T-Pre–Operators

Prof. Dr. Nadir. G. Mansour, Hanan. k. moussa (Department of Matimatics, College of Education, AL-Mustansirya University, Iraq)

Abstract: The main object of this paper to introduce T-pre-operator, T-pre-open set, T-pre-monotone, pre-

subaditive operator and pre-regular operator. As well as we introduce (T,L) pre-continuity. **Keywords**: T-pre-operator, T-pre-open set, (T,L) pre-continuity

I. Introduction

Mashhour [2] introduced pre-open sets in a topological space and studied some of their properties. In 1979 kasahara [1] defined the operator α on atopological space (X,Γ) as a map from P(X) to P(X) such that $U \subseteq \alpha$ (U) for every $U \in \Gamma$. In 1991 Ogata[4] called the operation α as γ operation and introduced the notion of $\tau\gamma$ which is the collection of all γ - open sets in atopological space (X, τ) . Several research papers published in recent years using γ operator due to Ogata[4].

In 1999 Rossas and Vielma [5] modified the definition by allowing the operator α to be defined in P(X) as a map α from P(X) to P(X). In 2006 Mansur and Ibrahim [3] introduced the concept of an operation T on α -open set in a topological space (X, Γ) namely T- α -operator and studied some of their properties.

In this paper we introduce the concept of an operation T on a family of pre-open sets in atopological space (X,Γ) . Asubset S of X is called pre-open set if S \subset int(cl(S)). In §2 Using the operation T, we introduce the concept T-pre-open sets, T-pre-monotone, pre-subaditive operator and pre-regular operator. We study some of their properties and optained new results. In §3 we present and study new types of function by using the operations T and L. say (T,L)pre-continuous, (T,L)pre-irresolute continuous and (T,L)strongly pre-continuous.

II. T-Pre-Operators

2.1 Definition:

Let (X,Γ) be a topological space and T be an operator from Γ_{pre} to P(X), i.e., $T : \Gamma_{pre} \longrightarrow P(X)$. We say that T is a pre-operator associated with Γ_{pre} if:

 $U \subseteq T(U)$, for every $U \in \Gamma_{pre}$

and the triple (X, Γ, T) is called T-pre-operator topological space.

The following example shows that T is a pre-operator.

2.2 Example:

Let $X = \{a,b,c\}, \Gamma = \{\emptyset, X, \{a\}, \{a,b\}\}, \Gamma_{pre} = \{\emptyset, X, \{a\}, \{a,b\}, \{a,c\}\} \text{ and } T : \Gamma_{pre} \longrightarrow P(X), \text{ defined}$ as:

$$T(U) = \begin{cases} U, & \text{if } U = \{a\} \\ cl(U), & \text{if } U \neq \{a\} \end{cases}$$

Clearly $U \subseteq T(U)$, for every $U \in \Gamma_{pre}$

Hence, T is a pre-operator.

In the following theorem, we present the relationship between T-operator and T-pre-operator.

2.3 Theorem:

Every T-operator is T-pre-operator.

Proof:

Suppose that (X,Γ,T) is an operator topological space Therefore, $U \subseteq T(U)$, for every $U \in \Gamma$ Since every open set is a pre-open set Hence, each open set in T(U) is a pre-open set Therefore, T is a pre operator.

The Converse of the theorem is not true in general, as the following example shows:

2.4 Example:

The operator T in example (2.2) is a pre-operator, but not an operator, since $\{a,c\}$ is pre-open set but not open.

In the next, the relationship between T- α -operator and T-pre-operator will be given.

2.5 Theorem:

Every T- α -operator is T-pre-operator.

Proof:

Suppose that (X, Γ, T) be an α -operator topological space

Therefore, $U \subseteq T(U)$ for every $U \in \Gamma^{\alpha}$

Therefore, since every α -open set is a pre-open set

Hence, α -open set in T(U) is a pre-open set

Hence T is a pre-operator. ■

Now, we will define T-pre-monotone operators.

