group. 

DEFINITION 3.43 :  A ternary semigroup T is said to be a noetherian ternary semigroup if  every ascending 
chain of ideals becomes stationary ;   i.e.,  If  A1   A 3   A3  ....... is an ascending chain of  ideals of T,  

then there exists a odd natural number m such that Am = An for all natural numbers n  m. 

THEOREM 3.44 :  If T is a noetherian ternary semigroup containing proper ideals then T has a maximal 

ideal.  

Proof  :  Let A1 be a proper ideal of T.  If A1 is not a maximal ideal, then there exists a proper ideal A
2
 of T 

such that A
1 
  A

2
.  If A

2
 is not a maximal ideal, then there exists a proper ideal A

3
 of T  such that  

A
1 
  A

2 
  A3 

.  By continuing this process we get an ascending chain of proper ideals of T.  Since T is 

noetherian, The chain A
1 
  A

2 
  A3 

. . . . is stationary.  Therefore there exists a odd natural number n such 

that An = A
n+1 

= A
n+2

 = . . . .  Therefore An is maximal ideal of T. Hence T has a maximal ideal.   

THEOREM 3.45 : If T is a commutative ternary semigroup such that T = < x >  for some xS, then the 

following are equivalent. 

1) T = {x, x3, x5, . . . . } is infinite. 

2) T is a noetherian cancellative ternary semigroup with  x   xTT. 

3) T is a noetherian cancellative ternary semigroup without  regular elements. 

4) < a >
w
 =  for all  a  T. 

5)  < x >
w
 =  . 

Proof :  (1)  (2) :  Suppose that T = {x, x3, x5, .....} is infinite.  Therefore T = < x > and x  T.   

Therefore every ideal of T principle ideal of T.   Let A1   A2  A3 ....... be an ascending chain of ideals of T.  

Therefore A = 





1i

 Ai also an ideal of T and  A is a principle ideal of T.  Suppose that A =  < a > for some a T. 

Then a 





1i

Ai  and hence aAt for some odd natural number t.   

Therefore A = 





1i

Ai = < a >   At   





1i

 Ai, and hence A = 





1i

Ai = At.    

Therefore At = At+1 = At+3 =....... and hence T is a noetherian ternary semigroup.    

Let  a, b, c, d S such that  abc = abd.  Now a, b, c, d S = < x > imples that  a = xn, b = xm, c = xs , d = xp for 

some odd natural numbers n, m, s, p  N.  Now abc = abd, implies that  

xn xm xs =xn xmxp  ⇒ xn+m+s  = xnm+ps.   Since T is infinite set,  n + m + s = n + m + p and hence  

s = p. Therefore xs = xp  ⇒ b = c.  Hence T is cancellative.  Suppose that x  xTT.   

Therefore  x = xxnxm for some odd natural numbers n, m.  Thus xn+m+1 = x and hence T is finite. It is a 

contradiction.  So x xTT.  Therefore T is a noetherian, cancellative ternary semigroup and x  xTT. 

(2) (3) :  Suppose that T is a noetherian cancellative ternary semigroup and x  xTT.  If possible, suppose that 

T has idempotent elements. Let e be an idempotent element in T.  Therefore  xe 3e= xee.  Thus  (xe2) ee = xee ⇒ 

xe2 = x.   Since T is a  cancellative ternary semigroup  x =  xe2  xTT.  It is a contradiction.  Hence T has no 

idempotent elements. Therefore T is a noetherian, cancellative without idempotents. 

(3) (4) :  Suppose that T is a noetherian cancellative ternary semigroup without idempotents. Let a T.  If 

possible, suppose that < a >w = .  Then there exists  b  T such that  b< a >w. Now b 


1i

 < a >n, implies 

that b < a >n  for all odd natural numbers n and hence  b = ai siti for some si ,ti  T  for all  i = 1,  3, 5, . . . . .  

Therefore b = ai siti = ai+2si+1 ti+1 for  i = 1,  3, 5, . . . . Now consider yi = ai siti  for all i = 1,  3, 5, . . . . ., 

then yi = a2 yi+2  for all i = 1,  3, 5, . . . .  Therefore < yi >   < yi+2 > for each  i = 1,  3, 5, . . . . . .   Since T is 

Noetherian, the chain  < y
1 

>   < y
3 

>   < y
5 

>    .  .  .   .  . is stationary.  Therefore there exists a odd 

natural number n such that  < yn >  = < yn+2  > = < yn+ 5 > = .  .  . Thus  yn+2 = st yn for some s, t  T.  Now  

a2yn+2 = yn , implies that  a2stsn = sn  and hence (a 3st) sn = (a) sn, implies that (a 3st)snsn = a snsn .   By 

cancellative law, we have a3s  = a.  Thus a is left regular clement in T. Since  T is commutative, a is regular 

element in T. Therefore T has regular elements.  It  is a contradiction.  Therefore < a >
w
 = .. 

(4) (5) : Suppose that < a >w = .  for every a  T. Since x S, clearly < x >w = .  
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(5)(1) :  Suppose that < a >w = .    Let a  T.   If possible, suppose that  a xn for any odd natural numbers n.  

Therefore a =  xs1t1 , s1 , t1 S and  s1  xp, t1  x q for any odd natural numbers p, q.  Similarly s1 = xs2 s
l

2 

,and t1 = xt2tl2 where s2 , s
l

2, t2 , t
l

2 S  and each of them not eaqual to xp for any odd natural number.  Hence 

a =  xs1t1 =  x3s3t3.    By continuing this process, we get  a = xs1t1 =  x3s3t3 = x5s5 t5  =.  .  . , therefore a  < 

xn >=< x >n   for all odd natural numbers n and hence a  

1i

 < x >n = < x >w = .  It  is a contradiction.  

Therefore a = xn for some odd natural numbers n.  Hence S={x, x 3, x3, .  . . .}.  If T is finite then T = {x, x 3, 

x5,. . .., xm}  for some odd natural numbers m.   

Now < x m >   < x m-2 >  . . . .   < x > and hence < x >m  < x > m-2   < x > m-4 . . . .  < x >.    

Also < x > m+r = < x > m for all odd natural numbers r.  So  xm  


1i

 < x >n = < x >w= . It is a contradiction. 

Therefore T is infinite. 

COROLLARY 3.46 : If T is a commutative chained ternary semigroup with  T ≠ T3 , then the following 

are equivalent. 

(1) S={x, x
3

, x
5

, . . . . . . .}, where x  T\T3 

(2) T is Noetherian cancellative ternary semigroup without regular elements. 

(3) < a >
w
 =  for all  a  T. 

Proof : The proof of the theorem follows the above theorem. 

THEOREM 3.47: If T is a commutative chained noetherian cancellative ternary semigroup without 

regular elements, then < a >
w
 =  for all a T. 

Proof  :  Suppose if possible,  T has no proper ideals.  Since T is commutative, T has neither proper left/ right/ 

lateral ideals.  Therefore by theorem 3.38, T is a ternary group.  By theorem 3.41, every element of T is regular.  

It is contradiction to T has no regular elements.  Hence T has proper ideals.   Since T is noetherian ternary 

semigroup and  T has proper ideals  implies that T contains maximal ideals.  Suppose if possible T = T  3. Since 

T contains maximal ideals and T = T 3, implies  by theorem 2.61, T contains regular elements.  It is 

contradiction.  Thus T  T 3 ,  by theorem 3.10, < a >
w
 =   for all a T. 
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