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Abstract : In this paper numerical technique has been used to solve two dimensional steady heat flow problem 

with Dirichlet boundary conditions in a rectangular domain and focuses on certain numerical methods for 

solving PDEs; in particular, the Finite difference method (FDM), the Finite element method (FEM) and Markov 

chain method (MCM) are presented by using spreadsheets. Finally the numerical solutions obtained by FDM, 

FEM and MCM are compared with exact solution to check the accuracy of the developed scheme 
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I. Introduction 
Many phenomena arising in science and engineering are modeled by partial differential equations 

(PDEs). In such cases the quantity of interest (e.g. temperature, potential, or displacement) is a function that 

depends on more than one variable (typically, space variables x, y, z and the temporal variable t). The heat 

equation, wave equation, and Laplace’s equation are among the most prominent PDEs. 

The process of obtaining a numerical solution to a differential equation can be viewed in the same way 

as conducting a lab experiment. In a lab experiment, the physical quantity, flows velocity for example, is 

measured at discrete points in the domain of the interest using a measurement device. A picture of the flow 

variation then can be constructed by connecting the measurement points allowing us to visualise the flow. 

If we require the flow quantities between the measurements points, some interpolation technique can be 
used which may be linear or higher order interpolation. This will depend on how far the points from each other, 

or how accurate we require these intermediate quantities. 

In the same manner, numerical techniques convert the continuous differential equation to that of 

finding the solution at discrete points in space which we call grid points. A full picture of the flow then can be 

constructed from the solution at those points. The use of spreadsheets for solving numerical analysis has been 

reported in the literature [1].  

This paper is organized as follows. Section 2 presents formulation of two dimensional Laplace 

equations with dirichlet boundary conditions. Section 3 presents the finite difference method for solving Laplace 

equation by using spreadsheet. Section 4 presents the finite element method using spreadsheet. Section 5 

presents the Markov Chain Method. Section 6 gives exact solution of Laplace equations.  Section 7 compares 

the results obtained by each method. Finally, Section 8 gives concluding remarks. 

 

II. Problem Formulation 
A simple case of steady state heat conduction in a rectangular domain shown in Fig.1 may be defined 

by two dimensional Laplace equations: 

 

 
 

       For  

       Where  is the steady State temperature distribution in the domain. 

 

The Dirichlet boundary conditions are  
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Fig. - 1: Rectangular region R with boundary conditions 

 

The region R is divided into finite number of rectangular elements. Every node and every side of the 

rectangular must be common with adjacent elements except for sides on the boundaries. The nodes and elements 
are both numbered as shown in Fig.2 

 

 
                                    Fig. -2: Rectangular elements with nodes are numbered. 

 

III. The Finite Difference Method (FDM) 
The finite difference method (FDM) is conceptually simple. The problems to which the method applies 

are specified by a PDE, a solution region (geometry), and boundary conditions. Only a brief outline of the finite 

difference method is given in this paper; for more detailed derivations the reader may consult [2]. The finite 

difference method entails three basic steps. 

1. Divide the solution region into a grid of nodes. Grid points are typically arranged in a rectangular array 

of nodes. 

2. Approximate the PDE and boundary conditions by a set of linear algebraic equations (the finite 

difference equations) on grid points within the solution region. 

3. Solve this set of linear algebraic equations. 

The region has prescribed potentials along its boundaries. The region is divided into a rectangular grid of 

nodes, with the numbering of free nodes as indicated in the fig. 3. 
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Fig.-3: The region R showing prescribed potentials at the boundaries and rectangular grid of the free nodes to 

illustrate the finite difference method. 