2.6 Definition:

Let (X,Γ) be a topological space and T be a pre-operator associated with Γ_{pre} . T is said to be premonotone operator if for every pair of pre-open sets U and V such that $U \subseteq V$, then $T(U) \subseteq T(V)$.

The following example shows that T is a pre-monotone operator.

2.7 Example:

Let $X = \{a,b,c\}, \Gamma = \{\emptyset,X,\{a\},\{a,b\}\}, \Gamma_{pre} = \{\emptyset,X,\{a\},\{a,b\},\{a,c\}\}$ and let $T : \Gamma_{pre} \longrightarrow P(X)$, be defined as follows:

T(U) = cl int cl(U)

Since for any U, V in Γ_{pre} , such that U \subseteq V, then T(U) = cl int cl (U), T(V) = cl int cl(V)

Clearly T(U) = T(V)

Hence, T is a pre-monotone operator.

Now, the relationship between monotone operators, pre-monotone operators and α -monotone operators will be discussed.

2.8 Theorem:

Every monotone operator is a pre-monotone operator.

Proof:

Suppose that (X,Γ,T) be an operator topological space and T be a monotone operator Let U, V be two open sets, such that $U \subseteq V$

Since T is a monotone operator

Hence, $T(U) \subseteq T(V)$

Since every open set is pre-open set

Therefore, U and V are pre-open sets

Therefore, we have two pre open sets U and V such that $T(U) \subseteq T(V)$

Hence, T is a pre-monotone operator.

2.9 Theorem:

Every α -monotone operator is a pre-monotone operator.

Proof:

Let (X,Γ,T) be an operator topological space and let T be an α -monotone operator Hence, for every pair of α -open sets U and V, such that $U \subseteq V$, then $T(U) \subseteq T(V)$

Since every α -open set is pre-open set

Therefore, U and V are pre-open sets, such that $U \subseteq V$ then $T(U) \subseteq T(V)$

Hence, T is a pre-monotone operator. \blacksquare

The converse of the above theorem is not true, as the following example shows:

2.10 Example:

Let $X = \{a,b,c\}, \Gamma = \{\emptyset, X, \{a\}, \{b\}, \{a,c\}\}, \Gamma^{\alpha} = \{\emptyset, X, \{a,b\}\}, \Gamma_{pre} = \{\emptyset, X, \{a\}, \{b\}, \{a,b\}, \{a,c\}, \{b,c\}\}$ and $T : P(X) \longrightarrow P(X)$, defined as:

$$T(U) = \begin{cases} \{b\}, & \text{if } b \notin U \\ \text{int}(U), & \text{if } b \in U \end{cases}$$

Then $\{a\},\{a,b\}$ are pre-open sets, such that $\{a\} \subseteq \{a,b\}$ and $T(\{a\}) \subseteq T(\{a,b\})$, but $\{a\}$ is not α -open set. Now, we are in a position to give the definition of T-pre-open sets:

2.11 Definition:

Let (X,Γ) be a topological space and T be a pre-operator on Γ . A subset A of X is said to be T-pre-open set if for each $x \in A$, there exist a pre-open set U containing x such that $T(U) \subseteq A$. We denote the set of all T-pre-open sets by $T_{\Gamma_{pre}}$.

A subset B of X is said to be T-pre-closed set if its complement is T-pre-open set.

2.12 Example:

Let X = {1,2,3}, Γ = {Ø,X,{1},{2},{1,2},{1,3}}, Γ_{pre} = {Ø,X, {1},{2},{1,2},{1,3}} and T : Γ_{pre} \rightarrow P(X), be defined as follows:

$$T(U) = \begin{cases} \emptyset, & \text{if } U = \emptyset \\ U, & \text{if } 1 \in U \\ \{1, 2\}, & \text{if } 1 \notin U \end{cases}$$

Hence, $T_{\Gamma_{\text{pre}}} = \{\emptyset, X, \{1\}, \{1,2\}\}.$

In the next theorem, we will give the relationship between T-open sets and T-pre-open sets.

2.13 Theorem:

Every T-open set is a T-pre-open set.

Proof:

Suppose that (X,Γ,T) be an operator topological space and let $A \subseteq X$ be T-open set Hence for each $x \in A$, there exists an open set U in X containing x, such that $T(U) \subseteq A$ Since every open set is a pre-open set Therefore, we have U is a pre-open set containing x and $T(U) \subseteq A$

Hence, A is a T-pre-open set. ■

As a consequence from the last theorem, we can give and prove the next corollary:

2.14 Corollary:

Every T-closed set is T-pre-closed set

Proof:

Suppose that (X, Γ, T) is an operator topological space and let F be T-closed set in X Hence F^c is T-open set in X Since every T-open set is T-pre-open set Therefore, F^c is T-pre-open set Hence, F is T-pre-closed set. ■

The converse of theorem (2.14) is not true in general, as the following example illustrate:

2.15 Example:

Let X = {a,b,c}, $\Gamma = \{\emptyset, X, \{a,b\}\}, \Gamma_{pre} = \{\emptyset, X, \{a\}, \{b\}, \{a,b\}, \{a,c\}, \{b,c\}\}$ and T : $\Gamma_{pre} \longrightarrow P(X)$ is an operator defined by:

$$T(U) = \begin{cases} U, & \text{if } a \in U \\ cl(U), & \text{if } a \notin U \end{cases}$$

Let $A = \{a, c\}$, then A is T-pre-open set, but not T-open.

2.16 Theorem:

Every T- α -open set is T-pre-open set.

Proof:

Suppose that (X, Γ, T) be an α -operator topological space and let A be any T- α -open set in X Hence for each $x \in A$, there exist α -open set U in X containing x and $T(U) \subseteq A$ Since every α -open set is pre-open set

Then, U is pre-open set in X containing x and $T(U) \subseteq A$

Therefore, A is a T-pre-open set. ■

The converse of the above theorem is not true, as it is seen from the following example:

2.17 Example:

X, Γ , Γ_{pre} , and T is same as In example (2.7), let A = {a}, then A is T-pre-open set but not T- α -open set. Now, we will define a pre-subadditive operators.

2.18 Definition:

Let (X,Γ) be a topological space, a pre-operator T on Γ_{pre} is said to be pre-subadditive if for every collection of pre-open sets $\{U_{\beta}\}$:

 $T(\bigcup U_{\beta}) \subseteq \bigcup T(U_{\beta})$

2.19 Theorem:

If the operator T is pre-subadditive, then the union of any collection of T-pre-open sets is T-pre-open set. *Proof:*

Let $\{A_i : i \in \Omega\}$ be a collection of T-pre-open sets, where Ω is any index set

Let $x \in \bigcup \{A_i : i \in \Omega\}$ Then, $x \in A_i$ for some $i \in \Omega$

Since Ai is T-pre-open set

Hence there exist a pre-open set U_i , $x \in U_i$, such that $T(U_i) \subseteq A_i$, and so $\bigcup T(U_i) \subseteq \bigcup \{A_i : i \in \Omega\}$ Since, T is a pre-subadditive, hence:

 $T(\bigcup U_i) \subseteq \bigcup T(U_i)$

Therefore, we have pre-open set U_i such that $x \in U_i$ and $T(U_i) \subseteq \bigcup \{A_i : i \in \Omega\}$

Hence, $\bigcup \{A_i : i \in \Omega\}$ is a T-pre-open set.

2.20 Remark:

The intersection of two T-pre-open sets is not necessary T-pre-open set in general.