 

   Let the location of an interior grid point be identified by a pair of integers , where i and j represent the 

position along the horizontal and vertical directions, respectively. For a grid having equal horizontal and vertical 

step sizes, the potential is given by the finite difference equation: 

 

 
 

The equations are formulated for all the free nodes leading to a system of linear algebraic equations. This system 

of equations may be solved by a variety of methods. In this paper the Gauss-Seidel method is implemented in a 

spreadsheet to solve this system of equations. The Gauss-Seidel method is a relatively simple iterative method 

for solving systems such as those encountered in the finite difference formulation. There are 4 potentials at 

interior grid points that need to be determined as shown in Table 1. 

 
Table 1:  The Gauss-Seidel iterations to illustrate the finite difference method. 

Iteration 6 7 10 11 

1 0.0 0.0 0.0 0.0 

2 0.0 0.0 25.0 25.0 

3 6.3 6.3 31.3 31.3 

4 9.4 9.4 34.4 34.4 

5 10.9 10.9 35.9 35.9 

6 11.7 11.7 36.7 36.7 

7 12.1 12.1 37.1 37.1 

8 12.3 12.3 37.3 37.3 

9 12.4 12.4 37.4 37.4 

10 12.5 12.5 37.5 37.5 

 

IV. The Finite Element Method (FEM) 
The finite element method (FEM) is a numerical technique for solving PDEs. FEM was originally 

applied to problems in structural mechanics. The finite element analysis involves four basic steps. 

1. Divide the solution region into a finite number of elements. The most common elements have triangular or 

quadrilateral shapes. The collection of all elements should resemble the original region as closely as 

possible. 

2.  Derive governing equations for a typical element. This step will determine the element coefficient matrix. 

3.  Assemble all elements in the solution region to obtain the global coefficient matrix. 

4. Solve the resulting system of equations. 
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The region is divided into 18 equal triangular elements as indicated in Fig. 4. The elements are identified 

by encircled numbers 1 through 18. In this discretization there are 16 global nodes numbered 1 through 16 as 

indicated in the fig. 4.Only a brief outline of FEM is provided; for detailed derivations the reader may consult 

[2]. 

 
Fig.-4:  The region R showing prescribed potentials at the boundaries and triangular grid of the free nodes to 

illustrate the finite element method. 

The creation of the assembled equations required element coefficient matrix and global coefficient 

matrix .The entries of the  element coefficient matrix are then given by the equation: 

 

 
 

Where   

                

 
The element coefficient matrices computed according to equation (3) are, respectively as shown in Table 2 

 

Table 2: Computation of element coefficient matrices with respective element 

Element Element Coefficient Matrix Element Element Coefficient Matrix 

1 

1 -0.5 -0.5 

10 

0.5 -0.5 0 

-0.5 0.5 0 -0.5 1 -0.5 

-0.5 0 0.5 0 -0.5 0.5 

2 

0.5 -0.5 0 

11 

1 -0.5 -0.5 

-0.5 1 -0.5 -0.5 0.5 0 

0 -0.5 0.5 -0.5 0 0.5 

3 

1 -0.5 -0.5 

12 

0.5 -0.5 0 

-0.5 0.5 0 -0.5 1 -0.5 

-0.5 0 0.5 0 -0.5 0.5 

4 

0.5 -0.5 0 

13 

1 -0.5 -0.5 

-0.5 1 -0.5 -0.5 0.5 0 

0 -0.5 0.5 -0.5 0 0.5 

5 

1 -0.5 -0.5 

14 

0.5 -0.5 0 

-0.5 0.5 0 -0.5 1 -0.5 

-0.5 0 0.5 0 -0.5 0.5 
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6 

0.5 -0.5 0 

15 

1 -0.5 -0.5 

-0.5 1 -0.5 -0.5 0.5 0 

0 -0.5 0.5 -0.5 0 0.5 

7 

1 -0.5 -0.5 

16 

0.5 -0.5 0 

-0.5 0.5 0 -0.5 1 -0.5 

-0.5 0 0.5 0 -0.5 0.5 

8 

0.5 -0.5 0 

17 

1 -0.5 -0.5 

-0.5 1 -0.5 -0.5 0.5 0 

0 -0.5 0.5 -0.5 0 0.5 

9 

1 -0.5 -0.5 

18 

0.5 -0.5 0 

-0.5 0.5 0 -0.5 1 -0.5 

-0.5 0 0.5 0 -0.5 0.5 

 

The global coefficient matrix is then assembled from the element coefficient matrices. Since there are 16 nodes, 

the global coefficient matrix will be a  matrix. The assembly of the global coefficient matrix is shown 

in Matrix Table 3. 