2.21 Example:

 $\overline{X} = \{a,b,c\}, \overline{\Gamma} = \{\emptyset, X, \{a\}, \{b\}, \{c\}, \{a,b\}, \{a,c\}\}, \Gamma_{pre} = \{\emptyset, X, \{a\}, \{b\}, \{c\}, \{a,c\}, \{b,c\}\} \text{ and } T : \Gamma_{pre} \longrightarrow P(X), \text{ defined as:}$

$$T(U) = \begin{cases} int cl(U), & \text{if } a \in U \\ \{b\}, & \text{if } a \notin U \\ \emptyset, & \text{if } U = \emptyset \end{cases}$$

for each $U \in \Gamma_{pre}$. Then:

$$\Gamma_{\Gamma_{\text{pre}}} = \{\emptyset, X, \{a\}, \{b\}, \{a, b\}, \{a, c\}, \{b, c\}\}$$

But:

$$\{a,c\} \cap \{b,c\} = \{c\} \notin T_{\Gamma_{\text{pre}}}$$

Now, we will define a pre-regular operator.

2.22 Definition:

A pre-operator $T : P(X) \longrightarrow P(X)$ is said to be pre-regular if for each point $x \in X$ and for every pair of pre-open sets U and V containing x, there exist a pre-open set W, such that $x \in W$ and $T(W) \subseteq T(U) \cap T(V)$.

2.23 Proposition:

If $T : P(X) \longrightarrow P(X)$ is a pre-regular operator, then the intersection of two T-pre-open sets is T-pre-open set.

Proof:

Let A and B be T-pre-open sets in a pre-regular operator topological space (X,Γ,T) Let $x \in A \cap B$, since A and B are T-pre-open sets Then there exist pre-open sets U and V such that $x \in U$, $x \in V$ and $T(U) \subseteq A$, $T(V) \subseteq B$. Hence: $\begin{array}{l} T(U) \cap T(V) \subseteq A \cap B\\ \text{Since }T \text{ is a pre-regular operator}\\ \text{Then, there exist a pre-open set }W \text{ containing }x, \text{ such that:}\\ T(W) \subseteq T(U) \cap T(V)\\ \text{Since }T(U) \cap T(V) \subseteq A \cap B, \text{ hence }T(W) \subseteq A \cap B\\ \text{Therefore, we have a pre-open set }W, \text{ such that }x \in W \text{ and }T(W) \subseteq A \cap B\\ \text{Which implies to }A \cap B \text{ is }T\text{-pre-open set.} \quad \blacksquare \end{array}$

2.24 Corollary:

If T is a pre-regular operator, then the collection of all T-pre-open sets $T_{\Gamma_{\rm DTP}}$ form a topology on

 $(X, \Gamma_{\text{pre}}).$

In the following, we present the definition of T-pre-regular open set.

2.25 Definition:

Let (X,Γ) be a topological space and T be a pre-operator on Γ_{pre} , a subset A of X is said to be T-preregular open if $A = int(T_{pre}(A))$.

2.26 Example:

Let X = {a,b,c},
$$\Gamma = \{\emptyset, X, \{a\}, \{a,b\}\}, \Gamma_{pre} = \{\emptyset, X, \{a\}, \{a,b\}, \{a,c\}\}$$
 and
T: $\Gamma_{pre} \longrightarrow P(X)$, defined as:
T(U) =
$$\begin{cases} U, & \text{if } a \in U \\ \{c\}, & \text{if } a \notin U \text{ or } U = X \\ \emptyset, & \text{if } U = \emptyset \end{cases}$$

Let $U \subseteq X$ Then, U is T-regular open set if $U = \{a\}, \{a,b\}, \{a,c\}$

2.27 Theorem:

Every T-regular open set is T-pre-regular open set.

Proof:

Suppose that (X,Γ,T) be an operator topological space and let $A \subseteq X$ be T-regular open set Hence A = int(T(A))

Since every open set is pre-open set. Hence, $A = int(T_{pre}(A))$

Therefore, A is T-pre-regular open set.

The converse of the above theorem is not true, as it is shown in the next example:

2.28 Example:

In example (2.26), if $A = \{a,c\}$, then A is T-pre-regular open set but not T-regular open.

2.29 Theorem:

Every T- α -regular open set is T-pre-regular open.

Proof:

Suppose that(X, Γ ,T) be an α -operator topological space and let $A \subseteq X$ be T- α -regular open set Hence, $A = int(T^{\alpha}(A))$ Since every α -open such that is pre-open set Hence, $A = int(T_{pre}(A))$ Therefore, A is T-pre-regular open set.

<u>Definition:-</u>

Let X be a space and Y subspace of X. Then the class of T-open sets in Y is defined in a natural as:

$$\Gamma*pre = \{Y \cap O : O \in T_{\Gamma_{pre}}\}$$

where $T_{\Gamma_{\text{pre}}}$ is the class of T-pre-open sets of X. That is U is T-pre-open set in Y if and only if $U = Y \cap O$, where O is a T-pre-open set in X.

III. PRE-Operator of Continuous Functions

3.1 Definition:[3]

Let (X,Γ) and (Y,σ) be two topological spaces and T, L be an operators on Γ and σ , respectively. A function $f : (X,\Gamma,T) \longrightarrow (Y,\sigma,L)$ is said to be (T,L) α -continuous if and only if for every L-open set U in Y, $f^{-1}(U)$ is T- α -open set in X.

The following example shows that the function f is (T,L) α -continuous.

3.2 Example:

 $\begin{array}{l}
\text{Let } \overline{X} = \{1,2,3\}, \ \Gamma = \{\emptyset, X, \{1\}, \{1,3\}\}, \ \Gamma^{\alpha} = \{\emptyset, X, \{1\}, \{1,2\}, \ \{1,3\}\} \text{ and} \\
T : P(X) \longrightarrow P(X) \text{ defined as:} \\
T(U) = \begin{cases}
U, & \text{if } 1 \in U \\
cl(U), & \text{if } 1 \notin U
\end{cases}$

for each $U \in \Gamma^{\alpha}$. Then: $T_{\Gamma} = \{ \emptyset | X \} \{1\} \{1, 2\} \}$

$$\mathbf{T}_{\Gamma} = \{\emptyset, \mathbf{X}, \{1\}, \{1, 5\}\} \\ \mathbf{T}_{\Gamma}^{\alpha} = \{\emptyset, \mathbf{X}, \{1\}, \{1, 2\}, \{1, 3\}\}$$

and let $Y = \{a,b,c\}, \sigma = \{\emptyset,Y,\{a,b\}\}, L : P(X) \longrightarrow P(X)$ defined as:

$$L(U) = \begin{cases} U, & \text{if } a \in U \\ \text{int } cl(U), & \text{if } a \notin U \end{cases}$$

for each $U \in \sigma$. Then:

 $\mathbf{L}_{\sigma} = \{\emptyset, \mathbf{Y}, \{\mathbf{a}, \mathbf{b}\}\}$

and let $f : (X,\Gamma,T) \longrightarrow (Y,\sigma,L)$ be a function defined as: f(1) = a, f(2) = b, f(3) = c

Then f is (T,L) α -continuous function.

In the following theorem we present the relationship between (T,L) continuous and (T,L) α -continuous functions.

3.3 Theorem:

Every (T,L) continuous function is (T,L) α -continuous function. Now, we will define (T,L) pre-continuous function.

3.4 Definition:

Let (X,Γ) and (Y,σ) be two topological spaces and T and L be an operator on Γ and σ , respectively. A function $f: (X,\Gamma,T) \longrightarrow (Y,\sigma,L)$ is (T,L) pre-continuous if and only if for every L-open set U in Y, $f^{-1}(U)$ is T-pre-open set in X.

The following example shows that the function is (T,L) pre-continuous.

3.5 Example:

Let $X = \{a,b,c,\}, \Gamma = \{\emptyset,X,\{a,b\}\}$ and $T : P(X) \longrightarrow P(X)$ is defined by: $T(U) = \begin{cases} U, & \text{if } a \in U \\ cl(U), & \text{if } a \notin U \end{cases}$

for each $U \in \Gamma$. Then:

 $T_{\Gamma} = \{\emptyset, X, \{a, b\}\}$ and let Y ={1,2,3}, $\sigma = \{\emptyset, Y, \{1\}, \{3\}, \{1,3\}, \{2,3\}\}, \sigma_{pre} = \{\emptyset, Y, \{1\}, \{3\}, \{1,3\}\}$ and L : P(X) \longrightarrow P(X) is defined by:

$$L(U) = \begin{cases} U, & \text{if } 2 \in U \\ cl(U), & \text{if } 2 \notin U \end{cases}$$

for each $U \in \sigma_{pre}$. Then:

 $L_{\sigma} = \{\emptyset, Y, \{1\}, \{2,3\}\}, L_{\sigma pre} = \{\emptyset, Y, \{1\}\}$ and let f : (X, Γ , T) \longrightarrow (Y, σ , L) be a function defined as: f(a) = 2, f(b) = 1, f(c) = 3

Then, f is (T,L) pre-continuous.

The next theorem is explaining the relationship between (T,L)continuous and (T,L)pre-continuous function.

3.6 Theorem:

Every (T,L) continuous function is (T,L) pre-continuous function.

Proof:

Suppose that (X,Γ,T) and (Y,σ,L) be two operators topological spaces and let f: (X,Γ,T) → (Y,σ,L) be (T,L) continuous function.
Let U be L-open set in Y
Since f is (T,L) continuous
Hence, f⁻¹(U) is T-open set in X
Since every T-open set is T-pre-open set in X.
Hence, f⁻¹(U) is T-pre-open set in X
Hence f is (T,L)pre-continuous function.

The converse of the above theorem is not true in general, as the following example show:

3.7 Example:

Let X, Γ , T_{Γ}, L_{σ}, $L_{\sigma_{pre}}$ and f be the same as in example (3.5) and:

$$f(a) = 2$$
, $f(b) = 1$, $f(c) = 3$

 $f: (X,\Gamma,T) \longrightarrow (Y,\sigma,L)$ is (T,L) pre-continuous function, but not (T,L) continuous function.

3.8 Theorem:

Every (T,L) α -continuous function is (T,L) pre-continuous function.

Proof:

Suppose that (X,Γ,T) and (Y,σ,L) be two operators topological spaces and let $f : (X,\Gamma,T) \longrightarrow (Y,\sigma,L)$ be $(T,L) \alpha$ -continuous function. Let U be L-open set in Y Since f is $(T,L) \alpha$ -continuous Hence, $f^{-1}(U)$ is T- α -open set in X

Since every T- α -open set is T-pre-open set

Hence, $f^{-1}(U)$ is T-pre-open set in X, for each L-open set U in Y

Hence, f is (T,L) pre-continuous function.

The converse of theorem (3.8) is not true in general, as the following example illustrate:

3.9 Example:

Let X and Γ be the same as in example (3.5), let $\Gamma^{\alpha} = \{\emptyset, X, \{a, b\}\}$ and

$$T_{\Gamma^{\alpha}} = \{\emptyset, X, \{a, b\}\}.$$
 Then the function $f: (X, \Gamma, T) \longrightarrow (Y, \sigma, L)$ defined by :

f(a) = 2, f(b) = 1, f(c) = 3

is (T,L) pre-continuous function, but not (T,L) α -continuous.

Now, we will define (T,L) pre-irresolute continuous function.

3.10 Definition:

Let (X,Γ) and (Y,σ) be two topological space and T, L be operators on Γ and σ , respectively. A function $f: (X,\Gamma,T) \longrightarrow (Y,\sigma,L)$ is said to be (T,L) pre-irresolute continuous if and only if for every L-pre-open set U in Y, $f^{-1}(U)$ is T-pre-open set in X.

The following example on (T,L)-pre-irresolute continuous function.