 

Table 3: Showing global coefficient matrix C 
  1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 

1 1 -0.5 0 0 0 0 0 -0.5 0 0 0 0 0 0 0 0 

2 -0.5 2 -0.5 0 0 0 -1 0 0 0 0 0 0 0 0 0 

3 0 -0.5 2 -0.5 0 -1 0 0 0 0 0 0 0 0 0 0 

4 0 0 -0.5 1 -0.5 0 0 0 0 0 0 0 0 0 0 0 

5 0 0 0 -0.5 2 -1 0 0 0 0 0 -0.5 0 0 0 0 

6 0 0 -1 0 -1 4 -1 0 0 0 -1 0 0 0 0 0 

7 0 -1 0 0 0 -1 4 -1 0 -1 0 0 0 0 0 0 

8 -0.5 0 0 0 0 0 -1 2 -0.5 0 0 0 0 0 0 0 

9 0 0 0 0 0 0 0 -0.5 2 -1 0 0 0 0 0 -0.5 

10 0 0 0 0 0 0 -1 0 -1 4 -1 0 0 0 -1 0 

11 0 0 0 0 0 -1 0 0 0 -1 4 -1 0 -1 0 0 

12 0 0 0 0 -0.5 0 0 0 0 0 -1 2 -0.5 0 0 0 

13 0 0 0 0 0 0 0 0 0 0 0 -0.5 1 -0.5 0 0 

14 0 0 0 0 0 0 0 0 0 0 -1 0 -0.5 2 -0.5 0 

15 0 0 0 0 0 0 0 0 0 -1 0 0 0 -0.5 2 -0.5 

16 0 0 0 0 0 0 0 0 -0.5 0 0 0 0 0 -0.5 1 

 

Defining the vector of potentials and ,where the subscripts f and p refer to nodes with free (unknown) 

potentials and prescribed potentials respectively, the global coefficient matrix is then partitioned accordingly 

and unknown potentials are obtained from  

 

 
 

The essential boundary conditions on the boundary of the domain, the vector of prescribed potentials   and 

the Matrices (Free Nodes Matrix), (Free and Prescribed Nodes Matrix) obtained from global coefficient 

matrix as shown in Table 4. 
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Table 4: Nodes in the finite element mesh having prescribed potentials 

Node 
Prescribed 

 Potentials 
Node 

Prescribed  

Potentials 

1 0 9 0 

2 0 12 0 

3 0 13 50 

4 0 14 100 

5 0 15 100 

8 0 16 50 

 

Table 5: Matrices    and  obtained from global coefficient matrix C. 

Node 6 7 10 11 

6 4 -1 0 -1 

7 -1 4 -1 0 

10 0 -1 4 -1 

11 -1 0 -1 4 

Matrix of free nodes  

 

Node 1 2 3 4 5 8 9 12 13 14 15 16 

6 0 0 -1 0 -1 0 0 0 0 0 0 0 

7 0 -1 0 0 0 -1 0 0 0 0 0 0 

10 0 0 0 0 0 0 -1 0 0 0 -1 0 

11 0 0 0 0 0 0 0 -1 0 -1 0 0 

    Matrix of free and prescribed Nodes  

 

 The implementation of Equation (4) has been broken down into three parts. 

1. Computation of the inverse of the  matrix(this has been labelled  

2. Computation of an intermediate vector and 

3. Computation of vector of potentials at free nodes  

 This step is shown in below Table 6. 