3.11 Example:

Let $\overline{X} = \{a,b,c\}, \Gamma = \{\emptyset,X,\{a\},\{b\},\{c\},\{a,b\},\{a,c\}\}, \Gamma_{pre} = \{\emptyset,X,\{a\},\{b\},\{c\},\{a,c\},\{b,c\}\}$ and defined $T : P(X) \longrightarrow P(X)$ by:

$$\Gamma(U) = \begin{cases} \inf cl(U) & \text{if } a \in U \\ \{b\} & \text{if } a \notin U \end{cases}$$

for each $U \in \Gamma_{pre}$. Then:

 $T_{\Gamma\text{-pre}} = \{\emptyset, X, \{a\}, \{b\}, \{a, c\}, \{a, c\}, \{b, c\}\}$ and let Y = {1,2,3}, $\sigma = \{\emptyset, Y, \{1\}, \{2\}, \{3\}, \{1,2\}, \{1,3\}\}, \sigma_{\text{pre}} = \{\emptyset, Y, \{1\}, \{2\}, \{3\}, \{1,2\}, \{1,3\}, \{2,3\}\}$ and L : P(X) \longrightarrow P(X) is defined by:

$$L(U) = \begin{cases} \{1,3\}, & \text{if } 2 \in U \\ \text{clint}(U), & \text{if } 2 \notin U \end{cases}$$

for each $U \in \sigma_{pre}$. Then:

 $\begin{array}{l} L_{\sigma\text{-pre}} = \{ \varnothing, Y, \{1\}, \{3\}, \{1,3\} \} \\ \text{and let } f: (X, \Gamma, T) \longrightarrow (Y, \sigma, L) \text{ be a function defied as:} \end{array}$

$$f(a) = 1, f(b) = 3, f(c) = 2$$

Then, f is (T,L) pre-irresolute continuous function.

Now, we will introduce the relationship between (T,L) pre-irresolute continuous and (T,L) pre-continuous functions.

3.12 Theorem:

Every (T,L) pre-irresolute continuous function is (T,L) pre-continuous function.

Proof:

Suppose that (X,Γ,T) and (Y,σ,L) be two operators topological spaces and let

 $f: (X, \Gamma, T) \longrightarrow (Y, \sigma, L)$ be (T, L) pre-irresolute continuous function.

Let U be L-open set in Y

Since every T-open set is T-pre-open set

Hence U is L-pre-open set in Y

Since f is (T,L) pre-irresolute continuous function

Hence, $f^{-1}(U)$ is T-pre-open set in X

Hence, f is (T,L) pre-continuous function. ■

The converse of the above theorem is not true, as the following example shows:

3.13 Example:

 $X, \Gamma, \Gamma_{\text{pre}}, T_{\Gamma\text{-pre}}, \sigma_{\text{pre}} \text{ and } L_{\sigma\text{-pre}} \text{ be the same as in example(3.2),}$ the function $f : (X, \Gamma, T) \longrightarrow (Y, \sigma, L)$ is defined by: f(1) = a, f(2) = b, f(3) = cis (T,L) pre-continuous function, but not (T,L)-pre irresolute continuous function.

3.14 Definition:

Let (X,Γ) and (Y,σ) be two topological spaces and T, L be operators on Γ and σ , respectively. A function $f: (X,\Gamma,T) \longrightarrow (Y,\sigma,L)$ is said to be (T,L) strongly pre-continuous if and only if for every L-pre-open set U in Y, $f^{-1}(U)$ is T-open set in X.

The following example shows that the function f is (T,L) strongly pre-continuous.

3.15 Example:

Let X = {1,2,3}, $\Gamma = \{\emptyset, X, \{1\}, \{1,3\}\}$ and T : P(X) \longrightarrow P(X) defined as: T(U) = $\begin{cases} U, & \text{if } 1 \in U \\ \{3\}, & \text{if } 1 \notin U \text{ or } U = X \end{cases}$ for each U $\in \Gamma$. Then: T_{\Gamma} = { $\emptyset, X, \{1\}, \{3\}, \{1,2\}, \{1,3\}, \{2,3\}\}$ and let Y = {a,b,c}, $\sigma = {{\emptyset}, Y, \{a\}, \{b\}, \{a,c\}, \{a,c\}, \{b,c\}\}, \sigma_{\text{pre}} = {{\emptyset}, Y, \{a\}, \{b\}, \{a,c\}\}}$ and L : P(Y) \longrightarrow P(Y) defined as: $\int \inf_{L(U) = J} f(L(U), \quad \text{if } a \in U \\ L(U) = J \{b\}, \quad \text{if } a \notin U \end{bmatrix}$

$$\{b\}, \quad \text{if } a \notin U \\ \emptyset, \quad \text{if } U = \emptyset$$

for each $U \in \sigma_{pre}$. Then:

 $L_{\sigma\text{-pre}} = \{\emptyset, Y, \{a\}, \{b\}, \{a, b\}, \{a, c\}, \{b, c\}\}$ and let f : (X, \Gamma, T) \longrightarrow (Y, σ , L) be a function defined as:

f(1) = a, f(2) = c, f(3) = b

Then f is (T,L) strongly pre-continuous function.

The following theorem give us the relationship between (T,L) strongly pre-continuous and (T,L) pre-irresolute continuous functions.

3.16 Theorem:

Every (T,L) strongly pre-continuous function is (T,L) pre-irresolute continuous function.

Proof:

Suppose that (X, Γ, T) and (Y, σ, L) be two operators topological spaces and let $f: (X, \Gamma, T) \longrightarrow (Y, \sigma, L)$ be (T, L) strongly pre-continuous function. Let U be L-pre-open set in Y Since f is (T, L) strongly pre-continuous function Hence, $f^{-1}(U)$ is T-open set in X Since every T-open set is T-pre-open set Hence, $f^{-1}(U)$ is T-pre-open set in X Therefore, we have $f^{-1}(U)$ is T-pre-open set in X for every L-pre-open set U in Y Hence, f is (T, L) pre-irresolute continuous function.

3.17 Corollary:

Every (T,L) strongly pre-continuous function is (T,L) pre-continuous function.

Proof:

Suppose that (X,Γ,T) and (Y,σ,L) be two operators topological spaces and let

 $f: (X, \Gamma, T) \longrightarrow (Y, \sigma, L)$ be (T, L) strongly pre-continuous function.

Since every (T,L) strongly pre-continuous function is (T,L) pre-irresolute continuous function (by theorem (3.16))

Then, f is (T,L) pre-irresolute continuous function and since every (T,L) pre-irresolute continuous function is (T,L) pre-continuous function (by theorem (3.12))

Hence f is (T,L) pre-continuous function.

The converse of corollary (3.17) is not true in general, as shown by the following example:

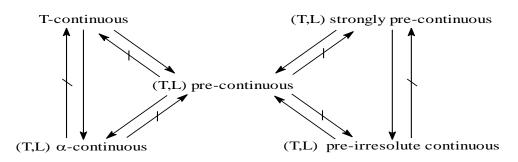
3.18 Example:

In example (3.5) if $\Gamma_{pre} = \{\emptyset, X, \{a\}, \{b\}, \{a,c\}, \{b,c\}\}$ and $T_{\Gamma-pre} = \{\emptyset, X, \{a\}, \{b\}, \{a,c\}, \{b,c\}\}$ and the function $f : (X, \Gamma, T) \longrightarrow (Y, \sigma, L)$ is defined as: f(a) = 2, f(b) = 1, f(c) = 3

Then f is (T,L) pre-continuous function, but not (T,L) strongly pre-continuous.

<u> 3.19 Remark:</u>

From the last theorems and examples, we have the following diagram:



References

- S. Kasahara, Operation- compact spaces, Math. Japonica, 24 (1979), 97. [1]
- A.S. Mashhour, M.E. Abd EI-Monsef and S.N.EI-Deep, "On Precontinuous and Weak Continuous Mappings", *Proc., Math., Phys., Soc., Egypt*, **53**(1982),47-53. [2]
- N.G.Mansur, A.M.Ibrahim "T-α -operator", Journal of college of education, No.3(2006), p 118-124. [3]
- [4]
- H. Ogata, "Operation on topological spaces and associated topology", Math. Japonica, 36 (1991), 175-184.
 E. Rosas, J. Vielma, "Operator decomposition of continuous mappings", Divu'aciones Matem´at [5] Divu'aciones Matem'aticas, 7, No. 1 (1999), 29-33.