 
Table 6: Final Calculation: (left) the inverse of the  matrix, (middle) the intermediate 

vector ,(right) the vector of potentials at free nodes  

 

V. Markov Chains Method (MCM) 
A Markov process is a type of random process that is characterized by the memory less property. It is a 

process evolving in time that remembers only the most recent past and whose conditional probability 

distributions are time invariant. Markov Chains are mathematical models of this kind of process. The Markov 

Chain is the random walk and the states are the grid nodes. 

In this method, if we assume that there are f free nodes (non-absorbing) and p fixed nodes (absorbing), 

the size of the transition matrix P is n. Where n = f + p. Only a brief outline of the Markov Chain Method is 

given in this paper; for more detailed the reader may consult [3].The Markov chains analysis involves four basic 

steps. 
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1. If the absorbing nodes and the non-absorbing nodes are numbered, then the n × n transition matrix 

becomes 

 
  Where the f × p matrix R represents the probabilities of moving from non-absorbing nodes to absorbing ones,  

  the f × f matrix Q represents the probabilities of moving from one non absorbing   node to another, the p × p  
  identity matrix I represents transitions between the absorbing nodes and 0 is the null matrix showing that there    

  are no transitions from absorbing to non-absorbing nodes. 

2. The probability matrix B is  

3. If  and  contain potentials at the free and fixed nodes respectively, then   , where f is 

the number of free nodes.  

4. Solving these equations by iterative method we get the solution of free nodes . 

The region has prescribed potentials along its boundaries. The region is divided into a rectangular grid of 

nodes, with the numbering of free nodes (non-absorbing) and prescribed nodes (absorbing) as indicated in the 

fig.5. 

 

 
Fig.-5: The region R showing prescribed potentials at the boundaries and rectangular grid of the free nodes to 

illustrate the Markov Chain method. 

To apply Markov Chain Technique, we number the nodes as in figure. There are four free nodes (f = 4) 

and eight fixed nodes (p = 8). The transition probability matrix P is shown in Matrix table 7. 

 

                                        Table 7: Showing the transition probability matrix P 

  2 3 5 6 7 8 9 10 11 12 14 15 

2 1 0 0 0 0 0 0 0 0 0 0 0 

3 0 1 0 0 0 0 0 0 0 0 0 0 

5 0 0 1 0 0 0 0 0 0 0 0 0 

6 0 0.25 0.25 0 0.25 0 0 0 0.25 0 0 0 

7 0.25 0 0 0.25 0 0.25 0 0.25 0 0 0 0 

8 0 0 0 0 0 1 0 0 0 0 0 0 

9 0 0 0 0 0 0 1 0 0 0 0 0 

10 0 0 0 0.25 0.25 0 0.25 0 0.25 0 0 0.25 

11 0 0 0 0.25 0 0 0 0.25 0 0.25 0.25 0 

12 0 0 0 0 0 0 0 0 0 1 0 0 

14 0 0 0 0 0 0 0 0 0 0 1 0 

15 0 0 0 0 0 0 0 0 0 0 0 1 

 

Defining the vector of potentials and ,where the subscripts f and n refer to nodes with free (non-

absorbing or unknown) potentials and prescribed (absorbing) potentials respectively, the transition probability 

matrix is then partitioned accordingly and unknown potentials are obtained from  

 

 
  Where  
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The essential boundary conditions on the boundary of the domain, the Matrices Q (non absorbing Nodes 

Matrix), R (non-absorbing and absorbing Nodes Matrix) obtained from the transition probability matrix as 

shown in table 8 and Probability Matrix B as shown in Matrix table 9.  

 

Table 8: Matrices Q and R obtained from the transition probability matrix P 

 

Node  6 7 10 11 

6 0 0.25 0 0.25 

7 0.25 0 0.25 0 

10 0 0.25 0 0.25 

11 0.25 0 0.25 0 

Matrix of the non-absorbing nodes Q 

 

 Node 2 3 5 8 9 12 14 15 

6 0 0.25 0.25 0 0 0 0 0 

7 0.25 0 0 0.25 0 0 0 0 

10 0 0 0 0 0.25 0 0 0.25 

11 0 0 0 0 0 0.25 0.25 0 

Matrix of the non-absorbing and absorbing nodes R 

 

Table 9: Showing the Probability Matrix B 

Nodes 
Non-absorbing Nodes Absorbing Nodes  

2 3 5 8 9 12 14 15 6 7 10 11 

6 0 0.25 0.25 0 0 0 0 0 0 0.25 0 0.25 

7 0.25 0 0 0.25 0 0 0 0 0.25 0 0.25 0 

10 0 0 0 0 0.25 0 0 0.25 0 0.25 0 0.25 

11 0 0 0 0 0 0.25 0.25 0 0.25 0 0.25 0 

 
The implementation of Equation (6) has been broken down into four sub-equations:  

 

 

 

 
 
Solving the above equations by the Gauss-Seidel iterations method, we get  

 

Table 10 : The Gauss-Seidel iterations to illustrate the Markov Chain Method. 

 
Iteration 6 7 10 11 

1 0.0 0.0 0.0 0.0 

2 0.0 0.0 25.0 25.0 

3 6.3 6.3 31.3 31.3 

4 9.4 9.4 34.4 34.4 

5 10.9 10.9 35.9 35.9 

6 11.7 11.7 36.7 36.7 

7 12.1 12.1 37.1 37.1 

8 12.3 12.3 37.3 37.3 

9 12.4 12.4 37.4 37.4 

10 12.5 12.5 37.5 37.5 
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VI. Exact Solution 
The Exact solution of two dimensional Laplace equations with Dirichlet boundary conditions obtained 

by the separation of variables is given by the equation: 
 

 
 

VII. Comparison between Numerical solution by FDM,  

FEM and MCM and Exact Solution 

 
As indicated in Table 11, the potentials at the free nodes computed by FDM, FEM and MCM 

numerical solutions compared fairly well. The better agreement should be obtained between the all numerical 

solution results by using a rectangular grid for finite difference and Markov chain solution and by using 

triangular grid for finite element solution. 
 

Table 11: Comparison between Numerical and Exact Solution 

Node 
Numerical Solution by 
FDM,FEM and MCM  

Exact 
solution 

6 12.5 11.926 

7 12.5 11.926 

10 37.5 38.074 

11 37.5 38.074 

 

 
Fig.-6 Graphical Comparison between Numerical and Exact Solution 
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VIII. Conclusion 
This paper presented spreadsheet implementations of numerical methods for solving Laplace equation 

in two dimensions with Dirichlet boundary conditions. Other types of boundary conditions could be used to 

solve the same problem. By introducing a little more complexity in formulating the Finite Element Method, 
many useful and practical problems could be solved. The power of the Finite Element method becomes more 

evident, because the Finite Difference method will have much more difficulty in solving problems in a domain 

with complex geometries. It is observed that Finite difference, Finite element and Markov Chain Solution give 

near to the exact solution. 

 

References 
[1] Mark A. Lau, and Sastry P. Kuruganty, Spreadsheet Implementations for Solving Boundary-Value Problems in Electromagnetic, 

Spreadsheets in Education (eJSiE), 4(1), 2010. 

[2] M. N. O. Sadiku, Elements of Electromagnetics (New York: Oxford University Press, 4th edition, 2006). 

[3] A. Bernick Raj, and K. Vasudevan, Solution of Laplace equation by using Markov Chains,  International Journal Contemp. Math. 

Sciences, 7(30), 2012, 1487 – 1493. 

[4] Erwin kreyszig, Advanced Engineering Mathematics (New York: John Wiley & Sons, 10
th
 edition, 2011). 

 
 

 

 
 


